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Wavelength-resolved neutron transmission experiments are useful for char-

acterizing the microstructure of macroscopic specimens with 2D spatial

resolution perpendicular to the beam direction. The crystallographic texture

can affect the neutron transmission in the thermal neutron energy range, which

manifests as changes in the shape and height of Bragg edges as a function of

neutron wavelength. Models have been proposed to predict the transmission of

textured polycrystalline materials from knowledge of the material texture and

have proved to accurately predict the observed transmission data. In recent

work, a novel method was described and tested for obtaining texture integral

parameters from the combined analysis of transmission data measured along

several directions of a specimen in a hexagonal crystal Zr alloy. However, this

procedure has limitations when dealing with high-symmetry crystal structures.

In this work, a generalization of such a method based on the expansion of the

orientation distribution function (ODF) in symmetric generalized spherical

harmonics that is applicable to all crystal and sample symmetries is presented.

Using this method, the low-order Fourier coefficients of the ODF can be

estimated by analyzing transmission data obtained for a reduced set of beam

directions. This method was verified using a cubic Cu sample, for which

transmission data were available along five different directions. Two sample

symmetries were assumed to reduce the number of Fourier coefficients of the

ODF. In the case of cylindrical symmetry (fiber-type texture), the results were

good; but in the case of orthorhombic symmetry, some bias was observed which

was attributed to the reduced number of beam directions used to perform the

evaluation.

1. Introduction

Use of neutron transmission has advanced in recent years as a

tool for characterizing the microstructure of materials with

submillimetric 2D spatial resolution perpendicular to the

beam direction (Woracek et al., 2018). This has been made

possible by taking advantage of the energy resolution of

neutrons provided by time-of-flight techniques, the develop-

ment of sound theoretical background (Santisteban et al.,

2001) and software development (Dollase, 1986; Vogel, 2000;

Sato et al., 2011; Dessieux et al., 2019; Malamud et al., 2023).

Examples include 3D imaging (tomography) to quantify phase

volumes inside samples (Woracek et al., 2014; Carminati et al.,

2020; Sato et al., 2021) and 2D imaging to characterize crys-

talline phase strains (Wensrich et al., 2016; Su et al., 2016, 2021)

by analyzing the position of Bragg edges in transmission

images.
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The recent advancements in energy resolution and acqui-

sition time of neutron transmission experimental facilities

have greatly facilitated the determination of crystallographic

texture through energy-resolved neutron transmission

experiments. This is achieved by analyzing the Bragg edges in

the thermal neutron energy range. Neutron diffraction is a

common method to determine the crystallographic texture in

the interior of samples (Peterson et al., 2021; Xu et al., 2018;

Takajo & Vogel, 2018; Onuki et al., 2016). In contrast to

neutron diffraction, which has a spatial resolution of several

millimetres, neutron transmission experiments can achieve

sub-millimetre resolution in transmission images. While

neutron diffraction is a volumetric technique, the gauged

volume in neutron transmission experiments traverses the

entire sample thickness along the beam direction. Despite this

limitation, neutron transmission still benefits from high spatial

resolution, allowing the study of texture gradients that are

difficult to measure by neutron diffraction.

On the other hand, neutron tomography can achieve

excellent spatial resolution in the interior of objects, which is

useful for studying the distribution of phases. However,

obtaining spatial information about strain, particle size and

orientation from neutron tomography is a more complex task

(Watanabe et al., 2019). Traditional reconstruction methods

fail due to the directional nature of these parameters, resulting

in a voxel within the sample having a cross section that varies

with sample orientation. In traditional reconstruction

methods, an isotropic total cross section is assumed, which

remains constant for all orientations of the object explored

using neutrons. It is clear that a better understanding of the

transmission models is necessary to improve tomographic

reconstruction capabilities in textured specimens.

The experimental determination of the transmitted wave-

length-resolved neutron spectrum consists of measuring the

spectroscopic transmission of the specimen T(�) by comparing

the signal recorded on the detector when the sample is in the

beam i(�) with the signal recorded for the direct neutron beam
i0(�):

Tð�; sÞ ¼ ið�; sÞ
i0ð�Þ

; ð1Þ

where s indicates the direction of the transmitted neutron

beam in the coordinate system of the sample. Within the

kinematical theory of diffraction for polycrystalline materials,

this transmission is directly related to the microscopic total

cross section �totð�; sÞ of a unit cell of the material by

Tð�; sÞ ¼ exp �Ncellh�totð�; sÞ
� �

; ð2Þ

where h is the thickness of the specimen along the neutron

beam direction and Ncell is the number of unit cells per unit

volume. The total cross section includes all processes that

remove neutrons from the incident beam (i.e. Bragg reflection,

diffuse scattering and absorption). For the thermal/cold range,

the absorption contribution �Að�Þ is given by a linear

increasing dependence with �:

�Að�Þ ¼
�abs�

�o

; ð3Þ

where �abs is the microscopic absorption cross section of the

atom at the wavelength �o [typically �o = 1.798Å (Luzin &

Brokmeier, 2002)]. The diffuse scattering contribution �sð�Þ
includes a combination of incoherent scattering processes and

inelastic scattering and, like �Að�Þ, is largely independent of

the incident beam direction and has a smooth dependence on

neutron wavelength. Theoretical expressions to calculate this

contribution are given by Granada (1984) and can be found in

the appendix of Malamud & Santisteban (2016).

The total cross section component attributed to the Bragg

reflection [�el;cohð�; sÞ] can be experimentally determined

along the specific specimen direction s by extraction from the

measured neutron transmission data T(�, s):

�el;cohð�; sÞ ¼ � 1

Ncellh
ln Tð�; sÞ½ � � �sð�Þ � �Að�Þ: ð4Þ

The coherent elastic term is the aspect of neutron total cross

section affected by texture. In the case of polycrystalline

materials with a small grain size (typically <5 mm), where the

kinematic approximation of diffraction is good, a closed

expression for the coherent elastic contribution in terms of

integrals over the pole figures was proposed (Santisteban et

al., 2012). This expression was evaluated in materials with

known texture and compared with experimental measure-

ments for quite different crystal structures and crystal-

lographic textures with good success (Santisteban et al., 2012;

Malamud et al., 2014; Malamud, 2016). After these studies, it

was shown that the integrals over the pole figures can be

solved analytically when the orientation distribution function

(ODF) is expressed as a Fourier decomposition in terms of the

generalized spherical harmonic functions or its equivalent

Wigner functions (Laliena et al., 2020). This new equation

enables a rapid evaluation of the transmission data for known

ODFs.

A novel methodology was recently proposed to obtain

integral parameters of the ODF by combining the transmis-

sion data obtained for different beam directions based on the

Fourier decomposition of the ODF. This method was

described in a recent paper by Vicente Alvarez et al. (2021)

and is applicable to materials with spatially uniform texture.

The proposed methodology relies on the expansion of

�el;cohð�; sÞ in terms of functions of �, whose expansion coef-

ficients depend only on the texture Fourier coefficients and the

beam direction. The utility of this methodology lies in its

ability to estimate the low-l Fourier coefficients of the ODF

from the transmission data, which can then be used to evaluate

the directional dependence of volume-averaged properties of

the polycrystalline aggregate such as bulk electrical resistivity

and elastic stiffness. This methodology was successfully

applied to the case of Kearns factors in a textured Zr alloy

(hexagonal close packed crystal structure) where the trans-

mission was measured along only two beam directions. One

necessary condition for the application of this method is the

linear independence (LI) of the set of functions used to
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expand �el;cohð�; sÞ. If the ODF is expanded using generalized

spherical harmonics (or Wigner functions), this LI condition is

not fulfilled due to crystal symmetry. In some cases, such as

hexagonal crystal symmetry, the linearly dependent functions

can be easily identified and eliminated, as explained by

Vicente Alvarez et al. (2021). However, in high-symmetry

crystals (e.g. cubic) this is not straightforward.

The objective of this study is to introduce a generalized

version of the recent methodology for estimating Fourier

coefficients of the ODF from transmission data, while

ensuring the LI condition is automatically satisfied. This is

achieved by expressing the ODF in terms of symmetrized

generalized spherical harmonics, which were originally intro-

duced by Bunge (1982) and account for both crystal and

sample symmetries. In the following section, we derive the

expression for �el;cohð�; sÞ and outline the procedure for

obtaining the Fourier coefficients of the ODF from transmis-

sion data. Section 3 explains how the instrumental resolution

function is incorporated into the formalism. Then, in Section 4,

we calculate �el;cohð�; sÞ for a Cu sample with a known ODF

and compare our results with experimental transmission

measurements obtained at the ENGINX-ISIS neutron facility.

In Section 5, we apply the inversion method to the same Cu

sample (i.e. we obtain the Fourier coefficients from the

experimental transmissions). Finally, in Section 6, we

summarize the main findings and conclusions.

2. The model

In this section, we present the derivation of the Fourier

expansion expression for the elastic coherent cross section as a

function of neutron wavelength in the kinematic diffraction

approximation. However, unlike in our previous work

(Vicente Alvarez et al., 2021), here we express this quantity in

terms of symmetrized functions that comply with the crystal

and sample symmetry. This approach enables us to directly

expand the elastic coherent cross section in terms of a set of

independent functions whose coefficients are linked to the

Fourier coefficients of the ODF of the sample. Since these sets

of functions are independent by definition, carrying out the

inversion of the linear system to obtain the expansion coeffi-

cients is straightforward.

The neutron coherent elastic cross section �el;coh of a

textured polycrystal in the kinematic approximation is given

by

�el; cohð�; sÞ¼
Nð2�Þ3

v0

X
G

h
FG

�� ��2I Z f ðgÞ�ðk0�k�gGÞ dg d�k0

i
;

ð5Þ
where � = 2�/k is the neutron wavelength, s is the direction of

the incident beam in the sample reference system, k ¼ ks,N is

the number of crystals cells along the section traversed by the

beam and v0 is the volume of the crystal cells. Summation is

done over all reciprocal lattice vectors G with the structure

factor FG. The first integral is taken over all crystal orienta-

tions g, with f(g) being the ODF representing the texture. The

second integral is over all exit directions of the neutrons that

suffer elastic diffraction in the crystal with the orientation

g ¼ ð’1; �; ’2Þ. Note that in this work we follow the same

convention for the definition of rotations and angles as

proposed by Bunge (1982).

Following Bunge (1982), f(g) can be expanded in a series of

symmetrized generalized spherical harmonics TCS;SS
l�� :

f ðgÞ ¼
X
l¼0

XMðlÞ

�¼1

XNðlÞ

�¼1

Cl��T
CS;SS
l�� ðgÞ; ð6Þ

where CS and SS refer to crystal and sample symmetries,

respectively; Cl�� are the Fourier coefficients; and summations

run from 1 to M(l) and to N(l).

The TCS;SS
l�� functions are evaluated as a linear combination

of the non-symmetrized generalized spherical harmonics Tlmn:

TCS;SS
l�� ðgÞ ¼

Xl

m¼�l

Xl

n¼�l

SCSl;m�S
SS
l;n�TlmnðgÞ: ð7Þ

The Tlmn functions are a generalization of the associated

Legendre functions, defined in chapter 14 of Bunge (1982),

where the coefficients SCSl;m� and SSSl;n� depend on the crystal and

sample symmetries, respectively. The definition of SCSl;m� coef-

ficients for hexagonal, orthorhombic, tetragonal and cylind-

rical symmetries can be found in Table 14.4 of Bunge (1982),

and for cubic symmetry in Table 15.2.2 of Bunge (1982), or

Morris (1995) and Muggli (1972).

In this context, it is important to highlight the advantages of

using symmetrized functions. Firstly, using symmetrized

functions allows the Euler space to be reduced to the funda-

mental region. Secondly, the total number of functions TCS;SS
l��

required to expand the ODF is drastically reduced compared

with the non-symmetrized case. In the non-symmetrized case,

for each l, this number increases as (2l + 1)2.

Substituting equations (6) and (7) into (5) and following the

procedure described in Appendix C of Laliena et al. (2020),

the following expression can be obtained for the elastic cross

section:

�el;cohð�; sÞ ¼
Nð2�Þ3
v0k

3

X
G

k

2G
FG

�� ��2	 1� G

2k

� �

�
X
l¼0...

�¼1...MðlÞ
�¼1...NðlÞ

kCSl� ðĜGÞkSS�l� ðsÞ 4�

2l þ 1
Pl

G

2k

� �
Cl��; ð8Þ

where Pl refers to Legendre polynomials. The asterisk refers

to complex conjugate, and the functions kCSl� and kSSl� are the

symmetrized versions of the surface spherical harmonics kml ðx̂xÞ
for the crystal and sample symmetries, respectively. These

functions are given by

kCSl� ðx̂xÞ ¼
Xl

m¼�l

SCSl;m�k
m
l ðx̂xÞ: ð9Þ

Analogously to the approach presented by Vicente Alvarez et

al. (2021), we express equation (8) as the product of two terms:

B, which solely depends on the neutron wavelength �, and A,
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which only relies on the neutron beam direction in the sample

reference system:

�el;cohð�; sÞ ¼
X1
l¼0

XMðlÞ

�¼1

BCS
l� ð�ÞASS

l� ðsÞ; ð10aÞ

where

BCS
l� ð�Þ ¼

2Nð2�Þ4
v0k

3

X
G

k

2G
FG

�� ��2	 1� G

2k

� �
1

2l þ 1

� Pl

G

2k

� �
kCSl� ðĜGÞ ð10bÞ

and

ASS
l� ðsÞ ¼

XNðlÞ

�¼1

Cl��k
SS�
l� ðsÞ: ð10cÞ

As previously explained by Vicente Alvarez et al. (2021), when

considering a fixed beam direction, equation (10a) can be

interpreted as an expansion of �el;cohð�; sÞ as a linear combi-

nation of BCS
l� ð�Þ functions, where the expansion coefficients

correspond to the values ofASS
l� ðsÞ for each set of (l, �). One of

the main advantages of the present formalism is that the

BCS
l� ð�Þ functions are independent by construction, allowing

for a straightforward inversion of equation (10a) to obtain the

ASS
l� ðsÞ parameters from the experimental data.

From equations (10a), (10b) and (10c), it is also straight-

forward to evaluate the dependence of the height of the Bragg

edge on the texture. The edge height corresponding to the

(hkl) plane with d spacing dhkl is given by the difference

thkl ¼ �el;cohð��; sÞ � �el;cohð�þ; sÞ with �� ¼ 2dhkl � �, where
� is infinitesimally small. From equation (10a) this is given by

thklðsÞ ¼
2Nð2�Þ4
v0k

3

X
GwithG¼2�=dhkl

FG

�� ��2

�
X
l;�;�

1

2l þ 1
Cl��k

CS
l� ðĜGÞkSS�l� ðsÞ; ð11Þ

where we made use of Pl(1) = 1 for all l. The summation over

l; �; � yields PFĜGðsÞ=4�, where PFĜGðsÞ represents the pole

figure intensity along direction s corresponding to the reci-

procal vector ĜG. Then equation (11) becomes

thklðsÞ ¼
Nð2�Þ3
v0k

3

X
GwithG¼2�=dhkl

FG

�� ��2PFĜGðsÞ: ð12Þ

The dependence of the Bragg edge height occurring at a

specific d spacing dhkl on the beam direction s is proportional
to the weighted sum of the structure factor FG

�� ��2 over all pole
figures of reciprocal vectors ĜG with the modulus G ¼ 2�=dhkl.
In the case where the distance dhkl depends only on the

permutation of the Miller indices (hkl), the summation

reduces to the multiplicity of the plane.

3. Comparison with experimental data

In a time-of-flight (TOF) experiment, the shape of �el;cohð�; sÞ
with � depends on the instrumental resolution function, which

takes into account all experimental errors contributing to the

uncertainty in the arrival time of the neutron (t). This function

is defined by the average time spent by the neutrons within the

moderator (emission time te) and the time taken by the

neutron to travel to the detector (tL¼ mL�=h, where m is the

neutron mass, L is the length travelled by the neutron and h is

Planck’s constant). Malamud & Santisteban (2016) proposed a

simple expression for this function:
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Figure 1
(a) Normalized instrumental resolution functions (P) for different values of 
hkl and �hkl . (b) Calculated �el;coh for a Cu powder sample after convolution
of equations (10a) and (13) using the different instrumental resolution functions from (a).
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P �hkl; 
hkl; �hklð Þ; �� � ¼ A 
hkl; �hklð Þ
2
hkl

exp � ���hkl


hkl
þ �hkl

2

2
hkl
2

� �

� erfc � �� �hklffiffiffi
2

p
�hkl

þ �hkl


hkl

� �
; ð13Þ

where �hkl is the wavelength in the ideal case and � represents

the deviation from this ideal value. This function is asymmetric

and arises from the convolution of an exponential function

with constant 
hkl and a Gaussian function of width �hkl as

explained in the literature (Malamud & Santisteban, 2016).

The constant Að
hkl; �hklÞ is a normalization factor. In prin-

ciple, the values of 
hkl and �hkl depend on �hkl. Some exam-

ples of function P are presented in Fig. 1(a), together with the

ideal case, which is represented as a delta function centered at

� = �hkl. To compare the theoretical result with the experi-

mental data, it is necessary to convolve the theoretical func-

tion for �el;cohð�; sÞ as given in equation 10(a) with the

function P from equation (13). In the context of this metho-

dology, this is equivalent to convolution of all BCS
l� ð�Þ functions

of equation (10b) with P given by equation (13).

Fig. 1(b) presents the results of calculations performed for a

Cu sample (face-centered cubic, lattice parameter 3.6149 Å),

where the powder contribution to the total elastic cross

section �el;cohð�; sÞ was evaluated using the function BCS
01 ð�Þ for

different instrumental functions, as shown in Fig. 1(a). In the

‘ideal’ case, where the instrumental resolution is a delta

function, the powder contribution displays sharp disconti-

nuities at the Bragg edge positions �hkl. For the other three

cases, the shape of the discontinuity exhibits a smoother

dependence for neutron wavelengths higher than �hkl. Addi-

tionally, the edge is shifted to higher values of �, as the

maximum of the instrumental distribution function occurs at

values of � � �hkl > 0.

4. Evaluation of the elastic cross section from a known
ODF

To evaluate the coherent elastic cross section using equation

(10a) from a known ODF, it is necessary to calculate the

symmetrized version of the Fourier coefficients Cl��. However,

these coefficients are generally not available in common

texture analysis software. In the free MATLAB toolbox for

texture analysis MTEX (Hielscher & Schaeben, 2008), the

non-symmetrized Fourier coefficients are readily available.

These coefficients are defined for Wigner functions Dlmn,

which use a different sequence of rotations (zyz) to define

orientations compared with the notation used by Bunge

(1982) (zxz) in the definition of Tlmn functions. Nevertheless, it

is simple to compute the Fourier coefficients of functions Tlmn

from those provided byMTEX for the Dlmn functions. Finally,

the symmetrized Fourier coefficients Cl�� can be obtained

from the non-symmetrized version Clmn using

Cl�� ¼
Xl

m¼�l
n¼�l

SCSl;m�S
SS
l;n�Clmn: ð14Þ

We compared the total coherent elastic cross section given by

equation (10a) with measurements performed on a textured

sample of Cu. The specimen of �20 � 20 � 10 mm, shown in

Fig. 2(a), was produced as a reference to compare its texture

with prehistoric copper axes (Artioli, 2007). The ODF of the

sample was determined by neutron diffraction measurements

at room temperature with the ENGIN-X diffractometer

(Santisteban et al., 2006) with a 6 � 6 � 2 mm gauge volume,

and data processing was done using the NyRTex texture

analysis routine (Malamud et al., 2014). The sample reference

system was defined by the ND (normal to the sample surface),

whereas the transverse and longitudinal directions (TD and

LD) were arbitrarily chosen with respect to the sample holder

(see Fig. 2). In the pole figures, the ND corresponds to the

center of the figures, and the TD and LD to the east and north,

respectively. The color scales of these pole figures are different

from one another and go from the lowest value in blue to the

highest value in red. The texture presents a marked (200) fiber

due to columnar grain growth during crystallization. The

direction of this fiber is some degrees shifted from the TD as

displayed in the (111), (200), (220) and (211) pole figures of

Fig. 2(b). For some specific beam directions, the transmission

data were also collected by a detector located behind the

sample. These TOF spectra were measured simultaneously

with the diffraction pattern at ENGIN-X, with an incident

beam divergence of �0.5	. The exposed beam directions are

identified as white squares in the (200) pole figure of Fig. 2(b)

and were labeled from 1 to 5.

The coherent elastic cross section �el;cohð�; sÞ was obtained
from neutron transmission measurements by subtracting the

inelastic and absorption components using equation (4), and

converting the time-of-flight (TOF) to neutron wavelength.

Fig. 3 displays the experimental �el;cohð�; sÞ per crystal cell for
beam directions 1 and 3 as hollow black circles. Note that, for
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Figure 2
(a) Sample with its holder. (b) Crystallographic texture of the Cu sample. The white squares in the (200) pole figures indicate the direction of the incident
beam in the transmission experiment.
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values of � greater than 4.2 Å, there is no elastic contribution

to the total neutron cross section, and the Bragg edges

corresponding to the first diffraction planes are indicated in

the figures. The shape of the elastic cross section differs

between the two beam directions due to the sample texture. To

define the instrumental resolution function we assumed

constant values of 
hkl = 0.02 Å and �hkl = 0.02 Å for all hkl.

The Debye–Waller factor was calculated using a mean square

of atomic displacement of hu2i = 0.0075 Å2, and the scattering

length of Cu atoms was taken to be 7.718 barns (Sears &

Shelley, 1991).

We conducted simulations in the 1–6 Å wavelength range,

with 0.001 Å steps for the five different beam directions. The

red lines overlaid on the figures represent the evaluation of

equation (10a) using the Fourier coefficients obtained from

the ODF of Fig. 2. For direction 3, there is a good agreement

between the experimental elastic cross section measured using

the neutron transmission method and the simulated theore-

tical elastic cross section using the ODF result of Fig. 2(b) as

initial input data across the entire wavelength range, with the

theoretical values almost overlapping the experimental ones.

For direction 1, the agreement is satisfactory, except for minor

differences in the Bragg edges 111 and 200. These differences

can be attributed to either small misalignments of this point

with respect to the sample coordinate system or possible

differences in the actual ODF from the measured one in the

vicinity of direction 1. Similar outcomes are seen for directions

2, 4 and 5.
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Figure 3
Elastic cross section measured for the Cu sample for two directions (white circles) and calculated using the ODF result of Fig. 2(b) as initial input data
(red lines).

Figure 4
Simulation of the variations in the height of four Bragg edges as a function of beam direction for the Cu specimen using the ODF result of Fig. 2(b) as
initial input data. (a) Example transmission spectrum, where the Bragg edge heights (thkl) are indicated with the arrows. This transmission spectrum
corresponds to the beam direction indicated as a white square in the (111) pole figure of (b). (b) Results of the simulations plotted as pole figures.
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The variations of the Bragg edge height for different planes

as a function of beam direction provide an interesting feature

worth exploring. As discussed in the previous section and

summarized in equation (12), the height dependence on the

beam direction is proportional to the pole figure of the

corresponding plane. To verify this relationship, a sequence of

2592 beam directions was simulated, covering the entire solid

angle in a mesh of 5 � 5	 steps. Fig. 4(a) shows a typical �el;coh
obtained for a specific beam direction. For each spectrum, the

heights thkl of the Bragg discontinuities associated with the

(111), (200), (220) and (311) planes were stored and plotted as

pole figures in Fig. 4(b). The color scales of these pole figures

range from blue (lowest values) to red (highest values) in

barns. Remarkably, these pole figures are identical to those in

Fig. 2(b), thereby validating our proposed expressions and

methodology.

5. Implementation of the inversion model

Considered as a function of wavelength, equation (10a) can be

interpreted as a linear expansion of the coherent elastic

scattering cross section, �el;cohð�; sÞ, in terms of the BCS
l� ð�Þ

functions, with ASS
l� ðsÞ coefficients. As the BCS

l� ð�Þ functions

have LI, the ASS
l� ðsÞ coefficients are uniquely determined.

Therefore, for each spectrum measured for a given beam

direction s, there is a set of coefficients ASS
l� ðsÞ that can be

easily obtained by a least-squares linear inversion method.

Similarly, for each pair (l, �), equation (10c) can be inter-

preted as a linear system for the unknowns Cl��, where both

ASS
l� ðsÞ and kSS

�
l� ðsÞ are already given.

The proposed inversion method, originally presented by

Vicente Alvarez et al. (2021) and extended in this work, is a

two-step procedure: first, the ASS
l� ðsÞ coefficients are deter-

mined from the measured elastic cross section spectra for the

directions s1; s2; . . . Second, the linear system of equation

(10c) is inverted to determine the Fourier coefficients Cl��.

It is clear from equation (10c) that the minimum number of

beam directions necessary to have an invertible system is N(l),

which increases with the order l and depends on the sample

symmetry. For example, for triclinic sample symmetry, N(l) =

2l + 1, whereas for cylindrical symmetry, N(l) = 1 for all l.

Table 1 shows the values of N(l) for different sample

symmetries, and the number of beam directions required to

determine the full texture for the case of the Cu sample is

indicated at the bottom of the table. If the sample symmetry is

triclinic, as in the case of the pole figures shown in Fig. 2, only

the Fourier coefficients with l = 0 will be accessible with the

five beam directions explored. Therefore, some assumptions

regarding the sample symmetry must be made to apply the

inversion method.

The inversion method was implemented in MATLAB. After

the first step, ASS
l� ðsÞ coefficients were obtained from the

experimental data for the five beam directions. Fig. 5 shows a

comparison between the experimental measurements of

�el;cohð�; sÞ (black points) and the expansion in terms of

functions BCS
l� ð�Þ (red line) for directions 1 and 3. For the other

directions similar results are obtained, where the curves

corresponding to the series expansion lie on top of the

experimental data. The curves shown in Fig. 5 correspond to

Lmax = 30 for the series expansion of equation (10a).

The bottom of Fig. 5 shows the residuals, which are rela-

tively small. Fig. 6(a) presents the sum of residuals as a
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Figure 5
Comparison between the experimental elastic cross section data (black open circles) and the fitted elastic cross section data using the inverse model
proposed here (red) for two beam directions.

Table 1
Number of real Fourier coefficients of an ODF according to its sample
symmetry for cubic crystals.

The number of scanned beam directions (s) is indicated at the bottom as a
reference.

Sample symmetry l = 0 l = 4 l = 6 l = 8

Triclinic 1 9 13 17
Orthorhombic 1 3 4 5
Cylindrical 1 1 1 1
No. of available ASS

l� 5 5 5 5
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function of Lmax for direction 3. In Fig. 6(b) the dependence of

the expansion coefficient ASS
l� ðsÞ for ðl; �Þ equal to (0, 1), (4, 1),

(6, 1) and (8, 1) on Lmax is shown. The horizontal lines in the

figure correspond to the values expected for these coefficients

evaluated from the ODF measured by diffraction. The values

of ASS
l� ðsÞ obtained from the present method vary moderately

with Lmax and there is a good correspondence between the

values obtained by the present method and those expected

from equation (10c) using the Fourier coefficients of the ODF

of Fig. 2. The small differences between them are ascribed to

heterogeneities in the sample and differences in the volumes

gauged by the diffraction and transmission determinations of

the ODF, which are also reflected as the small differences

between the experimental and estimated values of �el;cohð�; sÞ
from the ODF observed in Fig. 3.

Table 1 indicates that, with only five beam directions, it is

not possible to invert the linear system of equation (10c) for l >

0 without making additional assumptions. To address this, we

propose two solution paths: (1) Orient the ODF of Fig. 2 in a

way that places the intense (200) pole at the center of the pole

figure, which allows us to assume some higher sample

symmetry. (2) Assume that the texture is fiber-like with an

unknown fiber direction and develop a minimization metho-

dology that includes fitting for the fiber direction.

To implement the first solution path, we rotated the ODF

accordingly. Fig. 7(a) shows the rotated pole figures and the

new beam direction (rotated as the ODF). It is evident that, in

this new reference system, the texture of the sample has either

cylindrical or orthorhombic symmetry. We then applied the

inversion of equation (10c) to estimate Fourier coefficients of

the ODF for l 
 8, assuming cylindrical or orthorhombic

sample symmetry. With these coefficients, we calculated a

truncated ODF and corresponding pole figures, presented in

Fig. 7(b) for cylindrical and Fig. 7(c) for orthorhombic sample

symmetries.

The results for cylindrical symmetry are quite promising,

with the main texture components being reproduced well in

terms of both intensity and angular position. However, for

orthorhombic sample symmetry, the results are not as good.

Although the intense (200) pole at the center is well repro-

duced and the fourfold structures of (111), (220) and (311) are

present, negative values of the pole figures and ghost

components are observed. These discrepancies can be attrib-

uted to errors in the determination of Fourier coefficients. In

the case of cylindrical symmetry, only one coefficient is defined

for each pair (l, �) using five different values of ASS
l� ðsÞ.

However, for orthorhombic symmetry, the linear system is

almost a square system of equations for l = 6 and l = 8. Thus,

even a small bias in the determination of ASS
l� ðsÞ coefficients

can have a significant impact on the estimated Fourier coef-

ficients of the ODF.

The second solution path assumes that the sample texture is

fiber-like, meaning it is axisymmetric for rotation along the

fiber direction. However, the orientation of the fiber axis is

unknown and needs to be determined using the experimental

data. In the reference system normal to the fiber axis, there is

only one Fourier coefficient different from zero for each pair

(l, �) up to l 
 8. Thus, there are a total of six fitting para-

meters, including two angles and four Fourier coefficients (l =

0, 4, 6 and 8), whereas there are 20 experimental values of

ASS
l� ðsÞ (five for each value of l).

One complication of this method is that the system to be

inverted in equation (10c) becomes nonlinear, which reduces

the effectiveness of the minimization method. Fig. 8 presents a

comparison between (1) the ODFof Fig. 2 truncated to Lmax =

8 and assuming cylindrical symmetry and (2) the ODF

obtained by the inversion method. The inversion method was

able to capture the location of the fiber and the relative

intensity of the different poles. However, some small differ-

ences were found, such as an overestimation of the intensity of
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Figure 6
(a) Sum of residuals (blue line) and the number of fitting parameters (green) as a function of Lmax [cut-off value of the series expansion of l in equation
(10a)]. (b) Value of ASS

l� coefficients with l 
 8 as a function of Lmax. Each color corresponds to a different pair (l, �). These curves correspond to the
measurement of point 5.
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Figure 8
Pole figures in the approximation of fiber texture (a) calculated from the ODF of Fig. 2 and (b) estimated by the inversion method.

Figure 7
(a) Experimental pole figures measured using neutron diffraction obtained from a convenient rotation of Fig. 2(b). (b), (c) Estimated pole figures
obtained from neutron transmission data after applying the inversion method proposed in this work (b) after assuming cylindrical sample symmetry
considering only terms with l 
 8 and (c) after assuming orthorhombic sample symmetry.
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the (111) pole closest to the east of the pole figure, and some

negative values due to errors in the determination of the

ASS
l� ðsÞ coefficients.

6. Conclusions

A two-step inversion procedure was developed to extract the

Fourier coefficients of the ODF from energy-resolved neutron

transmission spectra. This method utilizes an expression for

the total coherent elastic cross section of textured polycrystals,

which considers both sample and crystal symmetries, and is

valid under the kinematic approximation of diffraction. The

neutron wavelength and direction dependencies are decou-

pled, with the crystal structure being represented by the

linearly independent BCS
l� ð�Þ functions, while the texture of the

material is captured through its Fourier coefficients and the

sample symmetry, represented by the ASS
l� ðsÞ functions.

To verify the proposed method, we applied it to a Cu sample

for which the texture was known from neutron diffraction

experiments. The instrumental resolution was taken into

account by convolving the BCS
l� ð�Þ functions with the instru-

mental resolution function, resulting in excellent agreement

between the experimental data and the model for all five beam

directions explored.

The two-step inversion procedure was then applied to the

same Cu sample, where the experimental elastic cross section

spectra were first expressed as a linear combination of BCS
l� ð�Þ

functions with the linear coefficients being the ASS
l� ðsÞ para-

meters. In the second step, the Fourier coefficients of the ODF

were obtained for the lowest l values using the ASS
l� ðsÞ para-

meters obtained from different beam directions.

Two different approaches were proposed to obtain the first

Fourier coefficients of the ODF. In the first approach, the

beam direction was rotated to align the (200) pole at the

center of the pole figure, with the inversion model assuming

cylindrical or orthorhombic sample symmetry. This approach

yielded good results, particularly for higher-symmetry cases. In

the second approach, the texture was assumed to be fiber-like,

with the fiber axis direction in the sample reference system

being fitted from the experimental data. This method was able

to accurately identify the fiber axis direction and capture the

main features of the texture.

The current inversion method for texture evaluation

assumes a uniform texture of the sample. However, this does

not mean that the method cannot be applied to samples with

texture gradients. By rotating the sample normal to the

direction of the texture gradient, the method can still be used

to analyze each vertical section of the sample separately. This

way, each section can be treated under the requirements of the

method, enabling determination of the texture for the whole

sample.
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