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Abstract— Leaf area index (LAI) is an important forest canopy
variable that is related to various biophysical processes of forest
ecosystems. Airborne laser scanning (ALS) has shown promise
in modeling and mapping LAI using different types of ALS
metrics. The most common ways of modeling LAI with ALS
data are multivariate empirical models and the semi-physical
model shape derived from the Beer–Lambert law of radiation
attenuation. We tested the utility of ALS-based empirical and
semi-physical models in the estimations of effective LAI (LAIe),
canopy clumping index (�E), and clumping-corrected LAI at
three boreal forest sites in Finland. In semi-physical models,
the all echo penetration index (API) showed consistently the
best performance in predicting LAIe. It is, therefore, a robust
and potentially the most transferable predictor using this model
shape. Empirical models overall yielded slightly better model
fits compared to the semi-physical models, yet they are also
more prone to overfitting. In addition, empirical models had
constantly lower accuracies when predicting LAI than LAIe.
We also tested the utility of ALS-based multi-angular canopy gap
fraction metrics that were derived from polar transformed ALS
point clouds. Images derived from polar transformed point clouds
can be analyzed similarly to digital hemispherical photographs
(DHPs) to obtain canopy gap fractions. The results showed
that polar metrics derived from polar transformed ALS data
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can provide supporting information to empirical models in
the estimation of LAIe, LAI, and especially �E . In particular,
a combination of ALS penetration indices and polar metrics
yielded positive results in �E estimation.

Index Terms— Airborne laser scanning (ALS), canopy clump-
ing, forest canopy, leaf area index (LAI), light detection and
ranging (LiDAR).

I. INTRODUCTION

LEAF area index (LAI), here defined as half of the total
leaf area per unit horizontal ground surface area [1],

[2], is a key parameter that describes canopy properties of
forest ecosystems. It measures the amount of leaf material
present in the canopy, making it a suitable input for model-
ing biosphere-atmosphere mass and energy exchanges, such
as photosynthesis and transpiration [3]. The Global Climate
Observing System (GCOS) has identified LAI as one of
the variables that are crucial in global biosphere-atmosphere
models. LAI also contributes to two essential biodiversity
variable classes: ecosystem structure and ecosystem func-
tion [4]. In forestry, LAI is a key input of process-based growth
models [5], a main driver of forest albedo modeling [6], and
an indicator of defoliation when monitoring forest health [7].

Effective LAI (LAIe) is the LAI value derived from indi-
rectly measured gap fractions assuming that the canopy only
consists of foliage elements that are opaque and randomly
distributed according to the Beer–Lambert law. In reality,
however, foliage rarely has a random distribution due to
clumping at different levels, let alone that canopies consist
of a diversity of canopy elements, not only foliage. Previous
research has attempted to classify clumping at shoot, branch,
crown, and landscape levels, or simply at between-crown
and within-crown levels [8], [9]. The clumping index (�),
which is defined as the ratio of LAIe to LAI, is used to
quantify the clumping effect [10], [11]. It denotes the degree
of non-randomness of foliage in an observed canopy. When
the foliage has a random spatial distribution, � = 1. When
canopy elements are clumped in a way that more canopy gaps
are observed than if they were distributed randomly, � < 1.
On the contrary, � > 1 implies that foliage elements are
regularly distributed and less canopy gaps are observed than if
they were distributed randomly. Accounting for the clumping
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effect is therefore crucial for accurate LAI estimation. Failure
to do so would lead to an underestimation of LAI ranging
from 30% to 70% [12], [13], [14]. Furthermore, simultaneous
large-area mapping of LAIe, LAI, and � remains particularly
challenging due to their temporal and spatial variability [15],
[16]. However, their importance demands that more effort be
paid to obtaining reliable, spatially continuous maps of these
variables.

Remote sensing technology offers a great opportunity for
collecting forest information over large coverages of land
area in a cost-effective way. In many countries, airborne laser
scanning (ALS) is routinely used in the estimation of forest
attributes, such as basal area and timber volume [17], [18],
[19]. ALS has also been successfully applied for the estimation
of LAI [20], [21].

Different kinds of light detection and ranging (LiDAR)
systems, such as full-waveform (FW) and discrete return (DR)
sensors, have been deployed on airborne platforms for the
retrieval of forest attributes. Armston et al. [22] found that
airborne FW LiDAR sensors produced more accurate results
than DR sensors in the estimation of canopy gap fraction. Nev-
ertheless, commercial DR scanners remain the most popular
LiDAR systems in topographic and forest surveys, and the
availability of DR data is therefore considerably better when
large-area applications are considered.

The most common way of estimating LAI with ALS data
is to build empirical models between field-measured LAI
and ALS predictors. It means that field data are required
to calibrate and validate the models, which imposes a chal-
lenge as field measurements of LAI are often unavailable.
The majority of field data used for model construction and
validation are from indirect optical measurements, such as
digital hemispherical photographs (DHPs) [23], [24], [25],
digital cover photographs (DCPs) [26] or the LAI-2000 Plant
Canopy Analyser [27], [28]. The LAI derived from canopy gap
fractions obtained from DHP, DCP or LAI-2000 data (indirect
measurements) is the LAIe, which does not account for woody
materials and clumping effect. However, it can be converted to
“true” LAI if leaf angle distribution, woody areas, and � are
accounted for [29] and [30]. Thus, the estimation of � from
ALS data is also important from the perspective of obtaining
reliable LAI maps.

Over the years, many studies have assessed which types
of metrics derived from DR LiDAR data should be used to
predict LAI. For example, [31] found that in an empirical
framework, height-related predictor variables were often useful
as predictors of LAI. Intensity-based variables, which can be
calculated for example as the ratio of the intensities from
ground echoes and the total intensity, have also been applied
to predict LAI [32]. However, in practice, the necessity of
calibrating LiDAR intensity for variation in scan range and
scanner settings may present extra difficulties [33]. Thus, the
use of only geometric variables is in many cases more reliable.

In fully empirical models, the model predictors are selected
from a pool of LiDAR metrics describing the point cloud
obtained from the canopy. However, there is also a model
shape for ALS-based LAI prediction as (1), which is derived
from the Beer–Lambert law that is used to obtain LAI esti-

mates from in situ measurements of multiangular gap fractions.
In this semi-physical model, the near-vertical gap fraction is
approximated by a canopy penetration index T computed from
ALS data [20], [21], [34]

LAIe = −β ∗ ln(T ) (1)

where β is a coefficient estimated by regression analysis. If T
is an unbiased estimate of near-vertical gap fraction, β can
be interpreted as an estimate of leaf orientation within the
canopy, which must be known to convert gap fraction in a
given view direction to LAI [35]. Even if T is biased, the
model will work if β is re-estimated by regression analysis
based on LAI estimated in the field. However, if unbiased
estimates of T can be obtained, the model can be applied
in all forests where β is assumed to be similar. Thus, it is
important to study how different canopy penetration indices
compare with field-measured estimates of T . Yet, no single
LiDAR penetration index has been uniformly agreed to have
a superior accuracy as an estimator of gap fraction, as the
penetration index is dependent on the type of LiDAR sensor
and acquisition settings, such as flying heights and scanning
angles [36].

The semi-physical model shape is simple and robust and
has been shown to yield accurate predictions in different
biomes [34], [35]. Thus, it is suitable for large-scale mapping
of LAIe. However, fully empirical models could perform even
better, since increasing the number of predictors in a model
usually leads to more accurate results, given that overfitting is
avoided [37]. For example, LiDAR metrics computed from
polar transformed ALS data, such as polar grid fractions,
may contain canopy structural information that could help
to improve the estimates of LAI and clumping [38], [39].
Polar transformed ALS point clouds can be rasterized to
create figures that resemble in situ hemispherical figures and
then processed to obtain polar metrics that describe canopy
penetration in non-vertical directions. However, the utility and
performance of polar metrics in the modeling of LAI for large
areas still need further investigation.

The first aim of this study is to directly compare several
ALS-based canopy penetration indices against field-measured
estimates of near-vertical canopy gap fraction and assess if
the least biased indices also perform the best as predictors
in semi-physical LAI models. Next, we compare empirical
and semi-physical modeling techniques in the estimation of
LAIe, LAI, and � with ALS data at three boreal forest
sites using discrete-return ALS data. With empirical models,
we specifically test the utility of polar-transformed metrics in
addition to the commonly used LiDAR canopy height and
density distribution metrics as well as canopy penetration
indices.

II. METHODOLOGY

A. Study Sites

Three study sites including a total of 123 field plots in
Southern and Eastern Finland were used in this study (Fig. 1).
The plots at all three sites covered a wide range of tree species
compositions and forest structures (Table I), but overall, the
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TABLE I
FOREST INVENTORY ATTRIBUTES OF THE THREE STUDY SITES

Fig. 1. Locations of the three LAI modeling study sites in Finland and their
subordinate plots. The map contains data from the National Land Survey
of Finland (2022) under the creative commons attribution 4.0 international
license CC BY 4.0.

sites were similar to each other. The most common tree
species were Scots pine (Pinus sylvestris L.), Norway spruce
(Picea abies L. Karst), and birches (Betula spp L.). The forest
structures ranged from sparsely wooded homogeneous pine
stands growing on boglands to clumped heterogeneous old
growth stands growing on fertile soils.

B. Digital Hemispherical and Cover Photographs

The Hyytiälä site was measured in 2011, and the DHP was
acquired using a Nikon Coolpix 8800 camera and an FC-
E9 fisheye converter. At the Outokumpu and Heinola sites
that were measured in 2021–2022, a Canon EOS2000 camera
and a Sigma 4.5 mm fisheye lens were used. The image
acquisition schemes also varied at the different sites. At the
Hyytiälä site, 12 hemispherical images were taken at plot
level, whereas at the Outokumpu and Heinola sites, only five
images were collected per plot. All measurements were made
under overcast sky or near sunset to avoid direct sunlight. The
cameras were fixed to a tripod at approximately 1.3 m height
above ground and leveled using a two-axis bubble level. The

Fig. 2. DHPs and DCPs observation spots at plot level. In case the observation
spots were close to tree stems, both types of photographs were taken at
least 1 m away. DHP1 refers to observations in site 1 (Hyytiälä) and DHP2,3

observations in site 2 (Outokumpu) and site 3 (Heinola). Polar ALS refers to
reference points at which polar metrics were calculated.

lens was then pointed upward with its focus set to infinity
(Nikon) or using autofocus (Canon). Auto exposure bracketing
function was used, with the base exposure set to −2 EV at
+/− 1 EV stop, which resulted in a series of images at three
consecutive EVs: −3, −2 and −1, and the one with the best
exposure was manually picked for further image processing.
The shooting mode was set to aperture priority and aperture
was kept at f/8 to decrease the vignetting effect [25]. The
DHP was saved in raw image format.

DCP was acquired at the same time as DHP. In each plot,
a total of 30 DCP were acquired using an Olympus µ700
(Hyytiälä) or Canon SX200 IS (Outokumpu and Heinola) cam-
era (Fig. 2). By default, the camera was set to aperture priority
mode and automatic exposure was decreased by 1–2 stops
to avoid overexposure. In very dense canopies this was not
enough, and manual exposure had to be used instead. In such
conditions, the aperture and shutter speed were adjusted so
that the background sky was not overexposed. The images
were taken by pointing the camera in the skywards direction
and saved in JPEG format.

1) Processing of Hemispherical Photographs: The hemi-
spherical photographs were processed in hemispherical project
manager (HSP), a software that implements the LinearRatio
method [23] for a single camera (LinearRatiocs), as instructed
in [40]. We chose this software as our preliminary results
showed that the binarized images obtained by HSP had a
slightly higher consistency than those obtained by the com-
monly used thresholding methods [41]. The software applies
a linear conversion to digital raw files, based on the assumption
that the digital numbers of raw DHP files are linearly related
to the incident radiance. It then reconstructs an above-canopy
reference image based on DHP taken below the canopy by
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using sky radiance sampled from sufficiently large canopy
gaps. The software first converts the raw DHP to 16-bit
simple portable gray maps (PGM format) with the help of
dcraw software (version 9.28). Only original blue pixels were
extracted in the process because at this spectrum they have
the highest contrast between the sky and the canopy. We used
the switches of dcraw: −d (document mode, no color, and
interpretation), −W (do not automatically brighten the image),
−g 1 1 (linear 16-bit custom gamma curve). We input camera-
specific parameters to correct lens projection distortion and
adopted the default value of 1.0 to offset the camera vignetting
effect.

Next, sky pixel sampling markers were manually placed to
create an above-canopy reference image, assuming that the
canopy gaps are large enough (3 × 3 pixels). To do this
for each hemispherical image, a mixed method combining
a simple inverse distance weighted interpolation and a sky
radiance model fit to the sky pixel samples was employed [25].
Two nearest sky samples were used to interpolate each pixel
in the reconstructed above-canopy reference image, and the
searching distance was set to 200–300 pixels, depending on
the sky condition. For validating the reference image, the sky
pixel values in canopy gaps had to have a light transmission
P(gap_sky) close to 1. Finally, binarized gap fraction images
were exported using automatic thresholds that yielded the
same gap fraction as in the ratio images.

Gap fractions GF(θ ) were then calculated from the binarized
DHP following a ring-wise analysis. DHP was divided into
six concentric rings (15◦ interval) similar to the well-known
LAI-2000 plant canopy analyser. The weight of each ring was
calculated as follows:

Wi =
sin θi∑n

n=1 sin θi
(2)

where θi was the mean zenith angle of the ring (7◦, 23◦, 38◦,
53◦, 68◦ and 83◦), and Wi the weight of the ring i . Note that
the weight of the sixth ring was assigned to the fifth one,
similar to the LAI-2000 method.

LAIe was estimated from gap fractions using Miller [42]’s
integral as follows:

LAIe = −2
∫ π

2

0
ln T (θ) cos(θ) sin θdθ. (3)

In practice, the above equation was approximated by the
sum as follows:

LAIe = −2
n∑

i=1

ln (Ti ) cos (θi )Wi (4)

where Ti was the mean GF(θ ) of each annulus ring from the
DHPs collected at plot level. The effect of woody components
(such as tree trunks and branches) was not removed, and for
simplicity reasons, we used LAIe to denote the effective plant
area index.

Morphological closing and opening operations were
employed to extract between- and within- crown gaps from
the binarized DHPs [43]. This operation was controlled by a
parameter called structuring element size, which was set to
10 for the images obtained by the Canon camera and 8 for the

Nikon camera due to their different image resolutions. The
structuring element size was determined by manually tuning
it to the setting that yielded the closest approximation of
the manually painted between-crown gaps at the plot level.
The structuring element size was kept constant for all rings
as its influence on the obtained gap fraction was negligible.
The resultant mask was assumed to split the image into large
between-crown gaps and a continuous canopy area with only
small within-crown gaps.

Various methods have been proposed to correct the effect
of canopy clumping, such as the LX [11], CC [10], CLX [44]
and the recent LXG [45] methods. A detailed comparison
can be found in [8]. Overall, all methods have consistent
physical meanings with the � definition. We chose the CC
method (5) because it intuitively corresponds to the method
of morphological image analysis used in this study

�CC(θ) =
ln [Fm(0, θ)]

ln [Fmr (0, θ)]

[1 − Fmr (0, θ)]

[1 − Fm(0, θ)]
(5)

where Fm(0, θ ) denotes the measured mean canopy gap
fraction at five annulus rings from images collected in the
same plot, covering the range of 0◦–75◦. Fmr (0, θ ) denotes the
canopy gap fraction when the canopy has a random distribution
of foliage, which was approximated by the mean within-crown
gap fraction obtained by subtracting the mean between-crown
gap fraction from the mean total gap fraction.

The element clumping index �E that quantifies canopy
foliage clumping at plot level was aggregated as an average of
the directional �CC(θi ) obtained from the five rings as follows:

�E =
1
n

n∑
i=1

�CC(θi ). (6)

An additional shoot-level clumping correction was
introduced for stands with coniferous trees. Thus, the
clumping-corrected LAI (neglecting plant woody materials)
was calculated as follows:

LAI =
LAIe

�E · �s
Pc +

LAIe

�E
(1 − Pc) (7)

where Pc is the proportion of the basal area of coniferous trees
measured in the field, and �s is the shoot silhouette area to
total needle area ratio that was assumed to have a constant
value of 0.56 [13], [46].

2) Processing of Cover Photographs: The DCP were pro-
cessed with an in-house MATLAB script to obtain more
representative estimates of the near-vertical canopy gap frac-
tion GF(θ ) [43]. The images were binarized to separate the
sky and the background using the thresholding algorithm
presented by [47]. Only the view angles 0◦–15◦ from the zenith
were included in the computation of GF(θ) to keep the view
geometry near vertical.

C. LiDAR Data

Different LiDAR sensors and acquisition parameters were
used at each site (Table II). Initial processing of the LiDAR
data was done using LAStools (version 220310). Ground
echoes were first classified using the lasground tool. Subse-
quently, all echoes were re-classified into four classes: single,



ZHANG et al.: COMPARISON OF SEMI-PHYSICAL AND EMPIRICAL MODELS 5701212

TABLE II
ALS SENSOR SPECIFICATIONS FOR THE LAI MODELING STUDY SITES

first of many, intermediate, and last of many. The heights
of all echoes relative to the ground surface were calculated
by subtracting their corresponding ground heights; thus, all
echo heights were normalized. In addition, we filtered LiDAR
echoes labeled with scan angles >15◦ to ensure the view-
ing angle was compatible with DCP. Lastly, various LiDAR
variables were calculated at plot level using a radius of 20 m,
following the area-based approach [48]. The cut-off height was
set at 1.3 m, i.e., the same height at which DHP and DCP were
taken.

LiDAR metrics used in this study included echo height
percentiles, echo density percentiles (“bincentiles”), multiple
penetration indices, and canopy variables from polar trans-
formed LiDAR coordinates. Echo heights (p_*) and densities
(b_*) were calculated using all echoes at 5% increments
(0%, 5%, . . . , 95%, and100%). For example, p_5 means the
echo height observed at the fifth percentile. In addition, means
and standard deviations of echo heights were also calculated.

For penetration indices, we computed the all echo pene-
tration index [API, (8)], first echo penetration index [FPI,
(9)], last echo penetration index [LPI, (10)], and Solberg’s
penetration index [SPI, (11)] [21], [34], using 1.3 m elevation
as the cut-off height to separate vegetation and ground echoes

API = 1 −

∑
Allv∑
All

(8)

FPI = 1 −

∑
Singlev +

∑
Firstv∑

Single +
∑

First
(9)

LPI = 1 −

∑
Singlev +

∑
Lastv∑

Single +
∑

Last
(10)

SPI =

∑
Singleg + 0.5(

∑
Firstg +

∑
Lastg)∑

Single + 0.5(
∑

First +
∑

Last)
(11)

where All, Single, First, and Last denote echo types, and their
subscripts indicate whether the echo hits vegetation (v) or
ground (g).

In addition, we included another echo-weighted penetration
index (EWI) which was directly derived from the echo num-
bers as follows [49]:

EWI =
Nground

Nground + Nvegetation
(12)

where a weight was added for each echo as (1/ i) and i was
the number of echoes of the given pulse. Hence, Nground =

g1 + (1/2)g2 + (1/3)g3 + · · · + (1/n)gn and Vvegetation = v1 +

(1/2)v2 + (1/3)v3 + · · · + (1/n)vn .
Furthermore, we tested the efficiency of canopy variables

obtained from polar transformed echo coordinates at the plot

level. Specifically, we converted Cartesian coordinates (X , Y ,
Z ) of all echo types at plot level into azimuth (φ) and zenith
(θ ) polar angles after shifting original Cartesian coordinates
to comply with the sampling scheme shown in Fig. 2. Instead
of converting only the echoes inside the plots, we used an
enlarged plot radius of 40 m to derive polar metrics as an
attempt to represent the larger plot information captured by
DHP due to the large field of view (FOV ≥ 180◦) of the
fisheye lens. After this conversion, it was possible to construct
DHP-like images from ALS data [Fig. 3(a)]. Namely, all
echoes were binned into a 2-D systematic grid defined by
azimuth and zenith angles (φ, θ ), and then the grid was
rasterized to an image of 480 × 480 pixels that covered the
entire hemisphere. We did several tests on the resolution of
the raster image and chose this resolution as a compromise
of spatial details and having sufficient echoes per pixel. The
value of each pixel was initialized as the number of echoes (n)
assigned to it. To calculate the fractional gap at the pixel level,
the maximum number of echoes within the 0◦–75◦ (nmax)
was determined first. The fractional cover was calculated
as n/(nmax/2), with values > 1 truncated to 1; thus, the
fractional gap was calculated as 1−n/(nmax/2). Hereafter this
rasterization is referred to as grayscale polar image [Fig. 3(b)].
Furthermore, the greyscale image was binarized into canopy
gaps (0) and vegetation (1), hereafter referred to as binarized
polar image [Fig. 3(c)]. Finally, the binarized polar image was
processed with morphological image processing operations
using a structuring element size of 7 in the same way as
DHP was processed [Fig. 3(d)]. Thus, we obtained estimates
of angular gap fractions at five rings for each reference
point, and their values were averaged to obtain the plot-level
metrics. We used the symbols binarized-gaps* and greyscale-
gaps* to denote gap fractions at 1–5 rings obtained from
binarized polar images and greyscale polar images, as well as
morphological-gaps* to denote between-crown gaps obtained
from morphologically processed polar images respectively. For
example, binarized-gaps1 denotes the gap fraction obtained
at the first ring using the binarized polar images. Together,
binarized-gaps*, greyscale-gaps* and morphological-gaps* are
hereafter referred to as “polar metrics.”

D. Model Construction and Validation

We first directly compared the LiDAR penetration indices
with DCP-derived near-vertical GF(θ) without using any mod-
els. The comparison was based on computing the root mean
square error (RMSE) and bias in the following equations:

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi )2 (13)

Bias =
1
n

n∑
i=1

(yi − ŷi ) (14)

where ŷi is the value of the given penetration index, yi is the
observed value from ground DCP measurements, and n is the
number of plots.

Next, we predicted LAIe using the selected LiDAR pen-
etration indices and the semi-physical model form (1). The
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Fig. 3. (a) DHP-like image constructed using polar transformed ALS coordinates at one observation spot. (b) Greyscale polar image displaying fractional
gaps. (c) Binarized polar image. (d) Between-crown canopy gaps after morphological operations (large gaps are shown in black).

coefficient β, when it is assumed as a leaf orientation correc-
tion parameter, should equal two when the entire hemisphere
is considered (3) or the leaf angle distribution is random [42].
The latter is not necessarily the case in boreal forests, so β

must be estimated empirically by using field measured LAIe

and regression analysis.
Furthermore, we constructed empirical models for LAIe,

LAI, and �E using ordinary least squares (OLSs) with up
to three LiDAR-based predictors. The predictors were selected
using an exhaustive search of the whole LiDAR-based variable
pool, including penetration indices and their log transforma-
tions, echo height percentiles, and echo density percentiles
using all echoes, and polar metrics. Adding variables into
the multivariate model not only increased the model fit but
also the risk of overfitting. Therefore, we applied the fol-
lowing rules in selecting the predictors for the empirical
models.

1) All predictors had to be statistically significant, p <

0.05.

2) We used models with up to three predictors with vari-
ance inflation factor (VIF) < 5 in most cases.

3) In the case of models having the same RMSE, we chose
the one with the lower Akaike information criterion
(AIC).

The models were validated following the leave one out
cross validation (LOOCV) approach and the three sites were
modeled separately. In the result section, we report the relative
RMSE [RMSE%, (15)] as well as R2 and mean absolute error
[MAE, (16)] values to measure the model accuracy

RMSE% =
RMSE · 100%

ȳi
(15)

MAE =
1
n

n∑
i=1

|yi − ŷi | (16)

where yi is the observed value from ground measurements,
ŷi is the value of the predicted counterpart, ȳi is the mean
observed value of all plots and n is the number of plots used
to construct the model.
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TABLE III
COMPARISON OF DCP-MEASURED NEAR-VERTICAL GAP FRACTION

WITH LIDAR PENETRATION INDICES

III. RESULTS

A. Direct Comparison of DCP-Derived GF(θ) With LiDAR
Data

We first compared the GF(θ) obtained by DCP with dif-
ferent LiDAR penetration indices to find a stable LiDAR
penetration index T as the input to the semi-physical model
shape (Table III). Overall, LiDAR penetration indices could
represent field measured GF(θ) with varying performances in
the different sites. The FPI and EWI underestimated GF(θ)
with a positive bias, while the LPI overestimated GF(θ) at all
three sites. As expected, the FPI leads to underestimation as
it is not sensitive to detect small gaps in the canopy. On the
contrary, the LPI, which is based on last echoes and single
echoes, tends to overestimate GF(θ). SPI and API generally
had smaller biases but were inconsistent across the sites.
Both indices overestimated GF(θ) at the Outokumpu site and
underestimated at the Hyytiälä site. Yet, SPI overestimated at
the Heinola site while API showed the opposite.

Overall, FPI and LPI yielded relatively larger RMSE in all
three sites. The LPI gave the largest RMSE in Heinola (0.23)
and Outokumpu (0.26) sites, yet the RMSE reduced consid-
erably in Hyytiälä (0.08), making it the least biased index at
Hyytiälä site. One possible reason could be the LiDAR sensor
that registered more last echoes and thus provided a smaller
LPI at this site. The EWI outperformed FPI and LPI, albeit
not reaching the level of precision achieved by SPI and API.
The SPI, which added weight on the first and last echoes, had
the smallest bias in Heinola. The API provided the smallest
bias in the Outokumpu site.

B. Effective LAI

1) Semi-Physical Model: Although all LiDAR indices can
be used as T in the semi-physical model to predict LAIe, here
we only report the performances of the API and SPI indices.
These indices had less bias and a more stable correlation
with the GF(θ) (Table III), and also produced a better fit
with DHP-based LAIe across the different sites than the other
indices.

Both indices that predicted LAIe as a linear function of the
negative logarithm had an almost 1:1 relationship with the field
measured LAIe obtained by DHP (Fig. 4). As expected, the
estimated coefficient β took a value around two in both cases,
which varied due to different LiDAR sensor properties, flight
parameters, or foliage angle distributions by site. It ranged
from 2.08 to 2.63 when modeling with the API index and from

Fig. 4. Scatterplot of the field measured LAIe and LiDAR predicted LAIe
after LOOCV in three study sites. T refers to the (top row) API and (bottom
row) SPI indices.

TABLE IV
SELECTED LIDAR-BASED METRICS USING OLSS

2.01 to 2.87 with the SPI index. The API (RMSE% = 9.0%–
18.2%) yielded more accurate results than the SPI (RMSE% =

17.5%–27.0%) in all datasets. The best fit was achieved in
the Outokumpu site (RMSE% = 9.0%, MAE = 0.16, R2

=

0.97) with the coefficient value β reaching 2.63, indicating
an erectophile foliage angle distribution by the lower contact
frequency in the zenith direction than around the horizon.
In Heinola, the accuracy was slightly lower (RMSE = 16.9%,
MAE = 0.23, R2

= 0.92). In Hyytiälä, the accuracy was even
lower (RMSE% = 18.2%, MAE = 0.31, R2

= 0.75), which
was particularly influenced by one plot having a large LAIe

value. In the overestimated plot (LAIe difference: 1.44), the
sun still illuminated the tree crowns, which apparently led
to the overestimation of gap fractions and consequently the
underestimation of LAIe.

2) Empirical Models With 1–3 Predictors: We predicted
LAIe using empirical regression models with up to three
LiDAR-based predictors. The results showed that a variety of
LiDAR-based predictors could be used in empirical models
to estimate LAIe (Table IV). LiDAR penetration indices,
especially API, were often selected as model predictors.
Predictors derived from polar transformed point clouds also
appeared at all sites, highlighting their potential importance
in empirical models. Predictors based on LiDAR height and
density percentiles had relatively a lower rate of selection.

The results also showed that the model accuracy could
be improved by feeding additional predictors, which was



5701212 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 5. Scatter plots of field measured LAIe and LiDAR predicted LAIe using
empirical models of (top row) one variable, (middle row) two variables, and
(bottom row) three variables.

indicated by decreased RMSE% and MAE as well as increased
R2 for all study sites (Fig. 5). The model fit was improved
in Hyytiälä (RMSE% = 16.9%, 14.2% and 13.0%) when
the respective models had one, two and three predictors, and
the model improvements were relatively smaller in Heinola
(RMSE% = 17.2%, 16.4% and 15.6%) and Outokumpu
(RMSE% = 9.4%, 9.4% and 8.8%). However, concerns arose
when having additional model predictors, as every additional
predictor not only decreased the model’s RMSE%, but also
brought the risk of overfitting. In our case, models having
more than three predictors always accompanied by high VIF
that indicated strong multicollinearity. Therefore, it seemed
that multivariate models with ≤3 predictors remained a safe
choice.

C. Canopy Clumping �E and LAI With Empirical Models

As previous results suggested that the risk of overfitting
should be concerned with multivariate models, we used only
two predictors to estimate LAI and �E to avoid such issues.
Fig. 6 llustrates the comparison of LiDAR predicted LAI and
�E with their field measured counterparts obtained by DHP.
Regarding LAI, the models’ RMSE% and MAEs were similar
(RMSE% = 18.7%–19.7%, MAE = 0.14–0.64) in three sites
while the R2 was slightly lower in Hyytiälä (R2

= 0.60)
compared with Heinola (R2

= 0.79) and Outokumpu (R2
=

0.78). Similar results were observed for �E across the sites.
In addition, the accuracies of LAI models were considerably
lower when compared with the LAIe models of 1–3 predictors
(RMSE% = 8.8%–17.2%, MAE = 0.16–0.31). Nevertheless,
the results showed that LiDAR-based metrics were successful
in modeling LAI and �E .

We observed that LiDAR penetration indices as well as
polar metrics were often selected as empirical model predic-
tors. Notably, the empirical models always took a combination

Fig. 6. Scatterplot of DHP measured LAI and canopy element clumping
index (�E ) with their LiDAR predicted counterparts after LOOCV. Selected
predictors can be found in Table IV.

of penetration indices and polar metrics as predictors in the
estimation of �E . These results again highlighted the potential
of using polar metrics to describe forest canopy properties
(e.g., LAI and �E ) following an empirical modeling approach.
It may be that polar metrics from the fifth ring (60◦–75◦)
provided particularly useful information given their selected
frequency (Table IV). It is possible that polar metrics, derived
by using an extended radius of 40 m at the plot level, pro-
vided useful information to the models as they also captured
canopy information located outside the plot boundary. This
information was captured by DHP due to its large FOV but
not by the LiDAR penetration indices that were calculated
using the radius of 20 m. It seemed that including both canopy
penetration indices and polar metrics in empirical models
provided the most reliable estimates for both LAI and �E .
On the other hand, the commonly used ALS variables related
to height and density did not appear in these models.

D. Comparison of Model Accuracies for the Various
Response Variables

Table V displays a comparison of the model accuracies at
the various sites based on the RMSE%. The direct comparison
between DCP-derived GF(θ) with the API index had the
RMSE% ranging from 11.1% to 29.5%. The �E was predicted
most accurately with RMSE% ranging from 4.2% to 8.5%, and
the clumping corrected LAI was by far the most difficult to
predict accurately (RMSE% = 18.7%–19.7%). The differences
in RMSE% between the semi-physical and empirical models
for LAIe were small at Heinola and Outokumpu, but the
5.0 percent decrease in Hyytiälä suggested that empirical
models may have added value in sites with a large variety
of forest structures.

IV. DISCUSSION

A. Comparison of the Two Modeling Approaches in the
Estimation of LAIe

Both semi-physical models and empirical models showed
satisfactory performance in estimating LAIe when calibrated
against field data. Overall, the best result of predicting LAIe
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TABLE V
SUMMARY OF THE MODEL ACCURACIES BASED ON RMSE%

AT THE THREE STUDY SITES

with the semi-physical model shape was achieved with the
API index; and with empirical models, the best results were
achieved when three LiDAR-derived predictors were included.
The empirical models were slightly more accurate than the
semi-physical models, as their RMSE% were on average 2%
smaller. Although the RMSE% values were overall lower
across sites when using the empirical multivariate models
with 2–3 predictors than the semi-physical models, empirical
multivariate models may be less robust in real-world prediction
scenarios than the semi-physical models, whose form is simple
and built upon a solid theoretical basis.

Solberg et al. [21] suggested that the semi-physical mod-
eling approach is only valid on the condition that a strong
relationship exists between the LiDAR penetration index and
the gap fractions GF(θ). In our case, both the SPI and
API indices were found to be highly correlated with GF(θ)
measured by DCP. The API index was the least biased at
the Outokumpu site (Bias = −0.02) and also achieved the
best accuracy (RMSE% = 9.0%). However, the opposite was
observed with the SPI index, as it appeared almost unbiased
at the Heinola site (Bias = −0.02) but resulted in the weakest
model fit (RMSE% = 27.0%). Therefore, the least biased
LiDAR penetration index does not necessarily result in the best
performance when included as a predictor in the semi-physical
model shape.

In direct comparison with DCP-measured gap fractions, the
performances of different penetration indices depended on
the LiDAR scan and acquisition settings, such as scan angle
and footprint size. The impact of ALS pulse density on the
computation of penetration indices should be small because
our data had a sufficient density to form a reliable height
distribution for each plot [50]. We normalized the variations
in the ALS scan angle by setting it identical to the view angle
of DCP (15◦ off zenith). The effects of footprint size were
difficult to assess as they also depended on pulse power that
was unknown for all data sets. However, large footprint sizes
typically result in more echoes from both the canopy and the
ground. In addition, the Leica scanner had a 17 cm footprint
size could digitize fewer echoes per pulse (four) than the
Riegl scanners with 50 cm footprints (six). Regardless of these
differences, Fig. 4 showed that API always had less scatter
than SPI and consequently it constantly outperformed SPI in
all sites. Thus, API appears to be a robust proxy of GF(θ),
even though it may be more prone to bias from sensor effects
than other indices, as it is computed using all echo types. This
is in line with the findings of [51], who also stated that the
indices computed using all echoes produced better results.

Furthermore, the β retrievals were expected to take a
value around two, given that the foliage angle distribution is
spherical and that the used LiDAR penetration index equals the
GF(θ ). Previous studies showcased that in boreal forests the β

estimates based on the SPI index ranged from 2.3 to 2.7 [21],
[32], [34], which was a rather narrow spread and raised hopes
that the use of SPI index with β ≈ 2.5 might provide rea-
sonably accurate estimates of boreal forest LAIe even if field
calibration data were not available. In our case, the β values
based on the SPI index were 2.58 and 2.87 when the GF(θ)
were overestimated (Heinola and Outokumpu, respectively)
and 2.01 when the GF(θ) was underestimated (Hyytiälä).
Therefore, sensor effects had a considerable effect on the SPI-
based β values, and it does not seem feasible to assign a
specific value to the β when estimating LAIe based on the
SPI index in south-eastern Finland. With the API index, the
β values were closer to each other: 2.13, 2.08, and 2.63,
which may indicate that it is more robust than the SPI index.
However, the resultant β is still sensor-dependent, and further
research is needed to determine if transferable semi-physical
LAIe models are feasible based on the API index.

Although estimating LAIe using empirical models with
three predictors yielded better accuracy than the use of semi-
physical models, empirical models are more complex and
thus more prone to errors in prediction and less transferable.
Transferability is a critical issue in LAI estimation, because
in situ LAI data are rarely available for large-area mapping.
In general, model transferability can be poor when an existing
model is applied with different LiDAR systems and forest
structures [52]. For a limited area such as south-eastern
Finland, it could still be possible to construct large-area models
for LAIe or LAI by combining data from multiple LiDAR
projects, which has already been done for forest attributes
such as biomass [53]. Model calibration with small and easily
obtainable sets of field reference data may also be a feasible
solution [54].

B. Utility of Polar Metrics in Empirical Models

We showcased that polar transformed ALS point clouds
can be used to construct DHP-like images, which can be
processed in a similar manner as real DHPs and consequently
produce polar metrics. The results showed that polar metrics
were frequently selected in the empirical models, especially in
the estimation of �E (Table IV). Currently, canopy clumping
is commonly mapped from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) at 500 m resolution [55];
however, mapping clumping with a finer resolution is highly
desired in the field of remote sensing. Our results showed that
using the combination of penetration indices and polar metrics
in empirical models yielded satisfactory model fits (RMSE%
= 4.3%–8.5%, R2

= 0.86–0.93), which may provide an insight
into constructing finer �E maps using LAI field data.

The use of polar metrics also has multiple advantages.
First, polar metrics, which are derived from DHP-like images
constructed using ALS echoes, provided useful information
to support LAIe, LAI, and �E empirical models. The main
difference in polar metrics is that each image is specific to
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a given sample point, whereas commonly used height and
density percentiles apply to a fixed area. To account for
the local variation between sampling spots, we constructed
five polar transformed images per plot following the same
sampling design as DHP and used their averaged values as
inputs of multivariate models. Vaughn et al. [39] suggested
that polar grids consisting of azimuth and zenith intervals
could produce stable LAI estimates. In the current study,
the polar transformed variables were pixel-based instead of
angle based, because the application of morphological image
processing operations would have been difficult if the image
elements were defined by zenith and azimuth angles. Our
approach, however, enabled the ring-wise analysis based on
the five annulus rings, which is similar to standard DHP image
processing.

Alexander et al. [38] investigated the influence of different
radii on the computation of ALS polar metrics. Their study
revealed that employing a 50-m plot radius yielded the best
correlation between angular canopy cover and understory
light condition. Considering that trees in Finland are on
average smaller than their study site in Denmark, we used the
plot radius of 40 m to derive polar metrics. These metrics
were also proven effective in empirical models. In some
rare cases, such as seed tree stands characterized by tall
trees but a small stem density, this decision may potentially
introduce a bias, as visible trees further than 40 m may be
excluded from consideration. Nevertheless, in the majority
of forest environments, this bias is insignificant, as trees
positioned at greater distances are already obscured from the
view by trees closer to the viewing point. Using the plot
radius of 40 m also provides a computational challenge of
deriving high-resolution LAI and �E maps with for example
20 m spatial resolution because the predictor values for each
pixel should also include ALS echoes outside of the pixel.
A possible workaround is to compute multiple low-resolution
LAI and �E maps with slightly different pixel locations
and merge them to form a high-resolution raster of polar
metrics.

As polar metrics are, in essence, derived from ALS point
cloud data, they are prone to LAI saturation and might not
work as stand-alone predictors. With empirical regression
models, this means that the predicted LAI values do not
increase after the predictors exceed certain values, usually at
the upper extents [56]. However, commonly used penetration
indices can always be included as auxiliary predictors, as we
did in the current study. For example, [57] managed to delay
the saturation effect to some extent with a combination of
different types of LiDAR metrics. However, LAI saturation
remains to be a complex issue as it depends on many condi-
tions, such as site type and LiDAR systems, which also links
back to the issue of model transferability.

V. CONCLUSION

We conclude that ALS data can provide many kinds of
metrics that are suitable for modeling LAIe, �E , and LAI with
ALS data when field data are available for model calibration.
Both empirical and semi-physical modeling approaches are

effective in predicting LAIe over a variety of forest con-
ditions at multiple geographical locations in Finland. With
the semi-physical modeling approach, the input LiDAR pen-
etration index is expected to be reasonably unbiased against
the vertical gap fraction. However, the most unbiased pen-
etration index did not necessarily produce the best model
fit in our case. Both the SPI and API indices were suitable
candidates to be included; yet, the API index provided the
strongest correlation with field measured LAIe. The API index
therefore offers the most potential for model transferability.
When following the empirical modeling approach, the models
for clumping-corrected LAI were considerably less accurate
than the models for LAIe. In addition, we demonstrated that
LiDAR echoes can produce polar metrics that can facilitate
the estimations of LAIe, LAI and �E . These polar metrics
can provide empirical models with additional information on
canopy structure, and they were frequently selected as model
predictors. Especially the canopy clumping coefficient �E was
modeled with great accuracy using polar metrics and canopy
penetration indices.
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