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A B S T R A C T 

The action of tidal friction, coupled with the Kozai cycles, drastically changed the original orbits of trans-Neptunian binaries 
(TNBs). The dynamics of the Kozai mechanism is driven by the solar torque on the mutual orbit, so that the orientation of 
the latter relative to the heliocentric orbital plane plays a fundamental role in this process, both in the magnitude and in the 
characteristic of the cycles. In this way, any effect that makes this relative orientation vary may be relevant in the dynamics 
of the process. In this paper, we will focus on the effect that the perturbations of the giant planets on the heliocentric orbit of 
TNBs have on the dynamics of the Kozai cycles and tidal friction. For this task, we have performed numerical simulations of 
the evolution of a synthetic population of TNBs subject to Kozai cycles and tidal friction adding planetary perturbation on their 
heliocentric orbits. We found that in a non-negligible fraction of cases ( ∼25 per cent), this additional perturbation produces 
substantial changes in the orbital e volution. The slo w precession of the heliocentric orbit and the variation of its inclination can 

make the dynamical evolution of the mutual orbits v ery irre gular, completely changing the morphology of the Kozai cycles. 
When these variations are coupled to tidal friction, the lifetime of the TNBs can change substantially. 

Key words: comets: general – Kuiper belt: general. 
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 I N T RO D U C T I O N  

rans-Neptunian binaries (TNBs) hav e receiv ed increasing attention 
n recent years because they keep valuable information about the 
rocesses that occurred during the formation of the outer Solar 
ystem. Understanding the evolution of TNB orbits is rele v ant 
o reveal the mechanism that gave rise to them, their dynamic 
tability against different factors, and fundamentally, to reconstruct 
he characteristics of the primordial population from what is observed 
oday. 

The evolution of the mutual orbits of TNBs can be modelled fairly
losely by Kozai’s secular theory (Kozai 1962 ; Lidov 1963 ). The
utual orbit of the binary and the heliocentric orbit of its centre of
ass exchange angular momentum, while the orbital energy remains 

lmost unchanged. Thus, while the semi-axis of the binary mutual 
rbit does not change, the inclination and the eccentricity vary in a
ay known as the Kozai mechanism: a coupled cycle where when 
ne increases the other decreases to keep the angular momentum 

onstant. The relative inclination between the binary orbit and the 
rbital plane of the perturbing body is a crucial factor in determining
he strength of the Kozai effect and the resulting dynamical evolution 
f the binary. In general, the Kozai effect is strongest when the
elative inclination is near 40 ◦ or 140 ◦, which are known as the
ozai critical angles (Kozai 1962 ). At these relative inclinations, the 
inary eccentricity can reach its maximum value and the pericentre 
istance can experience significant changes. In contrast, when the 
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elative inclination is near 0 ◦ or 180 ◦, the Kozai effect is weak and
he binary eccentricity and inclination remain relatively constant o v er
ime. 

Another key process that governs the evolution of TNBs is tidal
riction, which is the transfer of angular momentum from the 
inary system to the individual components due to the interaction 
etween the tidal bulges raised by one body on the other (Hut 1981 ;
ggleton & Kisele v a-Eggleton 2001 ). Over time, this process may
ause the semimajor axis of the binary orbit to shrink, leading to
he eventual merging of the two bodies into a single entity. The
fficiency of tidal friction depends on various factors, such as the size
nd internal structure of the binary components and the strength of
heir gravitational interaction (Goldreich & Soter 1966 ). Ho we ver, 
he tidal friction time-scale depends strongly on the separation of 
he binaries, and in the case of very eccentric orbits, the tidal
nteraction acts as kicks at pericentre (Hut 1981). Therefore, the 
mportant parameter to measure the rele v ance of tidal forces is the
ericentre distance rather than the semi major axis. In this context,
he oscillations of the orbital eccentricity by the Kozai mechanism 

lay a key role in the orbital evolution of TNBs (Porter & Grundy
012 ; Brunini & Zanardi 2016 ). 
The Kozai mechanism is closely associated with the orbital 

recession rate (Innanen et al. 1997 ) so that the existence of small
erturbations to the system that modify this precession rate can 
ubstantially alter the dynamics of the Kozai cycles and even suppress 
hem. The effect of some sources of additional perturbations was 
nalysed in the literature. In the context of TNBs, the effect of the
blateness of the binary components was investigated by Porter & 

rundy ( 2012 ) and also by Brunini & Zanardi ( 2016 ). In these works,
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t was shown that this effect may be important for binaries with very
losed orbits. Relativistic precession (F abrick y & Tremaine 2007 )
as also e xtensiv ely studied. Although this effect is important for
bjects orbiting a central star perturbed by an inner eccentric planet
Zanardi et al. 2018 ), hot planets in extrasolar planetary system, and
ome stellar objects, it seems not to be rele v ant for the evolution of
NBs. 
In this work, we will focus on possible effects that the inclusion

f the giant planets could have on the orbital evolution of TNBs. The
ffect of additional bodies on the Kozai mechanism was analysed
n several situations like planets orbiting binary stars (Innanen
t al. 1997 ; Wu & Murray 2003 ; Malmberg, Davies & Chambers
007 ) or orbiting triple stellar systems (Marzari & Barbieri 2007 ),
hich are not directly applicable to Kuiper Belt Objects (Hereafter
BOs). The most closely related to our scope is the model by Fang,
hompson & Hirata ( 2018 ). The y dev eloped a secular theory for the
ase of quadruple stellar systems composed of two tight binaries.
he conditions imposed to obtain this secular model are not entirely
pplicable to our case (although they will help us to understand some
ele v ant aspects of the problem). 

This paper is organized as follows: in Section 2 , we will present
 brief discussion about the secular equations that will be used in
ur simulations, and we will analyse the strategies to be applied
o e v aluate the influence of planetary perturbations on the orbital
ynamics of TNBs. Section 3 will be dedicated to present the initial
onditions and the methods used to carry out the simulations. In
ection 4 , we will show the most rele v ant results, and Section 5 will
e devoted to the conclusions. 

 T H E  KO ZA I  MECHANISM  A N D  T H E  RO LE  

F  PLA N ETA RY  P E RTU R BAT I O N S  

lthough they can be found in the literature, for reasons of com-
leteness, we will present here, in a very synthetic way, the secular
quations that go v ern the evolution of a TNB. F or binary minor
lanets like TNBs, the heliocentric orbit of the centre of mass contains
ost of the angular momentum. In this situation, the Hamiltonian

p to the quadrupole order [up to the order ( a / a �) 2 , where a is the
emimajor axis of the mutual orbit and a � is the semimajor axis of
he heliocentric orbit of the binary centre of mass] averaged over
he mean anomalies is (Innanen et al. 1997 ; F abryck y & Tremaine
007 ) 

 quad = 

Gm �a 2 

8 a 3 �(1 − e 2 �) 3 / 2 
[2 + 3 e 2 − (3 + 12 e 2 −15 e 2 cos 2 ω) sin 2 i] , 

(1) 

here G is the gravitational constant, m � is the solar mass, e �is
he eccentricity of the heliocentric orbit, e is the eccentricity of the

utual orbit, ω the argument of periastron and i is the inclination of
he binary orbit relative to the plane of the heliocentric orbit. Scaling
he time by writing 

 = (1 − e 2 �) 3 / 2 
P 

2 
�

2 πP bin 
τ, (2) 

here P bin and P � are the periods of the mutual orbit and of the
eliocentric orbit, respectively, the secular equations of motion can
e written as 

d e 

d τ
= 

15 

8 
e 
√ 

1 − e 2 sin (2 ω) sin 2 ( i) , (3a) 

d i 

d τ
= −15 

8 

e 2 √ 

1 − e 2 
sin (2 ω) sin ( i ) cos ( i ) , (3b) 
NRAS 522, 3067–3075 (2023) 
d ω 

d τ
= 

3 

4 

√ 

1 − e 2 { 2(1 − e 2 ) + 5 sin 2 ( ω )[ e 2 − sin 2 ( i)] } , (3c) 

d �

d τ
= − cos ( i) 

4 
√ 

1 − e 2 
[3 + 12 e 2 − 15 e 2 cos 2 ( ω)] . (3d) 

As in Brunini & Zanardi ( 2016 ) equation ( 2 ) and ( 3a )–( 3d ) were
sed throughout this paper to model the Kozai dynamics of TNBs. 
The time-scale of the Kozai oscillations is (Eggleton & Kisele v a-

ggleton 2001 ) 

 K 

� 

t 

τ
. (4) 

H quad is a conserved quantity (Fabrycky & Tremaine 2007 ) and it
s independent of �, the longitude of the ascending node. Therefore,
he conjugate canonical variable 

 z = 

√ 

1 − e 2 cos i (5) 

s also a conserved quantity. This implies that when the eccentricity
chieves its maximum value, the inclination is at its minimum
and vice versa). From equation ( 3a ), the maximum eccentricity is
chieved when ω = 0 

◦
or 270 

◦
. For orbits with an initial eccentricity

 = 0, it is found that (Innanen et al. 1997 ) 

 max = [1 − (5 / 3) cos 2 ( i ini )] 
1 / 2 . (6) 

Therefore, if the initial inclination is abo v e the critical value 

 crit = arccos (3 / 5) 1 / 2 � 39 . 2 ◦ or 140 . 8 ◦, (7) 

hen e max may be very large (Kozai 1962 ). For binaries of the Classical
uiper Belt population, the eccentricity of the heliocentric orbits
ay be of up to e � � 0.25 (for the hot population). Under these

onditions, we could ask ourselves to what extent the quadrupole
pproximation for the secular Hamiltonian is enough to study the
ynamical evolution of these objects. The rele v ance of the octupole
erms, in relation to the quadrupole ones, is defined by the parameter
Naoz 2016 ) 

= 

a 

a �

e �
1 − e 2 �

. (8) 

For a binary with a = 20 000 km, whose heliocentric orbit has
 � = 45 au and e � = 0.25, we have ε � 8 × 10 −7 . Therefore, we
onclude that the quadrupole approximation for the Hamiltonian is
ccurate enough to study the dynamical evolution of the mutual orbits
f these objects. 
As shown by equation ( 3a ), the rate of change of orbital eccen-

ricity is proportional to sin 2 ω, and additional effects leading to
ericentre precession of the binary orbit can suppress Kozai cycles.
mong the already studied effects, we have relativity, tides, rotational
istortion of the central body, and the presence of extra bodies
F abryck y & Tremaine 2007 ; Porter & Grundy 2012 ). For the case
f TNBs, the effect of tides was largely analysed (Porter & Grundy
012 ; Brunini & Zanardi 2016 ; Brunini 2020 ) and in fact it will be
ncluded in most of our simulations because it is the most important
ne for TNB evolution. In this work, we will focus on possible
ffects that the inclusion of the giant planets could have on the
rbital evolution of TNBs. 
As it was already mentioned, the effect of additional bodies in

he context of Kozai secular dynamics was analysed in several
ituations like planets orbiting binary stars (Innanen et al. 1997 ;

u & Murray 2003 ; Malmberg et al. 2007 ) or orbiting triple stellar
ystems (Marzari & Barbieri 2007 ). The particular characteristics of
he investigated objects differ from those of the TNBs and therefore
he reported results cannot be extended to these objects. Fang et al.
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 2018 ) developed a secular theory for the case of quadruple stellar
ystems composed of two tight binaries. If the mutual separations 
f each binary subsystem are r 1 and r 2 and the centres of masses of
ach binary subsystem are separated by a distance r , in their model,
ang et al. ( 2018 ) assumed that r 1 , r 2 � r . In our case, one of the
inaries would be composed of the Sun and a planet (denoted with
 � and m p , respectively) separated a distance r p , and the other binary
ould be a TNB. If the mass of the other binary is m bin � m p , we can

onsider that the planet is on a fixed elliptical orbit, and as the centre
f mass of the Sun–planet sub-system is very small compared to r p ,
e may consider for this preliminary analysis that the orbit of the

entre of mass of the binary is its heliocentric orbit. The reference
lane is the plane perpendicular to the total angular momentum of
he system, and as m bin � m p , it is not too inaccurate for the moment
o adopt as the reference plane the orbital plane of the planet around
he Sun. The secular Hamiltonian for the binary mutual orbit, up the
uadrupole order in a / a �, is (Fang et al. 2018 ) 

 1 = α1 3 sin 2 i �[10 e 2 (3 + cos 2 i) cos 2 ω + 4(2 + 3 e 2 ) sin 2 i] 

× cos 2( � − ��) 

+ 12(2 + 3 e 2 − 5 e 2 cos 2 ω) sin 2 i � sin 2 i cos ( � − ��) 

+ 120 e 2 sin 2 ω sin 2 i � sin i sin ( � − ��) 

− 120 e 2 sin 2 ω sin 2 i � cos i sin 2( � − ��) } , (9) 

here 

1 = 

G 

128(1 − e 2 �) 3 / 2 
( m � + m p ) m 1 m 2 

m bin 

a 2 

a 3 �
, (10) 

here � and �� are the longitude of the ascending nodes of the 
utual orbit and of the heliocentric orbit of the binary respectively. To 

implify the analysis, let us consider the particular case of an equal-
ass binary ( m 1 = m 2 ). Within this assumption, the mutual orbit of

he binary is affected by the planet through a term proportional to 

p 

1 = 

G 

508(1 − e 2 �) 3 / 2 
m p m bin 

a 2 

a 3 �
. (11) 

The contribution of the planet to the secular evolution of the 
scending node (taken as an example of the secular evolution of
he orbit) is 

˙ = − 3 

64(1 − e 2 �) 3 / 2 
m p 

m �

n 2 �
n 

f 1 ( e 
2 , i, ω, �) , (12) 

here f 1 ( e 2 , i , ω, �) is a function of order 1. 
The planet also affects the heliocentric orbit of the binary. To 

 v aluate this ef fect, we will use the secular Hamiltonian for the
volution of the heliocentric orbit of a test particle (which for our
ase is the centre of mass of the TNB) around an inner binary (the
un–planet system) (Naoz et al. 2017 ). In this case, the change rate
f the ascending node of the heliocentric orbit is given by 

˙ � = − 3 

4(1 − e 2 �) 2 
m p 

m �
n p ( 

a p 

a �
) 2 f 2 ( e 

2 , i, ω, �) , (13) 

here, as before, f 2 ( e 2 , i , ω, �) is a function of order 1. 
Therefore using equations ( 12 ) and ( 13 ) we have 

�̇

�̇�
= 

1 

16 

P bin P p 

P 

2 �
( 
a p 

a �
) 2 

√ 

(1 − e 2 �) × ( f 1 /f 2 ) , (14) 

here P p is the period of the heliocentric orbit of the planet. Taking
alues of P bin from the known population of binaries of the Classical
uiper Belt and Neptune as a perturbing object, we have 

˙ / ̇�� = 5 × 10 −2 − 2 × 10 −7 . (15) 
We conclude that the variation of the heliocentric orbit of the
NBs induced by the planetary perturbation is the dominant one. 
e can also conclude that the orientation of the mutual orbit with

espect to a fixed reference system does not change substantially due
o these perturbations. The question now is how these variations of
he heliocentric orbit affect the mutual orbit because the Kozai cycles
epend on the relative inclination, and the strength of the cycles is
riven by the precession of the argument of periastron and the mutual
nclination. This indirect variation of the orientation of the mutual 
rbit is illustrated in Fig. 1 
The osculating heliocentric orbit of the binary centre of mass 

t time t is represented by the ellipse �. Due to the planetary
erturbations, after a period of time h the osculating orbit changes
o the ellipse �′ . The longitude of the ascending node changes by
n amount �′ 

� − ��, and the orbital inclination with respect to the
nertial reference system changes from i to i ′ . This is reflected in the
nclination, the longitude of the ascending node, and the argument 
f the periastron of the binary mutual orbit. The new coordinates at
ime t + h are related to the old coordinates at time t by the rotation
atrices (see e.g. Nie & Gurfil 2021 ) 

 ( t + d t) = [ i ′ �] x [ �
′ 
� − ��] z [ −i �] x R ( t) , (16) 

here [ θ ] β is a rotation matrix corresponding to the rotation of an
ngle θ around the β axis. 

The initial conditions of the objects that we explore in this work
ill be discussed in the next section. Ho we ver, it is interesting to
ention that for the heliocentric orbits that we will study, corre-

ponding to objects of the hot classical population of the Kuiper belt,
he main frequencies of the orbital elements range from ∼7 × 10 6 

o 2 × 10 7 yr. These are longer than the characteristic times of the
ozai oscillations of the mutual orbits, so we would not expect a very

arge ef fect. Ne v ertheless, let’s take for e xample a TNB at 45 au from
he Sun, with two components of equal diameter D = 200 km and a
emi-axis of 20 000 km. According to equation ( 4 ), T k � 20 000 yr. If
nstead the semi-axis is reduced to 1000 km, then T k � 1.7 × 10 6 yr,
hich is within the range of the precession periods of the heliocentric
rbits. (For the mutual orbits of the binaries that we will explore in
his paper, the periods of the Kozai oscillations are generally in the
ange of 5 × 10 4 to 5 × 10 5 yr, but in a few cases they reach ∼10 6 yr.)
n this way, at some point during the orbital evolution, the planetary
erturbations on the heliocentric orbit could produce appreciable 
ffects on the dynamics of TNBs. In principle, we will not be able
o anticipate what will happen throughout the entire evolution of a
iven object without first knowing how the orbit will evolv e. F or this
eason, it is necessary to explore whether planetary perturbations can 
f fecti vely af fect the e volution of TNBs. 

We have tw o w ays to address this problem. One way is to use the
ecular theory of Fang et al. ( 2018 ) for the entire system. Ho we ver,
t is limited for our study because it was developed under the
ypothesis that a bin � a p � a �. In our case, the last condition
s no longer fulfilled. For example, in the case of a TNB and
eptune as a perturbing planet we have a p / a � ∼ 2/3. Therefore, the

ecular Hamiltonian, up to the hexadecapole order (the maximum 

rder found in Fang et al. 2018 ), is not appropriate to describe the
ontribution of the planets on TNBs, and we would need to use a very
igh order expansion. In this case, the numerical integration of these
ets of secular equations would not offer a clear advantage in relation
o a direct numerical integration of the equations of motion of the
eliocentric orbit. Even more so if we included in the simulation the
erturbations of the four giant planets, because then the planetary 
rbits would stop being fixed ellipses. Short period disturbances 
ould appear that would affect the orbits of the TNBs in a way that is
MNRAS 522, 3067–3075 (2023) 
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Figure 1. A variation in the heliocentric orbit is reflected in the orientation of the mutual orbit with respect to it. 
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ifficult to predict. For these same reasons, we decided not to use the
quations of the secular theory for an outer test particle perturbed by
n inner planet (Naoz et al. 2017 ). Therefore, to consider the effect
f planetary perturbations on the heliocentric orbit of the TNBs,
nd their potential to affect the dynamics of the Kozai cycles of the
utual orbits, we have decided to perform a numerical integration of

he heliocentric orbits, which we have carried out with the code evorb
Fern ́andez, Gallardo & Brunini 2002 ) in barycentric coordinates. We
sed the rotations given by equation ( 16 ) to e v aluate the changes of
he mutual orbit. 

 INITIAL  C O N D I T I O N S  

n this section, we will present the set of initial conditions and
arameters used in our simulations. The classical population of
BOs (Lykawka & Mukai 2005 ) is composed of those objects
hose heliocentric orbits have semi-axes between the 3:2 and 1:2
ean-motion resonances with Neptune, and perihelion distances

hat ensure they do not undergo close encounters with Neptune.
ithin this population, two subgroups can be distinguished: the cold

opulation, which has low orbital inclinations ( i ≤ 5 ◦), and the hot
opulation, which was probably implanted during Neptune’s orbital
igration process, with higher inclinations ( i > 5 ◦). In this work,
e have taken some of the orbital elements published in the Minor
lanet Center data (Williams et al. 2022 ) base for the trans-Neptunian
NRAS 522, 3067–3075 (2023) 
bjects belonging to the population of the Hot Classical Kuiper Belt,
s the initial heliocentric orbit of the centres of mass of the binary
bjects. To do this, we restrict the sample, somewhat arbitrarily, to
bjects with 43 au ≤ a � ≤ 47 au, i � ≥ 5 ◦, and q � ≥ 36 au. With
hese conditions, we were left with 614 objects, but to make the
imulations feasible with our computational resources, we randomly
ook 120 of them, which we used throughout the entire work. 

We have generated the initial conditions of the binary systems
o make them realistic, and in that sense we closely follow previous
imulations found in the literature (Porter & Grundy 2012 ; Brunini &
anardi 2016 ). Ho we ver, as our main interest is to analyse whether
iant planets play any role in the dynamical evolution of TNB objects
ather than to contrast the results with the observed orbital character-
stics, we have not exhaustively explored the entire possible universe
f parameters. Although the initial conditions were generated with
he same criteria as in Brunini & Zanardi ( 2016 ), for reasons of
ompleteness, we will give here a brief description of the procedure
sed. 
Let us define the binary’s Hill radius as 

 H = a �(1 − e �) 

(
m bin 

3 m �

)1 / 3 

. (17) 

The semi-major axis of the mutual orbit was generated at random,
ith uniform distribution from 1 to 10 per cent of the system’s
ill radius. The orbital eccentricity was also taken at random in

art/stad1140_f1.eps
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Figure 2. In the top panels, the evolution of the mutual inclination of the binary is shown with and without the presence of Neptune. The middle panels show 
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shown. Tidal friction is not included in this simulation. 
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he interval with uniform distribution. Both semimajor axis and 
ccentricity were chosen so that the pericentre distance of the binary 
s larger than the Roche distance, defined as 

 Roche = 1 . 26( R 1 + R 2 ) , (18) 

here R 1 and R 2 are the radii of the binary components. The
ean anomaly, argument of the pericentre, and longitude of the 

scending node were generated at random with uniform distribution 
n the interval [0, 2 π ]. For each binary system, the diameter of the
omponents was generated at random within the range 60 km ≤ D ≤
00 km, with a density of ρ = 1 g . 
In those cases where tidal friction was included, we used the same

ode as Brunini ( 2014 ), based on the model developed by Eggle-
on & Kisele v a-Eggleton ( 2001 ), whose equations are summarized
n F abryck y & Tremaine ( 2007 ). The physical parameters for the tidal
volution model were the same used by Porter & Grundy ( 2012 ) and
runini & Zanardi ( 2016 ). In all the cases, we adopted the canonical
alues for icy homogeneous solid bodies of Q = 100, and the second
idal Lo v e number K L 

 L = 

3 

2 

(
1 + 

19 μr R 

2 Gmρ

)
, (19) 

was computed with a rigidity of μr = 4 × 10 9 Nm 

−2 . The spin
eriods were taken at random in the interval 2 h ≤ spin period ≤ 48 h
nd the orientation of the spin axes was at random in the interval [0 ◦,
 π ]. 
In all cases, the simulation stops if any of the following conditions

s verified: 

(i) Survi v al during all the time span co v ered by the simulation. 
(ii) Separation of the components, because either the orbit be- 

omes hyperbolic or the semimajor axis becomes larger than 0.5 R H .
(iii) Collision between the components, when the pericentre dis- 

ance becomes shorter than the mutual Roche radius. 
MNRAS 522, 3067–3075 (2023) 
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Figure 3. In the top panels, the evolution of the mutual inclination of the binary is shown with and without the presence of Neptune. The middle panels show 

the same but for the mutual inclination and the bottom panels depict the evolution of the pericentre distance. In this case, the presence of Neptune shortens the 
lifetime of the object. Tidal friction is included in the model. 

 

t  

u  

t  

o

4

I  

t  

(  

t  

t  

 

c  

b  

e  

i  

a  

o  

o  

t  

i  

i  

c  

t  

i  

o  

q
 

o  

W  

i  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/2/3067/7129020 by guest on 03 April 2024
It is worth mentioning that within the selected heliocentric orbits,
here are 14 that correspond to binary objects of the classical hot pop-
lation. Ho we ver, the mutual orbits we explored do not correspond
o the orbits of the true binaries, since they were generated, like all
f them, randomly. 

 RESU LTS  

n Fig. 2 , we show the secular evolution of the orbit of a TNB subject
o the solar perturbation with and without the presence of Neptune
in this case, we have only included in the model the perturbations
hat Neptune e x erts on the heliocentric orbit of the centre of mass of
he binary) and not considering any other effect such as tidal friction.

We can observe that in the case without Neptune the Kozai
 ycles are re gular, while the inclusion of an additional disturbing
ody destroys this feature. This is not surprising, since the secular
quations of motion including up to the quadrupole order are
NRAS 522, 3067–3075 (2023) 
ntegrable (Kinoshita & Nakai 2007 ), a quality that disappears when
n additional body is included. The small differences in the evolution
f the mutual inclination, which are reflected in the eccentricity of the
rbit of the binary, cause an appreciable change in the behaviour of
he pericentre distance, which could have appreciable consequences
f the evolution by tidal friction were also included in the model. This
s not the case of this particular binary. In fact, in ∼75 per cent of the
ases, even including tidal friction in the model, the evolutions of
he mutual orbits are qualitatively similar. However, we found that
n ∼25 per cent of the cases, the evolution differs substantially. Two
f them are depicted in Figs 3 and 4 . In both cases, the evolution is
ualitati vely dif ferent. 
In Fig. 3 , we can observe that the evolution without the inclusion

f Neptune is v ery re gular during the entire evolution of 4.5 × 10 9 yr.
hen Neptune is included, the evolution becomes more and more

rregular (we prefer not to call it chaotic, since we have not
pplied any chaos indicator). A certain orbital diffusion leads to
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he inclination towards the region close to the critical Kozai angle, 
nd then the eccentricity acquires very large values. Although the 
bject remains bound during almost the entire evolution, it is noted 
hat during the last ∼5 × 10 8 yr the action of the tides begins to
rastically reduce the pericentre distance. The object will end up as
 contact binary. 

In Fig. 4, we can observe a typical evolution of a binary with
 moderate separation but with an initial eccentricity high enough 
o that the action of the tides quickly reduces its separation until
t becomes a contact binary. Ho we ver, when Neptune is included,
he orbital eccentricity presents large fluctuations that weaken this 
rocess. Although the end state is the same in both cases, the
bject lasts much longer as a binary when Neptune’s perturbations 
n the heliocentric orbit are considered, a behaviour that is the 
pposite of that shown in Fig. 3 . Although a complete analysis of
he dynamics of the four body problem is extremely difficult, we 
ry the following explanation for the behaviour that is observed: 
s we have stated abo v e, the small oscillations in the inclination
f the heliocentric orbit have a period much longer than that of
ozai oscillations. This causes the angular momentum vector of 

he mutual orbit to accommodate adiabatically as the heliocentric 
rbit evolv es. Ev entually, this process leads the mutual inclination to
scillate around a value in the zone of high inclinations (140 ◦ > i >
0 ◦) where the evolution is much faster. We have also performed an
dditional simulation that includes the perturbations of the four giant 
lanets on the heliocentric orbit of the centre of mass of the binaries.
he initial conditions for the heliocentric orbit of the centre of mass,

or the mutual orbit and for the orbit of Neptune, was exactly the same
s those used previously. As in the previous simulations, we have
sed EVORB in barycentric coordinate (Fern ́andez et al. 2002 ), and
n integration step of 0.1 yr, which guarantees adequate precision. 
he mutual perturbations between the planets were included in the 
umerical integration. In this case, due to the high computational 
ost of the simulations and also because our main purpose here is to
MNRAS 522, 3067–3075 (2023) 
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bserve whether it would be justified or not to include the other three
iant planets in a numerical simulation of the dynamical evolution
f TNBs, we have restricted the total time span of the simulations to
0 9 yr. 
The periods of the oscillations of the orbital inclination and of

he longitude of the ascending node of the heliocentric orbits are
oticeably smaller when the four giant planets are included in the
odel, than when only Neptune is included in it. In general, we

ave found that in ∼20 per cent of the cases, the evolution of the
utual orbits that include the four giant planets presents noticeable

ariations in relation to the ones where only Neptune is considered.
 typical case is the one shown in Fig. 5 . 

 C O N C L U S I O N S  

n this work, we have carried out a study of the influence of planetary
erturbations on the dynamics of TNB objects. We focus on how the
NRAS 522, 3067–3075 (2023) 
hanges of the heliocentric orbit of the centre of mass due to these
erturbations affect the characteristics of the Kozai cycles. This is
o because the orientation of the mutual orbit with respect to the
eliocentric one plays a fundamental role, both in the magnitude and
n the characteristic of these cycles. We found that in a non-negligible
raction of cases ( ∼25 per cent), this effect produces substantial
hanges in the dynamical evolution of TNBs. The small oscillations
f the orbital inclination and the precession of the heliocentric orbit,
lthough they generally have longer periods than the characteristic
ozai times, induce variations that make the dynamical evolution of
NBs irregular. When these variations are coupled to the evolution
ue to tidal friction, substantial changes are produced in the lifetime
f these objects. We have found cases where the lifetime increases
nd others where it decreases, in both cases substantially. A detailed
tudy of the general problem of a binary minor planet disturbed by
iant planets, which would be of interest both in the Solar system and
n extrasolar planetary systems, is beyond the scope of this work. It
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ic.ou
s a problem with a huge amount of free parameters. In this case, we
ave only analysed the situation of binary objects of the classical hot
opulation of trans-Neptunian space. It is clear after the results we 
ave found that the effect of giant planets cannot be neglected when
odelling their e volution. Ne vertheless, from a statistical point of

iew, there is not much difference in the final states of the TNBs
hat we have studied. An object with a given initial condition ends
p with the same end state whether planets are included or not. In
ddition, the final distributions of the orbital elements ( a , e , and i )
re very similar and for this reason we do not show them here. This
f fect, ho we v er, could hav e important consequences for the evolution
f binary populations in other planetary systems, but this analysis is
utside the scope of this paper. 
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he data underlying this article will be shared on reasonable request 
o the corresponding author. 
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