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Abstract In this paper we establish the L”-boundedness properties of the variation
operators associated with the heat semigroup, Riesz transforms and commutator be-
tween Riesz transforms and multiplication by BMO(R")-functions in the Schrodinger
setting.
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1 Introduction and main results

We consider the time independent Schrodinger operator on R”, n > 3, defined by

L=—A+V,
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where the potential V is nonzero, nonnegative and belongs, for some g > n/2, to the
reverse Holder class By, that is, there exists C > O such that

1 )
(ﬁ/BV(x) dx) Sﬁ BV(x)dx,

for every ball B in R". Since any nonnegative polynomial belongs to B, for every
1 < g < oo, the Hermite operator —A + |x|? falls under our considerations.

Harmonic analysis associated with the operator £ has been studied by several
authors in the last decade. Most of them had, as starting point, the paper of Shen [25].
This author investigated L?”-boundedness properties of the Riesz transforms formally
defined in the L-setting by

RE=vL™'2, )

where as usual V denotes the gradient operator and the negative square root £~!/2 of
L is given by the functional calculus as follows

£ fw = /R K3 f(ndy, @
being
K(x,y):—i/(—iz)*lﬂr(x,y,r)dz.
2 R

Here, for every t € R, I'(x, y, 7), x, y € R", represents the fundamental solution for
the operator £ +it.

Bongioanni, Harboure and Salinas [3] studied the behavior in L? spaces of the
commutator operator [RZ, b) defined by

[RE,b]f = bR (f) — RE(bS).

where b is in an appropriate class containing the space BMO of bounded mean oscil-
lation functions.

The heat semigroup {W,L},>0 generated by the operator —L can be written on
L%(R") as the following integral operator

WEDE = [ WEG oy, f e R),

The semigroup {WIL}DO is Cp in LP(R™), 1 < p < 00, but it is not Markovian. The
main properties of the kernel Wtﬁ (x,y),x,y €R" ¢t >0, can be encountered in [12].

Other operators associated with the Schrodinger operator £ have been studied on
L?(R") and on other kind of function spaces also in [1, 2, 11, 12, 15, 28], and [30].

The variation operators were considered in ergodic theory ([5] and [19]) in order
to measure the speed of convergence. A precedent of the Bourgain’s result ([5]) is
the celebrated Lepingle’s p-variation inequality in martingale theory ([21], see also
[22]). Suppose that {T;};~¢ is an uniparametric system of linear operators bounded in
LP(R"), for some 1 < p < 0o, such that lim,_, o+ T; f exists in L? (R").
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LP-boundedness properties of variation operators in the Schrodinger 487

If p > 2, the variation operator V,(1;) is given by

00 1/p
Vo(T)(f)(x) = sup (Z|Tt_,f(x>—Tt_,+1f(x>|"> . feLP(RY).

IVENC

Here the supremum is taken over all the real decreasing sequences {t;};en that
converge to zero. By E, we denote the space that includes all the functions w :
(0, 00) —> R, such that

00 1/p
lwllg, = sup ( |w(tj)—w(tj+1)|p) < 00.
VSN

I llg, is a seminorm on E. It can be written

Vo(TH(f) = IT: fIE, -

Variation operators for Cp-semigroups of operators and singular integrals have
been analyzed on LP-spaces by Campbell et al. ([6, 7] and [19]). More recently, in
[9] and [17] the authors have studied variation operators on L” -spaces for semigroups
and Riesz transforms in the Ornstein-Uhlenbeck and Hermite settings.

As it was mentioned, for every 1 < p < oo, the semigroup {W[L}t>0 is Cp in
LP(R"), that is, for every f € LP(R"), Wf(f) — f,ast— 0%, in LP(R"). The
L?-boundedness properties of the oscillation and variation operators for {W,E},>0
are established in the following.

Theorem 1.1 Let p > 2. Then, the variation operator V,(W[F) is bounded from
LP(R™) into itself, for every 1 < p < 0o, and from L' (R") into L'->°(R").

Note that, since {W,ﬁ},>o is not Markovian, none part of Theorem 1.1 can be de-
duced from [18, Theorem 3.3]. However, the referee has pointed out us that recently
Le Merdy and Xu ([20]) have extended [18, Theorem 3.3] to all the contractive and
strongly continuous semigroups. Then, from [20, Corollary 3.4] we deduce that the
variation operator Vp(Wtﬁ) is bounded from L? (R") into itself, for every 1 < p < co.
The behavior of Vp(WIL) in L'(R") established in Theorem 1.1 does not follows
from the results in [20].

According to standard ideas, Shen in [25] actually defined (although he did not

write it in this way), for every £ =1, ..., n, the £-th Riesz transform in the £-context
by
RE(f)(x) = lim RE(x,y) f(y)dy, ae xeR", A3)
e—071 lx—y|>¢

provided that f € L?(R") and either

(i) 1<p<ooandV € By; or

(ii) 1§p<p0,%=$—%,andVqu,n/2§q<n.
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Here, for every x, y e R", x # y,
1 0
Rf(x,y)=——/(—m—”z—r(x,y,r)dr.
2 Jr dxg

In the sequel we complete Shen’s result proving that actually the limit in (3) exists
and the Riesz transform RE = (Rlﬁ, e R,f:) can be represented by (1) on C°(R"),
the space of C*°-functions in R” that have compact support.

Proposition 1.1 Let £ =1, ..., n. Suppose that one of the following two conditions
holds:

(i) feLPR"),1<p<oo,andV € By;
(i) feLP(RM,1<p<po,where o-= 1~ andV € By,n/2<q <n.

Then, there exists the following limit

lim Rf(x, Y f()dy, ae xecR".

e—>0% [x—y|>e

Moreover, if f e C°(R"), L7Y2 £, as defined in (2), admits partial derivative with
respect to x¢ almost everywhere in R" and

D 2 = tim REG. ) fdy, aexeR'. (4

axyg e=0" Jix—y|>e

L

For every ¢ > 0, the e-truncation R, © of Rf is defined as usual by

Rf’s(f)(x)=f REG. ) fOdy, £=1.....n.

[x=y|>¢

The behavior on L? spaces of the variation operators associated with the family
of truncations {RZL 1es0, £ =1, ..., n,is contained in the following result.

Theorem 1.2 Let £ =1, ..., n. Assume that p > 2 and that V € By, with q > n/2,

and 1 < p < pg, where % = (é - %)+. Then, the variation operator Vp(Rf’g) is

bounded from LP (R™) into itself. Moreover, Vp(Rf’g) is bounded from L' (R") into
L2 (R").

By BMO(R"™) we denote the usual John-Nirenberg space. A locally integrable
function b on R” is in BMO(R") if and only if there exists C > 0 such that

1
ﬁ/B|b(x)—b3|dxsc,

for every ball B in R". Here bp = ﬁ fB b(x)dx, where B is a ball in R". For f €
BMO(R™) we define

1
I/ Nmoqes) = sup — f 1b(x) — by|dx.
B |BlJg

where the supremum is taken over all the balls B in R".
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For every V € B2, we consider the function y defined by

1
y(x)=supir>0:— Viy)dy<1;, xeR".
"2 I

Under our assumptions it is not hard to see that 0 < y (x) < oo, for all x € R". This
function y was introduced in [24] when the potential V satisfies that

1

Vix)<C— | V(y)dy,
max (x) < |B|/B (y)dy

for every ball B in R", to study the Neumann problem for the operator £ in the region
above a Lipschitz graph. The main properties of y were showed in [25, Sect. 1] (see
also [24]). Here, the function y plays a crucial role.

In [3] the space BMOgy(y), 6 > 0, was defined as follows. Let 8 > 0. A locally
integrable function b in R” is in BMOgy () provided that

1
|B(x, )| JB(x,r)

0
,

b(y)—b dy<C|1 ,

|b(y) — bpx.n|dy < < +y(x)>

for all x € R" and r > 0. We denote for b € BMOy(y)

1 r —0
Wblssopiy =  sup  ——— b(y) — baes dy(l + _) .
0) xeR?, r>0 |B(x,7)| B(x,r) | « r)| y(x)

Note that BMO(R"™) = BMOy(y) C BMOy(y) C BMOg/(y), when 0 < 8 < 0’. We
set BMOoo (v) = Uy~ BMOg(y). As it is pointed out in [3], BMOs(y) is in general
larger than BMO(R").

For b € BMO(y) and £ =1, ..., n, the commutator operator lez is defined by

CE(f)=bRE() = RE(),  feCE(RY).

Note that bf € L' (R"), for every f € C(R") and b € BMO (y).

In [3, Theorem 1] it was shown that, for every b € BMO,(y) and £ =1, ..., n, the
operator C ,fe is bounded from L? (R") into itself, provided that 1 < p < pg, where
L:(}{-%p and V € By, ¢ > n/2.

Po . L .
In the next result we obtain a pointwise representation of the commutator operator

by a principal value integral.

Proposition 1.2 Let £ =1,...,n. If b € BMO(y), V € B;, with g > n/2, and
f e LP(R"), where 1 < p < pg and % = (% — %)+, then

Cpe(f)(0) = lim (b@) = bM)REx, N f()dy.  ae xeR".

[x—y|>e¢
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Forevery b € BMOy(y),e > 0,and £ =1, ..., n, we define the e-truncation Cbﬁ‘;
of leg by

CEL DW= [ (w0 - b0)REGF )y, v ER

|x—y|>¢e

The L”-boundedness properties of the variation operators associated with the family
of truncations {C bﬁ ;f}s>o are contained in the following.

Theorem 1.3 Let £ =1,...,n and b € BMOuo(y). Assume that V € By, with g >
n/2,and 1 < p < po, where % = (é — %)+- Then, if p > 2, the variation operator

V, (le}f) is bounded from LP (R") into itself.

In [25, p. 516] it was proved that if V' is a nonnegative polynomial, then V € By,
for every 1 < g < o0o. Then, as special cases of our results appear the corresponding
ones to the Hermite operator H = —A + |)c|2 ([9] and [10]).

This paper is organized as follows. In Sect. 2 we describe a general procedure
that we shall use to prove our main results and we present the L”-properties of the
variation operators associated with the classical (V = 0) heat semigroup {W;};~0,
Riesz transforms R, and their commutators Cp, ¢, £ =1, ..., n, that will be very useful
to our purposes. The proof of Theorem 1.1 is carried out in Sect. 3. We present proofs
of Proposition 1.1 and Theorem 1.2 in Sect. 4. Finally, in Sect. 5 we give proofs for
Proposition 1.2 and Theorem 1.3.

Throughout this paper by ¢ and C we will always denote positive constants that
can change in each occurrence. If 1 < p < oo, by p’ we represent the exponent con-
jugated of p, thatis, p’ = %.

2 Procedure and auxiliary results

In order to establish boundedness properties for harmonic analysis operators (semi-
group, maximal operators, Riesz transforms, Littlewood-Paley functions, ...) in the
Schrodinger setting it is usual to exploit that £ is actually a nice perturbation of the
Laplacian operator —A. We now describe a general procedure to analyze harmonic
operators associated with the Schrodinger operator. Suppose that 7' is a £-harmonic
analysis operator and that 7 is the corresponding A-harmonic operator. According
to the function y described above, we split R” x R” in two parts as follows

A= {(x,y) ER"xR": |x —y| < y(x)},
and
B=(R" x R")\ A.

The sets A and B are usually called local and global region associated with L, re-
spectively. The local part of the operator T is defined by

Tioc(/)X) =T (fxBxy)))(X), x€R".
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LP-boundedness properties of variation operators in the Schrodinger 491

In a similar way we consider the operator
Tioc(/)X) =T (f xBxy))(x), x €R"
Then, we decompose the operator T through
T = (Tioc — Thoc) + Tioc + (T — Tioc).

It is clear that (T — Tioc) (f)(x) = T (f xR\ B(x,y (x)))(x). Since the set {(x,y) : x €
R", y e R"\ B(x, y(x))} is sufficiently far away from the diagonal (usual line of sin-
gularities) {(x, x) : x € R"}, the operator T — Tjo Will be controlled by a positive and
L?-bounded operator. We said that £ is actually a nice perturbation of the Laplacian
operator —A. That niceness leads to the operators T and 7 to have the same singular-
ity in the local region. Then, cancelation of singularities in Tioc — 7o takes place and
Tioc — Tioc is controlled by a positive and L”-bounded operator for the given range of
p. In this way L?-boundedness of T is reduced to the corresponding property for the
operator 7joc. Finally, L”-boundedness properties of the operator 7jo. rely on well
known properties for the classical harmonic operator 7 .

This procedure has been used in [25] to establish L”-boundedness properties for
L-Riesz transform.

We will employ this comparative method to describe the behavior in L?-spaces
of the variation operators for the heat semigroup {W,E} (>0 generated by —L,
Riesz transforms and commutators of Riesz transforms with the multiplication by
BMO(y)-functions in the Schrodinger setting. Following this pattern we will need
to know LP-boundedness properties of the variation operators associated with the
classical heat semigroup, Riesz transforms and commutators between Riesz trans-
forms and multiplication by BMO(R")-functions.

In [18, Theorem 3.3] it was established that that if {7} },~¢ is a symmetric diffusion
semigroup (in the sense of [26, p. 65]) then the variation operator V,(T;), with p >
2, is bounded from L”(R") into itself for every 1 < p < co. This result applies to
the symmetric diffusion semigroup {W,};~o generated by the Euclidean Laplacian
A. Recently, Crescimbeni, Macias, Menarguez, Torrea and Viviani ([9]), by using
vector valued Calderén-Zygmund theory, have proved that the operators V,,(W;) map
L'(R") into L% (R"), for each p > 2. These results are contained in the following.

Theorem 2.1 ([18, Theorem 3.3] and [9, Theorem 1.1]) Let p > 2. Then, the varia-
tion operator V,(W;) is bounded from LP (R") into itself, for every 1 < p < 0o, and
from LY(R") into L1*°(R").

For every £ =1, ..., n, the £-th Riesz transform Ry is defined by

Ref(x)= lim TV rdy, ae x eR”,
y|n+1

e—>07 [x—y|>¢e |x -

foreach f € LP(R"),1 < p <oo.Foreverye >0and £ =1, ..., n, the e-truncation
of Ry is given by

Rﬁ(f)(x)=/ %f(y)dy, x e R

lx—y|>¢e |)C -
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We denote the kernel function of Ry by Ry(z) = |1|le+1’ 72=0(21,...,2) € R"\ {0}.
The variation operators for RS, ¢ =1, ..., n, were investigated in [6] and [7] where

the following results were proved.

Theorem 2.2 ([6, Theorems 1.1 and 1.2] and [7, Corollary 1.4]) Let £ =1, ..., n.
Assume that p > 2. Then, the variation operator V,(R}) is bounded from LP(R")
into itself, for every 1 < p < oo, and from L' (R") into L'*°(R™).

Let us mention that by using transference methods Gillespie and Torrea ([14, The-
orem B]) have proved dimension free L?(R", |x|*dx) norm inequalities, for every
1 < p<ooand —1 <« < p — 1, for variation operators of the Riesz transform Ry,
L=1,...,n.

Next let b € BMO(R"). It is well known that, for every £ =1, ..., n, the commu-
tator operator Cj, , defined by

Cpe(f)=bRy(f) — Re(bf),

is bounded from L” (R") into itself, and for each f € LP(R"), 1 < p < o0,

Cref(x)= EEI& Cpo(Hx), ae xeR”,
where
Cs o (F) () = / @ bR =) 0y, x <R
x—y|>e

([8, Theorem 1]).

LP-boundedness properties for the variation operators associated with Cp ¢, £ =
1,...,n,are stated in the following. To our knowledge the result is new, so we provide
a proof.

Theorem 2.3 Let b € BMO(R") and ¢ = 1,2,...,n. Assume that p > 2. Then,
the variation operator Vp(C,f’K) is bounded from LP(R") into itself, for every
1<p<oo.

Proof Let 1 < p <oo and f € LP(R"). Inspired in the ideas developed in [14] our
goal is to estimate the sharp maximal function

1
(Vo (Cs ) (D) ) = AT Vo (Ch ) () = cBrmldy, x €R",

where, for every x € R" and r > 0, cp(x,r) is a constant that will be specified later.
Let xo € R" and rg > 0 and denote by B = B(xo, r9). We decompose f = f1+ f>,
where f1 = fxap and fo = fx(@Bp)-, and we write

Ciof =(b—bp)R)(f)— R ((b—bp) f1) — R} ((b—bp) f2)
= AS(f) + AS(F) + AS(f), e>0.
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LP-boundedness properties of variation operators in the Schrédinger 493

‘We have that
|b(y) — bp|
/ ——— 1 fldy
(4B)°

lx — |

o0

1b(y) — bBI

k=2 Ak’0<yx0|52k+lro lx —

00 ' 1/p'
b(y) — bg|?
(] M@
=2 2krg<|y—xg|<2ktlry lx — y|"

(/ Lf I )””
X dy
2krg<|y—xo|<2k+1r lx — y|"

- 1 » 1/p 1
=) \ G b —bp|dy)  ———— )
= k2<(2k+1r0)n /Iy—XO|§2"+‘ro | » B| )’> 2 ro)7 | fllzp ey

Lf)ldy

o0
< Cllbllsmon I fllLr@n Y Gaoy ¥ E€B:
k=2

Then, we deduce that

Vo (Re)((b = bp) f2) (x)

o0
(e \ 2

- Ib(y) — bl f()
e xapy (V)dy
gjp1<lx—yl<g;j |x =yl

p)l/p

/ L RGDO) =) Dy ()
gjr1<lx—yl<e;

< sup
(ej}en\0 520

1b(y) —bpll f(y)I -
< / ————————dy <Cr, n/pIIbIIBMO(JRn)IIfIILP(R"), x€B.
4B)*

lx — y|"

We denote cp = —Vp(R"?)((b bp) f2)(xp). Itis clear that cp =V, (A )(f)(x0).
We have

1 £
g1 [ e(C )0 = eald

1
= @/ | ||A‘i(f)(x)+A§(f)(x)+A§(f)(x)||Ep - ||A§(f)(xO)||Ep|dx

< i [ 1400 + A5+ A5 = A5G0 5

& 1 &
< o [ 10wl g+ o [ asnel s

|B|[ ||As(f)(X)—A€(f)(XO)||E dx. (&)
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494 J.J. Betancor et al.

We analyze each term. Firstly we obtain

5 L 1Al x

- E/B |b(x) = b |V, (RE) () (x)dx

1 U . N
< (|B|/ |b(x) —bg|" dx) (E/B(VP(RZ)(JC)(X)) dx)
< Cllbllpmown M, (Vo (R;) () (@), z € B.

Here 1 <r < 0o and M, is the r-maximal function defined by

1 , 1/r
Mr(g><x>=sup(ﬁf3|g(y>|dy> , xeR",

xeB

for every measurable function g on R”.
On the other hand, according to [7, Theorem A], we have that

g [ 150w dx

1 5.\
= (—/ Vo (R) (0 = b) f1) ()] dx)
|B| Jp
1 5.\
§C< f |b(x)—b3| | f0)] dx)
|B|
1 Ry 1/6'8) /4 o8 1/(sB)
5C(|B|/ Ib(x) — by* dx> (|B|/ ()] dx)

{ g\ V)
<C||b||BMo<Rn(|B|/ )] dx) ,

where 1 < s, B < 0o. Then, for every 1 < r < 0o, we have

|B|/ [45(H @) [ g, dx = Clibllsmogn M (). z € B.

(6)

@)

In order to study [|A5(f)(x) — A5(f)(x0)| £, we use a procedure developed in [14].

‘We have that

| RE((0 = bB) f2) (x) = R ((b = bp) f2) (x0) |, < Hi(x) + Ha(x), x €B,

where, for every x € B,

Hi(x) = H/I | (Re(x — y) = Re(xo — ) (b(y) — bg) f2(y)dy
x—y|>e E,
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and

Hy(x) = ”/R (X{1x—=y1>e1(Y) = X{ixo—y|=e} () Re(xo — y)(b(Y) — bg) f2(y)dy
n Ep

By using Minkowski inequality and well known properties of the function R, we get

Hi(x) < /R JRex = ) = Retxo = 0)|[b03) = b | £ xamye )y

o]

|x — xol
=C ————|b(y) — b d
- kgz/;kroﬂxo—yfzk“ro lxo — )’|"+1} O BHf(y)| Y
1 1
chz_k(zkro)n /2k+13|b(y)_b3||f(3’)|dyv x €B. 9)

To analyze H, we split the integral appearing in the norm in four terms as follows.
Let {;} jen be a real decreasing sequence that converges to zero. We have

/R" [ Xte e <la=yte ) = Ko <lao=yi<e) )] [ Rexo = )| |b() = b | f2(3)]dy
= C</]R X{é‘j+l<\x—y\<é‘j+l+r0}(y)X{ej+1<\x_y‘<sj}(y)

1
x ———|b(y) — bs|| 2(»)|dy
lxo — yI"

+ ‘A\g X{sj<|x0—y|<sj+ro}()’)X{sj+1<\x—y|<sj}(y)

1
x ———|b(y) — bg|| f2(»)|dy
[xo — yI"

+ /]R X{ejr1<lxo—yl<ejr1+ro} (y)X{8j+1 <|xo—y|<€j}(y)

1
x ———|b(y) — bg|| f2(»)|dy
[xo — y|"

+ /]R X{€j<IX—Y\<8j+r0}(y)X{8j+1<|xo—y\<8j}(y)

1
x ————|b(y) —bBHfz(y)!dy>
lxo — ¥l

= C(HJ () + Hj ,(x) + HJ ;(x) + HJ ,(x)), xeBandjeN. (10)

We observe thaF %|x —y|=lxo—yl > %Ix—yl, wheny ¢ 4B and x € B. Moreover, if
x € B, then H; , (x) =0, form = 1,3, when j € Nand ro > &;41 and Hj , (x) =0,
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496 J.J. Betancor et al.

whenm =2,4, j e Nand ro > ¢;. For every j € N, Holder inequality leads to

1
s 4
¥

sz,] () =< C(/R” X{sj+1<|x—y|<sj}()’) (|b(y) - bBHfZ(Y)Dde) S Vitp

X € B,

lx =y

. 1 s s
HQI,Z()C) < C(é” X{max{gj+1,%gj}<\x—y|<£j}(y) |x — y|n_s (|b()’) - bB||f2(y)|) dy)

xv;-', X € B,

s

0 = ([ tiesrbasinn ) (1) = oall 0] )

1
X v;”H, X € B,

|xo — y|™*

and

J
H2,4(x) = C(/Rn X{max{aj_,_l,%8_,-}<\x0—y|<sj}(y)
1

1 sv) o
< (b a2 as) ]

lxo — y["

x €B.

Here we take 1 < s < p, and v; = (g; + rp)" — 8;.’, J € N. Note that v; <

C(max{ro, € D" 1rg, j €N, for a certain C > 0 that does not depend on ;.
We define the set A= {j € N:rg < g;}. We have that

1/s'

. V. _ Ky 1/?
j i (Ib(y) = bl 2N
Hy (x) < Cw(/w Xiejsr<lx—yl<e;) (V) b — y|rs—1 dy
j+1
s’ (Ub(y) = ball LMD, \'*
=< Cro/s (/Rn X{£j+1<|x—y|<s_,'}(y) X — y|n+s—1 dy s

for every x € B and j + 1 € A. In a similar way we can see that

: 1y (Ib(y) = ball oD, \'/*
sz,z(x) < C’"o/Y </R” Xiejs1<lx—yl<e;} (V) b — yprrs—1 dy)

x€Band j € A,

1/s
j 1/s' (I6(y) = bl 2(D?
H2{3(x) < Cr0 S </15§n X{8j+1<\x0—y|<8j}()’) xo — y|n+s—1 dy s

x€Bandj+1€A,
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LP-boundedness properties of variation operators in the Schrédinger 497

and

(bG) = ball LG )1“
y s

j 1/s'
H214(x) < CI'O <A.§n X{gj+1<\x07y|<ej}()’) xo — y|n+5_1

x€Band j € A

Hence, we get by using Minkowski’s inequality

0o . ‘ 1/p
(Z |Hj | (x)+ H2’,2<x>|”)

J=0

IA

. . 1/p
C( 2. |H2’,1<x>|"+Z|H2{2<x>|ﬂ)

jt+leA jeA

00 1/p
(Ub(y) = bell LD, " s
C(Z(/Rn Xiej1<lx—yl<e;} (V) =y dy ré’/s

Jj=0

IA

IA

C( (1b(y) — bal| L) dy)‘”ré/s/
Rn

|)C _ y|n+s—1

A

00 1/s
1 s 1
C — b(y)—b dy—— , € B.
<kX=; (2kr0)n /|\x0—y|<2k+1r0(| (y) B||f(y)|) y2k(s_1)> *
1D
In a similar way we get

00 ‘ ‘ 1/p
(Z |Hj 5(x) + Hzf,4<x>\”)

j=0

00 1/s
1 s 1
SC<Z (|b(y)—b3||f(y)|) dym) , xeB.

=1 (2kro) lxo—y| <2k+1ry
12)

By combining (8), (9), (11), and (12) it follows that
|A5f () = A5 f (o),

= | Re((® = bp) f2)(x) = Re((b — bp) f2) (x0) |

© 5k
C o b(y)—b d
< (Z G o [P =Bl

k=1

o0 2—k(S—1) l/s
[y o) — b . ’
<]; (Zkro)n /xo—y|<2"’r0 |( (y) B)f(y)| y) )
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for x € B. Then, Holder’s inequality implies that

| AS()(x) = AS()(x0) | E,

00 | | o 1/r
= b(y) ~ bs dy)
Z Zk <(2kr0)n \xo—y|<2kr0 | |

k=1

1 1/}"
- "d
) ((Zkr())n /xo—)'|<2kr0 |f(y)| y)

- | 1 N
oD\ A b(y)—bp| d
- Z 2k(s_1) ((2kr0)n /xoy|<2/‘r0 | (y) B| y>

k=1

1 . 1/t 1/s
- St
) ((2kr0)n /xo—y|<2kr0 |f(y)| y> ) >

>\ k
<C (Z o IbllmoEn M:()(2)

k=1

00 1/s
kS
+ (Z m) ||b||BMO(R”)MfS(f)(Z))

k=1
< Clbllsmogn (M (f)(2) + Mis(f)(2),  x,z€B, (13)

where 1 <t,r < 00.
From (13) it follows

1
B /B | A5 @) = ASF (o) dx < CllbllsMo@n M (f)@). z€B.  (14)

where 1 < r < oo.
By combining (5), (6), (7) and (14) we conclude that

(Vo (CZ,E)(f))#(X) < Clbllpmon (M (f)(x) + M, (V,(R7)(f))(x)), x€B,

where 1 <r < p.

Since M, is bounded from L?(R") into itself provided that 1 < r < p < oo,
[7, Theorem A] and [27, Corollary 1, p. 154] allow us to conclude that Vp(C,‘j,Z) is
bounded from L? (R™) into itself. Il

In [29] Dachun Yang, Dongyong Yang and Yuan Zhou introduced localized Riesz
transform associated with the classical Laplacian and Schrodinger operators. Here,
we consider localized commutator operators with the classical Riesz transforms.

Let b € BMOg(y), 0 > 0. We define, for every ¢ > 0, the local truncation CZ:;OC f
of fe LP(R"), 1 < p < o0, by

cir e = [ (b) — b)) Re(x = W f Dy, xR,

e<lx—yl<y(x)
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In order to define the local commutator C}f’z on L?(R"), 1 < p < 0o, we show the

L” boundedness properties for the maximal operator CZ”}OC defined by

Cri(NHx) = sup CEle ()|, xeR"
£E>

Previously we state an auxiliary result that will be also useful in other sections of this
paper. According to [12, Proposition 5] we choose a sequence {xx}7>; C R", such
that if Qr = B(xk, ¥ (xx)), k € N, the following properties hold:

() U2y Ok =R";
(ii) For every m € N there exist C, 8 > 0 such that, for every k € N,

card {1 eN:2"Q;N2" QO # @} < C2"F.

The sequence {Qk}ren of balls will appear in different occasions throughout this
paper.

Lemma 2.1 Let b € BMOy(y), 0 >0, and M > 0. We define the operator Ty pr by

Ty m(f)(x) =

n/ |b(x) —bM|f(dy, xeR™
YO Jx—yl<my @)

Then, for every 1 < p < 00, T pm is bounded from LP (R") into itself. Moreover,

1o (O Lo oy < CA+MA P bllmo, ol f Loy, f € LP(RY).
Here, A,C > 0 and 0’ > 0 do not depend on M.

Proof Let 1 < p <ooand f € LP(R") . We have that

o0 1/p
| To.00 (O Lo ey = C(Z /Q \Tb,M(f>(x>|”dx) :
k=1 k

Since y (x) ~ y (x¢), for every x € Oy, k € N, by using Holder and Minkowski in-
equalities and [3, Proposition 3], it follows that, for certain A > 0 and 6’ > 6,

/ Tyt () )| dlx
Ok

1 P
SC/ ( / |b(x)—b(Y)Hf(y)|dy) dx
0 \ ¥ (k) lxk—=y|<(I+MA)y (xi)

1
scf F|dy
0k Y )" iy <(14+-MAYy (30

, p/p
X (/ b(x) —b(y»)|” dy) dx
L=y <(+M A)y (x)
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1 P
<C m | f | dy
0 V)™ S —y1=(1+M Ay (xp)
p p/r
X ((/ |b(x) — b@| dy)
[xx=y|=(I+MA)y (x)

o p/p
- <f |b(y) —bg; | dy) >dx
=y |<(1+MAYy (x0)

1
50/ 7,,/ |f | dy
0 Y ()" S~y <14 MAYy ()

X (|G = b |” + 181510, 2+ MA™ ) (1 + MAY (x0)""" dx

=C f | F D" aylIbl G0,y (1 +MATHOP ke,
[xk=y|<(I+MA)y (xk)

where Oy = B(x, (1 + MA)y (x)), k € N.
Hence, by taking into account the properties of { O }xen, We get

” Tb,M(f) HLI’([R”)

00 1/p
< C(Z / | FD7ay b1 50, () (1 + M A" ”’)
k=1 [xg=yIS(I+MA)y (xi)

< C(1 4+ MAY 15l sr0, o) | f 1 Lo &) O

Our next step is to advance on the boundedness of the corresponding local opera-
tors. The case of heat semigroup and Riesz transforms are not very difficult and the
will be done while proving Theorems 1.1 and 1.2 in Sects. 3 and 4, respectively. As
far the commutator, it involves an additional difficulty. According to our procedure
we start with the commutator Cp, o with b € BMOy (y) and we reduce the problem to
the local classical commutator but now b is not necessarily in BMO in the classical
sense. In the next lemma and proposition we show how to overcome this problem.

Lemma 2.2 Let 0 > 0 and L > 0. There exists C > 0 such that, for every k € N and
b € BMOgy(y), we can find a function by € BMO(R") for which by =b on LQj =
B(xy, Ly (xi)) and ||bx |l Bmo®ry < ClIblIBMO, () -

Proof Let k € N and b € BMOy(y). We define by = by g,. Assume that zo € R"
and rg > 0 such that B(zg, ro) C L Q. It is clear that |79 — xx| < Ly (xx). Then, for
a certain A > 0 that does not depend on k, y (xx) < Ay (z0).

We have that

1

0
ro
— b(x) — bp(z.rp) |dx < IbllBMO (1 + —)
| B(z0, r0)| J B(z9,r0) | o ")

v (20)

< ClbllBMOy(»)>

@ Springer



LP-boundedness properties of variation operators in the Schrédinger 501

where C > 0 depends on L and 8 but does not depend on k. Hence, b € BMO(L Q)
and ||bllsmo o) = ClIbllBmoy ) -

We define wy = exp(by). It is well known that wy € A2(L Qy), where A>(L Q)
denotes the Muckenhoupt class of weights. Moreover, the Aj-characteristic
[wila, (Lo, satisfies that [wila, o) < ClbllBMo(Loy), Where C > 0 does not de-
pend on k. According to [4, Lemma 1] (see also [16]) there exists wy € A(R")
such that w; = wy in LQy, and [Wrla,®y) < Clwilayro,), C > 0 being inde-
pendent of k. Then, there exists by € BMO(R") satisfying that w; = exp(by) and
6k | Baro®ry < ClWila,mny, where C > 0 does not depend on k.

We conclude that by = b on LQy and ||bg || pyowry < ClIbllBMOg(y)- for a certain
C > 0 independent of k. O

Proposition 2.1 Let b € BMOx(y) and £ =1, ...,n. Then, the maximal operator

CZ”}ZOC is bounded from LP (R") into itself, for every 1 < p <oo.

Proof Assume that b € BMOy(y), with 6 > 0. Fix k € N. According to [25,
Lemma 1.4] y(x) ~ y(xx), for every x € Q. We choose L > 0 independent of k
such that, for any x € Qg, B(x, y(x)) C Qx, where Q¢ = B(xk, Ly (xx)). We can
write

/ (b(x) = b(y))Re(x — y)f(y)dy’
s<lx—yl<y ()

< / (b() — b)) Re(x — y) f )y
e<lx—yl<y (x)
- / (b(x) — () Re(x — y)f(y)dy‘
YEQk,|x—y|>e
+ / (b(x) = b(y)) Re(x — y)f(y)dy'
yeQr,lx—y|>e
=Nk(x,e)+ i(x,e), xeQ, €>0. (15)

Let us analyze J; x(x,¢€), for x € Qr and ¢ > 0, i = 1,2. Observe that, since
y(y) ~ y(xx), for every y € Q, we can find C, M > 0 that do not depend on k € N
such that

b(x)—b
Jie(x,€) < C/ 160) =b)I
Q\BGy(x) X ="

b(x)—b
Lﬂ?)' | £ )] xa ) dy

| F()]|dy

<c /
y () /M<lx—y|l<My() X —

C

Y ()" Jjy—x|=My (x)

=<

|bx) = bW || f ) |xa (»dy, x€ Qkande>0.

From Lemma 2.1 we deduce that,
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h

p
sup Jix(x, )| dx < € /R | Tt (f x0) ()|l

e>0
scnbngmg(y)/(@|f(y>|”dy, keN, (16
k

with a constant independent of k.
On the other hand, we have that, for x € Qy and ¢ > 0,

Jz,k(x,s>=‘ /| (0~ )R =0 F O
x—y|>e

where by = bxq,. According to Lemma 2.2, there exists a function bk € BMO(R")
such that bk = b, on Q, and ||bk||BMO(R”) < CIIbllBmoy (), Where C > 0 does not
depend on k € N. It follows that

sup Jak(x,8) = C5 (fxq)(x), x € O

e>0

Hence, we get

f

p
susz,k(x,s)’ deCA‘Q |C§M(fXQk(x)|de

e>0

< ClIBE o [@ )| dy
k

sC||b||£M09(y)/Q|f<y)|”dy, keN.  (17)
k

By combining (15), (16) and (17) and using the properties of the sequence
{Ok}ken we conclude, for every 1 < p < oo,

1/p
1 ey < (2 IR ;;z°0<f><x>|f’dx)
00 1/p
< Clbllamoyy) (Z/ |f(}’)|pd)’>
k=1

< Clbllgmos) I fllLewey,  f € LP(R"). O

Suppose now that £ =1,...,n, f € C(R") and b € BUO(y). Then, bf €
Ll(]R”). Moreover, we can write, for ¢ > 0 small enough,

Co® () () = o ())(x) — f (b() = b)) Re(x — ) f(dy, xR

[x=y|=y (x)

Hence, there exists the limit

lim Co°(f)(x), xeR™
=01 ’
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By using standard arguments, from Proposition 2.1 we deduce that, for every
feLPR"), 1 < p < oo, there exists the limit

lim CP°(f)(x), ae x eR"
e—>01 !

We define, for every f € LP(R"), 1 < p < o0,

CI%(H) = lim Co¥°(f)(x), ae xR
e—0t 7

The behavior in L? (R") of the variation operators for the family of truncations
{CZ’EOC}DO associated with the local commutator operator C })oz are established in the
following.

Theorem 2.4 Let b € BMOx(y) and € = 1,...,n. Assume that p > 2. Then,
the variation operator Vp(C,‘i:g’C) is bounded from LP(R™) into itself, for every
1< p<oo.

Proof Suppose that f € LP(R") with 1 < p < 0o. Let k € N. As in the proof
of Proposition 2.1 we define Q = B(xg, Ly(xr)), where L > 0 is such that
B(x,y(x)) C Q, for every x € Q. Moreover, L does not depend on k.

For every x € Qy, we can write

Vo(Chi) (@)
o0
= sup
{ej}jend0 (/Z_:l

o
{Ej}jerLo j=1

(b(x) = b)) Re(x — ) f (y)dy

p>1/p

/«;j+1Slx—y|<8j:|x—)’|<y(X)

(b(x) = b)) Re(x — ) f()dy

p)l/ﬂ

(b(x) = b(y))Re(x — y) f(y)dy

/‘;H-] <lx—yl<gj;lx=yl<y(x)

—/ (b(x) — b)) Re(x — ) f )y
ej+1=lx—yl<ej;yeQx

o0
+ sup Z
{ej}jendO j=1

0
<C sup Z
{5_/}/'61\1»1«0 j=1

X Re(x —y) f(y)dy

p>1//3

/€j+1ilxy|<6j;y€(@k

(b(x) —b(y))

/;j+1§|x—y|<8j:yGQk\B(x,V(X))

p)l/p

/ (b(x) — b())
gj+1=lx—yl<e;

00
+ sup Z
{Sj}jeNio j=1
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p) Up)
1

oo
sc( s (2 [b) — )| ——1f ()l
(e)5eb0 \j27 e <l —yl<e;iyeQu\Blx.y (1) =l

o
+ sup Z
{ej}jeniO =1

Xe — Ve
X Wf(y))(@k (»dy

X Re(x — ) f(¥) xq,(»)dy

/ (Ber) — B ()
gj+1=lx—yl<ej;

p) ]/p)
1
< c( f |b(x) — b()| | F)|dy + vp(Cgk,g(fXQk)(x))),
Qe\B(x,y (%)) lx =yl

where by € BMO(R") satisfying that by = b, in Qy, and [|b¢ || syon) < ClIbIBMO,(1)s
being b € BMOy(y). Here C > 0 is independent on k (see Lemma 2.2). Then, by us-
ing Lemma 2.1 (as in the proof of Proposition 2.1) and Theorem 2.3, we conclude
that

| 1) D = Clblg, i [ 10",
Ok Qx

where again C > 0 does not depend on k.
Hence, according to the properties of the sequence { O }xen, We get

Vo (CZ:lgoc)(f) [ Lo@ny = ClIPlIBMOp o) | f Il Lr @)

Thus the proof is finished. 0

3 Variation operators associated with the heat semigroup {Wtﬁ}t>0

As it was mentioned in Sect. 1 (after Theorem 1.1) from [20, Corollary 3.4] we can
deduce that the variation operator Vp(WtL) is bounded from L”(R") into itself, for
every 1 < p < oo. By using the general procedure described in Sect. 2, we now
present a proof of Theorem 1.1. This procedure allows us to show in the same way
the behavior of Vp(W,L) in LP(R"), 1 < p < oo (obtaining in this special case a
proof different than that in [20, Corollary 3.4]), and in LI(R”).

As the general procedure suggests we consider the following local operators

W= [ WEG, ) f()dy, xR,
[x—=yl<y(x)

and

Wl,loc(f)(x):/ Wi(x,y)f(ydy, xeR",

[x—yl<y(x)
where f € LP(R"), 1 < p < o0.
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Observe that

Vo (WEY) < Vo (Wi = Wetoe) () + Vo (Weio) () + Vi (WE = WEL) ().
(18)
Assume that {#;} ey is a real decreasing sequence that converges to zero. We can
write

<Z|W,,.,loc<f><x) - Wt,+l,loc<f)<x)|p>
j=0
1

< (Z]wt,m(x) - Wf,.H(f)(x)y”)

j=0

(5 )

/l - )(W’j(x’y)_le+1(xvy))f()’)dy
x—y|>y(x

= Vo(W)(f)(x) +sup [ Wi, »fndy| . xeRY,
e>01J[x—y|>¢ E,
where the space E, is defined in Sect. 1.
Then,
Vo (Wilo) (/) (x) = V(W) (f) + sup / Wi, fdy| . xeR™
e>01J|x—y|>¢ E,

We consider the operator defined by
. 12(TRN 2 n
T:L*R") — Lz (R")

=170 = [ Witk 1.

According to [18, Theorem 3.3] T is bounded from L2(R™) into L%p (R™). Moreover,
T is a Calder6n-Zygmund operator associated with the E,-valued kernel

Kx,y;t) =W (x,y), x,yeR" >0,

that satisfies the following properties (see [9]):

Ky, = . xyeR" x#£y,

x—yl"

9
(2 Ha—K(x,y; )
X

a
+H—K(x,y;-) S T x,yeR" x#y.
E, 110y g, =l
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Then, by proceeding as in the proof of [27, Proposition 2, p. 34 and Corollary 2,
p- 361, we prove that the maximal operator 7* defined by

T* f (x) = sup

e>0

/| W 0y
x—y|>e

Ep

is bounded from L?(R") into itself, for every 1 < p < oo, and from L'(R") into
L1 (R™). By combining this fact with [18, Theorem 3.3] we conclude that the oper-
ator V,(W; 10c) is bounded from L?(R") into itself, for every 1 < p < oo, and from
L'(R™) into L% (R™).

We consider now the variation operator defined by

Vo (WE = Whee) ()

%0 P\ 7
— o (T |
{tj}jen\O =0

Assume that {#;} e is a real decreasing sequence that converges to zero. We can

write
1
j=0

(WE G, y) = WE (6, ) f()dy

[x=y[>y )

(WEC,y) = WE @ 9) f()dy

[x=y[>y(x)
00 g
<> ol [ |5 wE . v |aray
im0 k=yl=r (o tjsr 91

dtdy, xeR". (19)

=/ |f(y)|/ —WE(x,y)
Ix=yI>y (x) o |0t

According to [12, (2.7)], for every N € N there exist ¢, C > 0 such that

o, C t to\ T eyl
—Wr(x, Y| < — 1+ + T, ,yeR" t>0. (20
'ar e ”’—ml( y ()2 y(y)z) ‘ Y - 0-C0

Estimation (20) allows us to obtain

IW% y)

[onloils
k—yl>y ) Jy )20
<C/ | £( )Ifoo ! <1+ ! )_H 2 g
— y n 1 -5 y
le—yl>y (x) yoo2 121 y(x)?

C _clx—=y|* v\z
N
y ()" \x—y|>y(x> ud+l (1+u)”+

c / o 1 uy ()2 \ 2!
£) / . ( dudy
Y Jix—ysy ) | | 1wt A w7\ x — y?
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C n+2
<—— |f<y>|( 7(x) ) dy
V(x) [x—y|>y(x) |x - y|

C s n+2
-y rol(Z55) @
Y (x) k=0’ 2Fv () <lx—y|<2F1y (x) |x — ¥l
> 1
C) ot dy <CM , R". (21
: k;ﬂk(zky(x))"/uy|szk+1y<x>|f Oldy 2 EMPDE@, xR @1

Here M = M denotes the Hardy-Littlewood maximal function.
Also we have that

_WIL('X’ )’)

/‘ /V(X)2 9
[x=y|>y(x) JO

dt d

Py | f )]y
y(x)? 1 "

<c / / L2 p )y
0 le—yl>y() £21]

r()? e‘cy(?i 1 lv—y12
ol
sC/ / e f ) |dyds
0 1 R 12
1 _lkyl?
<Csup— [ e 7 |f|dy <CM(f)x), xeR. (22)

t>012 JR"

From (19), (21) and (22) we conclude that
Vp(Wzﬁ - Wzﬁgg)(f)(x) <CM(f)(x), xeR".

Hence, the operator Vp(WtE - Wtﬁoc) is bounded from L?(R") into itself, for every
1 < p < o0, and from L' (R") into L'*°(R"). We now analyze the operator

Vo (Whoe = Wetoe) () ()
o0

- w (¥
{tj}jeN\O j=0

— (WE, (5, 9) = Wiy (6, 9))) f (el

/ (WE e, y) = Wiy (x, )
[x=yl<y )

1
o\ »
, xeR"

Let us take a real decreasing sequence {#;} jen that converges to zero. We have that

B

/ (W, y) = Wiy (x, )
lx=yl<y ()

L

¥

— (W, (e, 3) = Wiy, (6, 1)) f (0)dy
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(% )

tj 9
/ f) a—(W,E(x, y) — Wi(x, y))dtdy
lx—yl<y () tjip 91

IA

0
E(W,‘:(x,w - Wi(x,y))

dtdy

i/x | f ]

i<y (x) jitl

/ £ )] /
[x=yl<y(x)

W%c y) = W (x,y))|dtdy

9
+f |f<y>|/ g —(WEx,y) — Wi(x, y)) |drdy
lx—yl<y () t
=L( )+ L(fHx), xeR" (23)

Note firstly that, according to (20) and the known estimates for %Wt, for certain
C,c >0, we get

o=y

L(fHx) < C/ |f(y)|/ ;dfdy
lx—yl<y ) y? 12t

o dr
<C [f) Ty
[x—yl<y(x) yx)?2 12

C
<
Y )" Jie—yl<y )

[fD]dy <CM(HHx), xeR". (24
On the other hand, the perturbation formula ([12, (5.25)]) leads to

0
o (Wix.3) = WEx, y)

:/ V@W; (x. )W (2 y)dz
5 3 c
+f / V(z)awz—s(x,z)wY (z, y)dzds
0 n

'
d
[ [ W V@ WE G ydzds
% R® aS
=Ki(x,y,t) + Ko(x,y,t) + K3(x,y,1), x,yeR"andr>0.

Hence I1 (f) =Ti(f) + T2(f) + T3(f), where, form = 1,2, 3,

y()?
Tmf(X)=/ ‘f(y)‘/ | K (x, y,0)|dtdy, xeR".
lx—yl<y(x) 0
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By [12, (2.2) and (2.8)], we obtain
1 _szyl2

—e 2t

12

Y@
e
nt2

4

)’(x)z (X)Z _le=yl® v\
/ |Ki(x, y,t)|dt<Cf f V(z) %
li—y[? 1 lx—zI2
g / T @ V(z)dzdt
R

=
0 t2
y@)? 2 8
o[ e ()
0 r2t] y(x)
for a certain § > 0. Then
r(x)? PNV A
|T1(f)<x)|sc/ |f(y)|/ 1 et ( )dtdy
lx—yl<y (x) 0 t2 y(x)
y(0)? j—1+3
<C / . f Fole "7 dydr
0 y(x)S 3 | |
e x eR". (25)

<Csup—
t>012 JR"

Also, since 5 <7 — s <1 provided that 0 < s < %, [12, (2.2) and (2.8)] imply that

for some 0 < ¢ < 4 7

y()?
/ |Ka(r. y. 0)dr
0
y (x)? ez 1 =z
ot _
<C/ / / = —re & dzdsdt
n [—s)2+1 52
y(@)? s |21
< V(e —
=< ZH/ /n @ e
‘,77‘2
st dzdsdt

y(? g hoaiya?
t2+1 n V(Z)Te
_c ly—zl2

o
y(0)? eyl 1
S n 1 1 e 2 ! € 2
t2+ R §2
y(x)2 s 2 s g1t
< / Te = / Sdsdt
tit o v
2
e ar x yeRY Jx —y| <y ()
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We have taken into account that y (x) ~ y (y), provided that |x — y| < y(x). Then,

2

c YW dr 1 .
/ / e T £ (y)|dyar
0

<
V(x)'s 11*% R t2

| | C | | y)? =5 la—yP
Tyf(r)| < —— / £O) f ¢ iy
y(x)‘S [x—=yl<y(x) 0 t7+1_§

1 .
< Csup A e P F(p)|dy < CM(f)(x), xR (26)
t>0 n

By proceeding in a similar way and using [12, (2.7)]we see that
T3/ ()| <CM(f)(x), xeR" 27)
From (25), (26) and (27), we get
LX) =CM(Hx), xeR" (28)
Inequalities (24) and (28) imply that

Vo (Whoe = Witoo) () () < CM(f)(x), x €R".

,loc

Hence, the operator V, (WtﬁoC — Wt 10c) 1s bounded from L? (R") into itself, for every
1 < p < o0, and from L' (R") into L1>°(R™").
Finally, by (18) we conclude that Vp(Wtﬁ) is a bounded operator from L? (R")

into itself, for every 1 < p < 0o, and from L'(R") into L% (R").

4 Variation operators associated with Riesz transform R<

In this section we prove Proposition 1.1 and Theorem 1.2. As it was mentioned in

Sect. 1, for every £ =1, ..., n, the £-th Riesz transform associated with £ is defined
formally by
0
RE=Z 3, (29)
dxg

1 . .
Here £72 denotes the negative square root of the operator £ given by

1 +00
L W=y / / (i) I (x, v, D) f ()dy,

where I'(x, y, T) represents the fundamental solution for the operator £ + it, with
T € R (see [25, §2)).
We recall that, for every £ =1, ..., n, the function Rf (x, y) is defined by

L 1 oo -1 d n
Ry (x,y)=—g (—it) 2@F(x,y,t)dr, x,yeR", x#y.
—0o0
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LP-boundedness properties of variation operators in the Schrodinger 511

The following estimates for the kernels Rf, £=1,...,n, were established in [25,
Sects. 5 and 6] (see also [2, Lemma 1]) and will be very useful in the sequel.
Lemmad4.l Let{=1,...,nandV € B,.

(1) Assume that q > n. Then, for every k € N there exists C > 0 such that

1 1
(I +1x = yI/y )k |x — yI*

IRE(x,p)|<C (30)

Moreover, we have

1 _ 2—n/q
[REG )~ Rex =] =€ ('xy(x)y'> 0<lx—yl <.
31)

(ii) Suppose that n/2 < q < n. Then, for every k € N there exists C > 0 such that

1 1
I+ x = yl/y )k |x — y|"—!

1 v
X < + f lez) (32)
lx =yl JB@.x—yly4 1z —xI"
Also, we have

|RE(x, y) = Re(x — )|

|RF(x, | <C

1
|x — yln=1
1 _ 2—n/q v
()™ v ),
lx —yI\ y&x) B(x,|x—y|/4) |z — x|~
O<|x—=yl<y®). (33)

Remark 4.1 Note that, according to [13], if V € B,, there exists ¢ > 0 such that
V € Bj4¢. Then, the estimates in Lemma 4.1, (i), can be applied to V € B,, by taking
q =n + ¢, where ¢ > 0 is small enough and it depends on V.

We consider, forevery £ =1,...,n and ¢ > 0,

RES(F)(x) = / REG, y) f(»dy, x€R".
[x—yl>e
According to Lemma 4.1, it is not hard to see that, for every £ =1,...,n, ¢ > 0,

feLP@®R"), 1< p < oo, the integral defining Rf ““(f)(x) is absolutely convergent
for each x e R”.
Before proving Proposition 1.1 we establish the L?-boundedness properties of the

maximal operator Rf "* defined by

R () = sup [REE(F).
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Proposition4.1 Let{=1,...,nand V € B;,q > n/2. Then, if 1 < p < po, where
% = (é - %)Jr, Rf’* is bounded from LP (R") into itself. Moreover, Rf’* is bounded
from LY (R") into L'>°(R™").

Proof 1tis enough to prove the result when n/2 < g < n. Indeed, according to [13], if
V € Byp then V € Be /2 for some & > 0. Moreover, B, C By, when r > 5. We split

the operator Reﬁ **in the spirit of the general procedure described at the beginning of
this section, as follows

RE*(f)(x) < / IRE(x, y) — Re(x — )| £0)[dy

[x—yl<y(x)

+f IRE e, )| £ O)]dy
[x=y|>y(x)

/ Re(x — y)f(y)dy’
e<|x—yl<y(x)

=71 (If1)®) + (1 f1)(0) + 3(Hx), xeR"

+ sup

e>0

It is clear that

73(f)(x) < sup

e>0

/I | Rz(x—y)f(y)dy', xeR".
x—y|>¢

Then, from well known results we infer that 73 is bounded from L”(R") into itself
when 1 < r < 00, and from L!(R") into L1 (R").

For acertain M > 1, % < % < M, when |x —y| < y(y). Moreover, if |[x — y| >
y(x), |x —y| > y(y)/M. Indeed, it is sufficient to observe that

yeR":lx—yl>y@} C{yeR":|x =yl <y() and |x = y| > y (1)}
Uy eRY: [x =yl >y and [x — y| > y(0)}.

We denote by r;.‘ the adjoint operator of 7;, j = 1, 2. We have that

o (Ig) ) = / RE(x, y) — Re(x — y)|g(x)dx
[x—=yl<y(x)

s[ |RE(x,y) — Re(x — y)|g(x)dx, yeR",
[x—=yl<My(y)
and

75 (181) () =/

[x—=yl=y(x

) |RE(x, y)||g(x)|dx

5/ |RE(x, »)||g(0)|dx,  yeR".
lx=yl=y (y)/M
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According to [25, (5.9) and the proof of Lemma 5.8] and the arguments in the proof
of [25, Lemma 5.7] we obtain that ri*, i =1, 2, are bounded from L" (R") into itself
when p6 <r <o00. Then, 1;, i = 1,2, are bounded from L"(R") into itself when
1 <r < po.

By combining the above properties we conclude that REL "* is a bounded operator
from L?(R") into itself, provided that 1 < p < pg, and from LY(R") to L1-2°(R™). O

Proof of Proposition 1.1 By Proposition 4.1, in order to show Proposition 1.1 it is
sufficient to see (4) for every ¢ € C°(R").

Suppose that ¢ € C°(R"). By I'g(x, y, T) we denote the fundamental solution
of the operator —A + it in R”, with T € R. We are going to see that, for every
t=1,...,n, E_%¢ — (—A)_%qb admits derivative with respect to x,, for almost all
R", and that a.e. x € R",

a _1 _1
8—)%(13 2¢(x) — (—=4) 2¢(X))

1 oo 9 i
:_2 ¢(Y)f (F(xa y’ T)_Fo(xv y,f))(_if)_zdfdy‘
T Jrn —oo OXxg

To simplify the notation we consider £ = 1. Also we assume that g > n/2 ([13]).
According to [25, Lemma 4.5], for every k € N there exists Cy > 0 such that

C _ y|2—n _ 2-12
klx —yl (Ix yl> q (34)

F(x’)’af)—r (X,)’,T) S
| ' = e 7

provided that T € R, x, y € R?, |x — y| < y (x). Moreover, by [25, Theorem 2.7], for
every k € N there exists Cr > 0 such that

C _ y|2—n
TG, y, D] < 1 kx| ——. %yeR" teR, (35)
(1+|f|7|x—y|)"(1+y(—xy))k
and
Crlx — y[*™" .
[To(x,y,7)| < , x,yeR" reR. (36)

(1 + |z]2]x — y

We will use repeatedly without reference the following equality

Too 1 Cr n
; —dt = , x,yeR" xz#yandk>1.
—oo || (14 |x = ylr|2) =l

From (35) and (36) we deduce that
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514 J.J. Betancor et al.

+00 I
/ ’¢(y)|/ IT(x,y,7) = To(x, y, )| || "2dzdy
R —00
+too 1
e f LS f e —dudy
R |x—y| —o0o |T|2 (1+|x—y||"5|7)2

SCf I () dy
R X — y|"™

1
— Ci’
1+ [x|r=1

x eR". 37

Then, the function F = E_%qﬁ — (—A)_%¢ defines in R" a distribution Sr by

(S ) = /R FOWOMy, ¥ e CR(R).

We have that, by writing X = (x2, ..., x,) and considering ¢ € C°(R"),
d
—38
<ax a 1”>
0
=—/ F(x)—v¢(x)dx
Rn 8)C]
1 —+00 ) 1 a
=—n/ / ¢(y)/ (=it) Z(F(x,y,t)—Fo(x,y,f))dfdya—mlﬁ(X)dx

+o0 +oo
A" I/‘n¢()’)/ (—it)~ / (F(x,y,r)_l"o(x,yvt))

X —lﬁ(x)dx1drdyd7. (38)
axl

We now apply partial integration in the following way. Since the integral is absolutely
convergent (see (37)) it follows that

+oo | [T
/Rnﬂ/nqﬁ(y)/ (—ir)_i/ (M, y, 1) = Tolx, y, 1))

a
X —w(x)dxldtdydf

+o0
- nmf f ¢<y>/ (—it)
e—>0t Jra—1 JRn

X </v1 s+/ )(F(x v, 1) —o(x, v, r))—tp(x)dxldrdydx
yite

+o0
lim< / /¢(y>/ (—it)~
e—>0F Rr-1 JRn
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LP-boundedness properties of variation operators in the Schrodinger 515

1—¢ +o00
y (/y +/ )i(r(x,y,f)_Fo(x,y,r))l/f(x)dxldtdydf
y

—00 1+e B.Xl
+o0 .
+ /l’%”fl /l‘%" ¢(y)/ (_it)7§ ((F(yl —-¢ Y’ Y, t) - FO(}’I — €&, Yv Y, T))
X Y (y1 —&,X%)
—(CO1 +&%,y,0) = Tolv +&.%, 5, D)¥ (1 +e, f))drdydf). (39)

‘We have that

+00 5
/” /R/ l6 || @) |1z~ a_XI(F(x,y,T)—Fo(x,y,t))'dtdxdy < co.

(40)
Indeed, by [25, Theorem 2.7] (see also the proof of [25, Lemma 5.7]), forevery k € N,
there exists Cx > 0 such that, for every x, y e R" and t € R,

0
‘—F(x,y,t)
dx

2—n
- v 1
<C x — )| = </ (Z)ildz—i- )
(L 1212)x — yDR 4 T3k N je—r < g [z — x ] lx — yl
(41)

Moreover, for every k € N, there exists Cy > 0 such that

]7
lx —y|" ™"

<C ,
= A H 2 — )

x,yeR", teR. (42)

0
‘—Fo(x,y,t)
0x1

By [25, p. 541], for every k € N, there exists Cy > 0 such that

] a
_F(-x7 Yy, T) - _FO(-xv Y, t)
3)61 3)61

-c lx — y[>7"
=Lk
(1 + |z|Y2]x — yDk

14 1 —y\*
e ™)
l—x|< 2l |2 — x| lx=yI\ v

lx =yl <y(®), T €R, (43)

where g > n/2.

Assume firstly that V € B;,. Then V € B, for some g > n [13]. According to [2,
Lemma 1], we deduce, from (41) and (43), that for every k € N, there exists Cy > 0
such that

lx — y'="

k 9
121y — vk lx—=yI\k
(L [2V21x — y DR+ 55D

<C

x,yeR" 1eR, (44)

0
‘—F(x, ¥, T)
0x1
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and, for every T e R and |x — y| < ¥ (y),

- _LIN2-1/q
-c |x 1§| k(lx yl) . 45)
A+112x —yDE\ vy ()

0 0
—TI'(x,y,t)— —7Tox,y, 1)
0x1 0x1

According to [25, Lemma 1.4], y and 1/y are bounded on any compact subset
of R". Since ¢ and Y have compact support, there exists A > 0 such that [x — y| <
Ay (y), x € suppy and y € supp ¢. Then, by using (42), (44) and (45) we get

fff lo ) ||[w ]Il ”2
R

o0
<cC f e, 60 f drdydx
suppl/f} | supp¢| | —oo ITIV2(A + [7]1/2|x — y])?

1
< C/ / —— ——dydx < o0.
supp ¥ J supp ¢ |x — yl"_2+”/q

We consider now 5 < g < n. We recall that the 1 th Euclidean fractional integral

is bounded from L (R”) into LPo(R™), when % == — i ([27]). Since g > n/2 in
order to establish (40) we only have to see that

/ lp()] LZ2€3]
R” [x=yI<y(y)

[} 2—n
— \%4
X / =yl f idzdrdydx < 0.

—oo |TIV2(A + |T|1/2|x —y|)2 \z—x|<@ |z — x|n—!

(F(x v, T) — Fo(x,y,t)) dtdxdy

To do this we can proceed as follows. There exists M > 0 for which

27
lx — y|="

L, oo eorizyn P! | s

v
X / idzdrdydx
|

z—x|< g |z —x|n=1

|4
/ / /' [V (2)| TN dydx
supp ¥ J supp ¢ |x - y| lz|]<M |z — x|~
1 1/p; ’ 1/po

C / ( / 7,_1dx> ( / |1 (B0, V()] de) dy

suppg \Jsuppyr |x — y[Po1~ D) R

1 1/py 1/q
< C/ (/ 7,dx> (/ |V(z)|qdz> dy < o,
supp \Jsuppyr |x — [P0~ B(0,M)

because V € L{ (R"), and (n — 1)(py — 1) < 1 when g > n/2.

IA
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Hence, (40) holds and we can write

+00 | yi—¢€ 1+ §
lim/ / ¢(y)/ (—ir)_7</ +/ )—(F(x,y,r)
e—0t Rn-1 n —00 —00 yi+e 3X1

—To(x,y, 7)) (x)dxidrdydx
+0o0 8
=/ w(x)/ ¢<y)/ (—it)™? (D, y. ) = To(. y. 7)) ddydx.
R~ R —00 X1

Our next task is to see that lim,_, o+ I (¢) = 0, where

400
1(s>=/ /¢(y)/ (i) (T — &%, v, 7)
Rr-1 JR” —00

- FO()’I —&,X, Vs T))W(yl - Svf)
—(CO1+&%,y,7) = To(yi + &%, y,0))¥(y1 +&,%)drdydx, &> 0.

‘We have that

(T —&.%.y. 1) —Toy1 —&.%, ., 1))y (1 —&%) — (C(y1 +&,%,y,7)
—To(y1 +&X,y, 7)Y (y1 +¢&,%)
=((F1 —&%,y,1) =Ty +&7%,y,1)
— (Toy1 — &%, y, 1) —To(y1 +&,X,y,7))¥ (v — &%)
+ (WO -0 -y +0) (T +6%y,7)—To +6,%,y,17)
=Ji(x,y,e, 1)+ (X, y,8,1), TeR"!, yeR" >0, TeR.
According to [25, p. 535], if X € R, yeR" 0<e<|x—7Y|/15and T € R,

88 |f _ y|2*ﬂ*5

, 46
NG EE

ITO1—e %y, 1) =Ty +&%,y,1)]<C

and

€8lf_y|2—n—6
(I+1z|V2x =33

ITo(y1 —&,%,y,7) —Toly1 +&,%,y,0)| <C (47)

for a certain 6 > 0 that depends on ¢.
By using (34), (35) and (36) we can deduce that

o
lim \¢(y)}/ / 17|72 (X, v, 8, T)|dTdydx =0, m=1,2,
n—0t JRn [x—y|<n J—o0
uniformly in ¢ € (0, 1).
Indeed, let € € (0, 1). According to (35) and (36), the mean value theorem leads to
(e + X —3D>"
I+ 22+ X =3

|h(x,y,e,1)| <Ce x,yeR" landr eR.
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Then, we have

/|¢(y)|/ f It 2| L@, y, e, 0)|drdxdy
R [x=yl<n J—o0

© (e +[x —y)>" _
sC/ ¢@)[ / It~/ _dvdwdy
R” | | F—Fl<n J—o0 A+ z|'2e+x =33

SC/ lo(»)| e(e+x —vl)' "dxdy
R” x=¥yl<n

scf 6| % — A dxdy, >0,
R” [x=yl<n
where C > 0 does not depend on ¢. Hence,

o0
lim ’¢(Y)|/ / lt172| (X, y, e, T)|drdydx =0,
n—>0t JRn Xx—yl<n J—c0

uniformly in € € (0, 1).
By using (43), since supp ¢ is compact, we get, for a certain a > 0, thatif ¢ € (0, 1)

o
[ ool [ [ ey e oldvday
R® x=yl<n J—o00

o 1/2
scflmw| / oV
R~ [x=y|<n J—o0

yi+e€ 9
/ 3 (F(u,f,y,t)—I‘O(u,f,y,f))du
y

yi—e OU

yite poo 12
scflww| / TR
R” [x=yl<nJyi—e J—o00

dtdudxdy

X dtdxdy

X

3
— (P w,x,y,7) —To(u,X, y, 7))
u

sc/ w@ﬂf / f Nk
R x=y|<n J—a J—o0

ad
—(F(M,f, ysr) _FO(M»Y, Yy, T))
du

X

dtdudxdy, n>0.

It was showed in (40) that, for every K compact subset of R", we have that

JoJe Lo

Then, it follows that

0
8—(1"(%,?, v, 7)—Tou,x,y, t)) dtdydx < 0.
u
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lim [ |¢()

n—0t JRr

|
—(F(u,f, v, 1) —To(u,x,y, r)) dtdudxdy = 0.
u

a o0
A B
X—¥l<n J—a J—o0 9

Hence, we conclude

o
lim |qb(y)|/ / lt17 2| (x, v, &, T)|dTrdxdy =0,
n—0+ Jgo [F—¥l<n J—o0

uniformly in ¢ € (0, 1).

Therefore, in order to achieve our purpose it is sufficient to see that, for every
n >0,

o
lim// |¢(y)|/ 1t~ 2| I X, v, 8, 7)|dTdxdy =0, m=1,2.
n Jix=31>n —o0

e—07t

Assume that n > 0. By (46) and (47), we get, for certain Ay, A> > 0,

o0
f / \¢<y>|/ (217 2 1. y. 6. 0)|dedxdy
nJ T30 —o0
00 |11=1/2]= _ =12—n—8
5085/ / f el WP e aay
BO,A)) Jy<[F—y|<Ay J—oo (L +[T[V2X =]

§C86/ / X — 3" %dxdy, 0<e<n/l5.
B(0,A1) Jn<|x—yl<Az

Hence

o0
lim// |¢>(y)|/ lt172| (X, y, &, T)|dTrdxdy = 0.
nJx—31>n ~o0

e—07t

Finally, in order to see that

e—01

o0
lim// |¢(y)’/ It 2| (X, y, e, 1) |drdxdy =0,
" x=y>n —0

we use the mean value theorem, (35) and (36).
Thus we have proved that lim,_, o+ 7 (¢) =0.
Hence, coming back to (39) we obtain

+00 | [T 9
/R,H/nd)(y)/ (_if)_jf (F(x’y’f)_FO(X,Y»T))a—xll/f(x)dxldrdyd)_c

—0oQ
+o00 1 9
=—/ / ¢(y)1ﬁ(x)/ (—i7) Za—(F(x,y,f)—Fo(x,y,f))dfdydx,
Rt JR" —00 X1
and from (38) it follows that
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<ES" *”>

1 Foo a
:—2—f '(ﬁ(.x)/\ ¢(y)/ (—lf)_%—(r(.x, y,f)_FO(x’yaf))deydx
T JRn R~ —00 a)C]

Therefore we have proved that the distributional derivative % Sp of Sg is

3 1 e 1
_SF:_Z_/ ¢(y)-/ (_lf) 2_(1—‘(%)’»7)_FO(xyysT))deY-
T JRn —00 3)(1

0x1

Moreover, the above argument shows that the right hand side in the last equality
defines a locally integrable function in R”.

Now, by invoking now [23, §5, Theorem V, part (2)] we can conclude that £~ 3 ¢—
(—A)’%qb admits classical derivative with respect to x| for almost all x € R", and

aixl(c*%qs(x) —(—A) ()

1 oo a
=5 ¢(y)/ (=it)” 2—(F(x y,T) = To(x,y, 7))dtdy,
a.e. x € R". Moreover, the last integral is absolutely convergent. Then,

aim(ﬁ—%qﬁ(x) —(—A) ()

+00
——_ lim / d)(y)/ (—it)_%—aa (M, y,7) = Tolx, y, 7))dtdy,
x—y|>e —00 X1

27 e—>0t lx—

a.e. x € R", and we obtain that

_[:_i(p(x)_ lim d(VRE(x, y)dy, ae.xeR",

ax1 =0t Jix—y|>e

since, as it is well known,

d 1
P (—A)"2¢(x)
X1

O

e—>0t

+oo 1 0
= lim ¢(y)/ (—it)"2—Ty(x, y,7)dtdy, ae.xcR".
[x—y|>e —o0 dx1

We now prove L?-boundedness properties for the variation operators associated
with the Riesz transforms Rf’.

Proof of Theorem 1.2 As in the proof of Proposition 4.1 it is enough to assume n /2 <
q < n. We consider the operators

R1oe(f)(x) = P-V~/ RE(x, ) f()dy

[x=yl<y(x)
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and

Ry loc (f)(x) = P-V-/ Re(x —y) f(y)dy,

[x—=yl<y(x)

where f € LP(R") for a suitable 1 < p < co.
Suppose that {n;} jen is a real decreasing sequence that converges to zero. Follow-
ing the general procedure we may write

1

(Z! RV () — R ()(x >|p)

J=0

/7,+1<|x =yl<nj,lx=yl<yx)

(RE(x,y) = Re(x — ) f()dy

1
p) »
p)%

|RE(x, y) = Rex = )| f()]dy

/nj+1<xy|<nj, [x—=yl<y(x)

1
ﬂ)p

/ RE(x, y) f(y)dy
nj+1<lx—=yl<nj, lx—=y[>y(x)

Re(x —y) f(y)dy

/ﬂ_/+1 <lx=yl<nj, [x=yl<y(x)

Mg

n
Mg

/ |RECe, 9| £ 0)]dy
=07 M+ <lx=yl<nj, [x=y[>y (x)

5/ IREGe.y) — ReCx — || F0)|dy
[x—=yl<y(x)

Re(x —y) f(y)dy

¥

frml <lx—yl<nj, [x—yl<y(x)

+/ RE e, || £ )]y
[x=y|>y(x)

1
p)p

o0
+  sup (Z / Re(x = y) f()dy
{tj}jen\O0 =0 tip1<|lx—yl<t;

Hence, we get
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V,(REF) () () < / IREGe, y) — R — || £ |dy

[x—yl<y(x)

+ / Rl v (E) e
x—y|>y(x

=1 (/1)) + (I f) @) + Vo (RE)(Hx), xR (48)

Note that the operators 71 and 1 are the same ones that appeared in the proof of
Proposition 4.1. Then, as it was proved there, 71 and 1 are bounded from L"(R")
into itself provided that 1 <r < py.

By (48) and [7, Theorem A and Corollary 1.4] we conclude the desired L?-

boundedness properties for V, (Rf #). O

5 Variation operators associated with commutators C ,f:

Proposition 1.2 and Theorem 1.3 are proved in this section. Assume that b €
BMOgy(y), for some 6 > 0. Let us remind that, forevery £ = 1, ..., n, the commutator
operator C lf: , for the Riesz transform Reﬁ is given by

CE f =bRES — REG).  feCR(RY).

Some L”-boundedness results for these operators were established in [3, Theorem 1].
From Proposition 1.1 we deduce that, for every f € C°(R"),

Cre(H)() = lim (b@) =bM)RE (e, 1) f()dy, xR,
e—>07F lx—y|>¢e
In Proposition 1.2, that is proved in the following, we extend this property for every

f eLP@R"), 1< p < po, where % = (; — 1) andVeB, qg>n/2

Proof of Proposition 1.2 Itis enough to prove that the maximal operator C bﬂ ’e* defined
by

Cr (/) (x) = sup

e>0

/ e —bO)RE e D FOM| xR
x—y|>e

is bounded from L? (R") into itself when V and p satisfy the conditions specified in
this proposition.

As in the proof of Theorem 1.2 it suffices to take care of the case n/2 < g < n.
Suppose that f € LP(R"), where 1 < p < py.

Let us consider the local operators

Cr ' (f)(x) = sup

e>0

/ eyl )(b(x) _b(y))ReL(x’)’)f(y)dy , xeR",
e<|x—y|<y(x
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and

Cry(f)(x) = sup

e>0

/ (b) — b)) Re(x — ) f()dy|, xR,
e<|x—y|<y(x)
With this notation we have that

Cr () = CEP ()0 = CP (N @) + CH (N @) — Cr* () (x)

+ O ()

sfl o b |RE ) — R = o]y
x—y|<y(x

+f = [RE |0y + €O
x—y|>y(x

=T1 (1)) + (1)) + Co () (x),  x €R™ (49)
According to Proposition 2.1 the operator CZ:;OC is bounded from L"(R") into
itself, for every 1 < r < oo.
We now analyze the L?-boundedness properties for the operators 77 and 7, study-
ing the behavior of their adjoints 7;* and 75"
The operator 7}* adjoint of 7} is defined by

T1*<g><y)=/| o) bl |RE () = R = s
x—yl<y(x

According to (33), since y(x) ~ y(y) when |x — y| < y(x) there exists A > 0 for
which

1T (2) )|
1 _ 2—-n/q
fc(/ " ('x y') |b(y) — b(x)|[g(x)|dx
le—yl<ay( X = YI"\ v ()
1
+ f — / L)_ldzvﬂ(y) —b(x)||g<x>|dx>
—yl<ay( X = YI"7 e, iy |z — x|
=C(T7, (I8 + T, (I81) (), y eR™ (50)

‘We have that

Tff1(|g|)()’)

f_ b)) = b(y)||g(x)]dx,
2777 Ay (y)<lx—y|<27 Ay (y)

- X_(:) 7y
]_
y e R",

Wher65=2—$>0.
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Then,

o
I 171 (Ig1) ”LP’(Rn) = CZ ” 7, () ”Lp’(Rn)» G
=0

where, for every j € N,

T (@) = |b(x) —b(y)||g(x)|dx, yeR"
J

QIy O™ Jix—y|<2-i Ay (y)

To deal with these operators we consider the covering { O }ren as given in Sect. 2.
We know that there exists C > 0 such that y(y) < Cy (xx), for every y € 2Qj. We
choose the smaller L € N such that AC + 1 < 2L, Tt is not hard to see that we can find
M € N such that, for every k, j € N, there exist N; € N and x,’;’j, i=1,...,Nj,such

that, by denoting Q;c,/' = B(x,i!j, 2’jy(xk)), i=1,...,Nj, the following properties
hold: ' '

. N; ;
(i) OrC Ui:Jl Q;“j C204;
(ii) card{leN:ZLQ};’jﬂ2LQ§(,j7é®}§M,i=1,...,Nj.

Clearly, we have that B(y,2/ Ay (y)) C2"Q} ;= 0} ;, when y € Q} . j k€N

andi=1,...,N;.
We can write, for every j € N,

/ T @) dy

2778 p/
=¢ b(x) —b(y)|d d
Z/ ((2 YO /x_ysmy(y)‘g(xm (0= b(lax) dy

<CZZ/ <(2 GOy /~ !g(x)llb(x)—b(y)|dx> dy

k=0 i=1

(ZZ@ Ty (o)’ / 2k ( /~ |g<x>|dx) dy
P b d p/d 52

+ i - .
ZZ@ Ty (o)’ /Qk< [be) —bg; [le()] x) v] 62

k=0 i=1 O

Each summand is estimated separately. For the first one, since y(x,’;y j) ~ y(xr),
by [3, Proposition 3], we have that
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LP-boundedness properties of variation operators in the Schrédinger 525

/
oo Nj

00 , » 1/p
1]~ d ) d
Z(ZZQ Jy(x))?’ / [b() — .ji <[Q§” |g(x)|dx y)

j=0 \k=0 i=1

oo Nj

cS 2 / "q
: Z <ZZ 2- fy(xk))"P b = | Y
/ / 1/p'

8 /~ 20| dx (27 y (w0))"™ /p)
Ok

<CZQ /8<Zz(2 ]y(m)n/ b(y) — bQi‘jV"dy

k=0 i=1

/ 1/p
x/~ |g(x)|pdx)
0y

00 00 , 1/p'
<C|b 27J8 / Pa
=Cl ||BM09()/)Z (Z g lg()|” dx
j=0 k=0 k

= C||b||BM09()/)”gHLp’(Rn)- (53)

Also, by using again [3, Proposition 3],

j 2—isp’ o o\ U
b dx) d
Z:<ZZ(2 Ty i) /Q( b =bgy, lls ) x) ' )

=0 \k=0 i1 oy

j P'/p
is P
<C E 27 (E E e Jy(xk))”l’ n(/ |b(x)—bQ,k.j| dx)

k=0 i=1

) 1/p
x/,_\, }g(x)|pdx>
Oy ;

1/p
<C||b||3Moﬁ<y>Zz 7 (ZZ/ |g(x>|”dx)

k=0 i=1

< ClIlIBMOs () ”g”L[J’(Rn)- (54)

By combining (51), (52), (53) and (54), we obtain

|73 (8D Lo @y < CUBIBMON ) 1811 L1 - (55)
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On the other hand, we have

o]
1b() = b()|
Ti @) )| < / SO T
| " | JZ—(:) 2*/’71Ay(y)s\x—y|<2’f'Ay(y)| | e =yt

Vv
X / Liledx
Bx, b2y [z — x|"

e¢]

1 \%
B S [ _vo_,
=Ty eeyimiay o) JBoam Ay oy 2 = T
x |b(y) — b(x)||g(x)|dx. (56)
. 1 1 1 .
Since =g by using [2, Lemma 1], we get

|11 (xs ey 2114y o)) V) | Lo ey

V(z)
= —_le
R 1 B(y,2-+ Ay () 12— X["

1/q
< C(/ ‘ }V(z)!%z)
B(y.27/+1 Ay (y)

<Cc(2Tyy) e / _ V(2)dz
B(y.27/+1 Ay (y)

Po 1/po
dx)

< C2 7y ()" TP (27 y ()"

<Cy(y)?™4, yeR"

Then, Holder inequality implies that

|T1*,2(g)(}’)|

3 1 b(y) — b Pog v
<C _ —
= /go(z—fy(y))"—l (f|x_y|§my<y>(| ) = bwlle®) x)

X [ Iy 214y V) HUO(R")

— 1
C —
: ;0 @Iy (]

, 1/py
x ( / o (jpeo - b(y)Hg(x)y)”de) ym)MIT2 y eR"
[x—=y|<277 Ay (y)
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We can write,
o0
| 175 (8) ”LP’(R”) =C Z || Ti5.(8) ”LP’(R")’ 57
i=0

where, for every j € N,

/

Thy () = L (/ (|bG) — b(y)||g(x)])"d )1/%
. =" X)— X X k)
12.j180% Iy N \Jx—yi<2-iay () YN8

y e R".
As before we have, for every j € N,

2—Jjsp’

oo Nj
T, . Pay<c .
/R,, ’ 1,2,J(g)(y)’ Y= <ZZ =7y (xg))n=n/a+Dp’

k=0 i=1

, , p'/py
X/i |b(y)—bQ;”|p </7 |g(x)|p0dx) dy
0 ! kaj

k.j

9—idp
+ ZZ =iy (xp))n—n/g+Dp’

k=0i=1

, p'/py
x/, (/~ (b = by ,Hg(y)!)”Ody) dx), (58)
Q Qj(yj g

1
k.j

where § =2 —n/q. Here Q, k € N, and Qj;j,and é}(] k,jeN,i=1,...,N;,are
the same balls that we considered above.
Also, since p’ > p(, we get

2—Jjsp

o foo Nj
Z (Z Z Q=T y (xg))@/a'+Dp’

j=0 \k=0 i=1

: NP\
x/, b = bgi |7 (/~ |g<x)|”°dx) dy
Ok "/ O ;

k

00 oo Nj 1 ,
<c2215<22 . / [b() = bg; |”dy
= — 31 p! ; Q .

Jj=0 imim @ Ty G @/ D O o

. . ! (7 1’
x/,\., lg)|” dx (277 y (xp)) r )
Ok

00 A Nj , 1/p'
< cnanMoe(y)Zz—f“(ZZ /Q,~ |g<x)|”dx>
j=0 k.j

k=0 i=1
= C||b||BM09()/)”g”Lp/(]Rn)’ (59)
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and

Nj Z—JSP/

Z 2~ Jy (xp)) /4’ +Dp'

k=0 i=

, p'/p) /v
xf, (/~ (!b(x)—bQ;;.Hg(x)])p"dx) dy)
Qij \ Qi K

00 oo Nj 1
_]6
= CjX_(:)Z (ZZ (zij(x]{))(n/q%l)p’fn

k=0i=1

Lo (P —ph) (P/—P(,))/Pé ’ 4

X _ !b(x)—b i |p°p PP gy _ |g(x)|pdx

i ij i
Ok ‘ Ok

(5

j=0

00 . 00 Nj , 1/17/
< cnbuBMog(y)Zz—JS(ZZ/@ |g(x>|”dx)
j=0 k.j

k=0 i=1
= C”b”BMOg()/)”g”Lp’(Rn)- (60)
From (57), (58), (59) and (60) we conclude that

|T{5(2) IILPf(Rn) < Clblsmoyon gl @ny» & € L7 (R"). (61)
By invoking (50), (55), and (61) it follows that
175 ] L @ny < ClBIBMON 18]l Lo rys & € L7 (R”).

Then, T; is a bounded operator from L? (R") into itself.
The operator T, adjoint of T3 is defined by

Tz"(g)(y)=/| | ()|b(X)—b(y)IIRf(x,y)Ig(x)dx, y eR".
x—ylzy(x

According to (32), since for a certain A > 0, |x — y| > Ay (y), when |x — y| > y(x),
we have that

1T5(2) ()|

1 1

aff bt — b 3o ax

=ylzAy o) X =" (1+ 55
1 —
+/ _ |b(x) b‘g)vlllg;(x)l - Y(Zi_ldzdx>
k—ylzAy () X =Yl 1+ 550 B, B2 12— x|
= Co(T5, (180 + T35 (1g) (), yeR". 62)

Here o > 0 will be sufficiently large and it will be fixed later.
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By choosing o > 0’ + 1, where 6’ is the one appearing in Lemma 2.1, we can
prove that

Ay () <lx—y|<2mH1 Ay ()

1 Y — —(0'+1)
X n(l—l— | y|> |g(x)’dx
lx — yl Y ()

el <c Y [ b~ b
m=0

o0

1 1
c , b(x) —b d
< Eg%2mw‘“)(2my(yn”‘A;”gszAy@)’(X) |0 ]dx

o0

1

=C Y suariim loria(ig) ), yeR,
m=0

where the operators Tj s are the ones introduced in Lemma 2.1.
Then, by using Lemma 2.1 we get

o0
” T2f1(|g|) ”Lp’(R") =C Z W ” Tb,2m+1A(|g|) ”Lp’(R")
m=0

< Clblimos ) 1 fll Ly oy, [ € Ly (R). (63)

On the other hand, since y (y) ~ ¥ (xx), y € Ok and k € N, we have, for a certain

B >0,
: — 1b(x) — b(y)]lg(x)]
p
”qﬁmﬂ@nfczl/</ e — yln~!
k=0 Ok [x=y|>By (xk) y

1 / V(2)dz )P’
X R k) dy
(1 + |x_}|)oz B(x, \XZ,V\) |Z —x|”*1

¥ (xk)

o0
-y / TP dy. (64)
k=0 ¥ @k
Let k € N. It follows that

K = cZ/2 () = b()lIs ()]
j=0

I By () <lx—y|<2it gy 2Ty ()]

! V(2)dz
X — 7_1 y
210{ B(y,ﬂz_/-%-Zy(xk)) |Z — xln
3 ! P! 1/[’6
<C - - bOx) — b b
- ,ng 2727y (x))! (/@ (1) =M |[g()]) x)

V(2)d PO 1/po
(L], )™ o
Ri\JQk |z —x]"
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where po is such that % == — %, and for every j € N we consider ék =

1
q
B(xi, c2/y (x;)), where ¢ > 0 is independent of j,k € N and such that B(y,
ﬁzf“y(xk)) c 0% ye O

Since the 1-th Euchdean fractional integral is bounded from L7 (R") into L”°(R™)
we deduce

, 1/pg
K < CZ (w(m)n 1(/ (Jbx) - b(y)Hg(x>!)”°dx)

1/q
X </~ V(z)qdz> . Y€ O
g

Moreover, by using the doubling property of V it follows that, for some u > 0,

1/q o
( /~k V(z)qdz> < C(2ya)) T 2im f V(2)dz
0 Ok

J
< CIy@o) "y )" ye O
where in the last inequality we just use the definition of y.
Then,

2]([,L oa—n+1-n/q)

y () 1Hn/a’

Jk<y><CZ

j=0

, 1/py
([, (b= p0llewtiax) " yeon

Since p’ > py, calling v = py(p’/ p;)’, Holder inequality and [3, Proposition 3] im-
ply that, for some 6’ > 0,

2J(n—a—nt+l-n/q) ; v , 1/p
Jk(y) CZW(/ék |b(x)—b(y)] dx) <f§k ’g(x)}pdx>

j=0

/

1

o0 i —— — =
2J(u—a—n+l n/q){(/ v v
<C — b(x)—b dx)
j2=:0 y(xk)lJrn/q é,; | Qk|

Lo\ N
+(f§k b(y) — bo,| dx> }(/@k |g(x)|”dx>

00
<C Z y(xk)_n/p/Q—j(”_2+“—M+n/p/)
j=0

x (( + D277 1bllgpoy o) + [b() — o)

, 1/p'
X (/N |g(x)|pdx) , Y€ Ok
ok

J
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Then, by taking into account the properties of the sequence {Qpy}ren and
Minkowski inequality, we can choose « large enough such that

[e'e) 1/p
(Z [ wor dy)
k=0 Ck

(o) o0
—j(n=2+a—p+0'+2) .
scnanMoe(y)(Z(Zz A AR

k=0 \j=0

, 1/p P\ 1/r
X (/Q’f |g(x)|pdx) ) )

J

00 5 00 1/p'
—j—j=24a—pu4+0'+5) . '
< ClIbllsmo,p) Y27 /02" p)<]+1)<Zf~k !g(x)V’dx)
k=0 <]

j=0

= ClIblBmos i) 181l Ly qgny-

Thus, we prove that

1752 | o oy < ClgN Ly oy & € L7 (RY). (65)

By combining (62), (63) and (65) we obtain that
I 7@ Ly @y < Cllgl L @nys 8 €LY (R?).

Hence, the operator 7, is bounded from L? (R") into itself.
Finally, the L”-boundedness of 77 and 73 allows us to conclude that the operator

Cf;" is bounded from L”(R") into itself. 0

We now prove the L”-boundedness properties of the variation operators associated
with {le}f}wo that are established in Theorem 1.3.

Proof of Theorem 1.3 Assume that p > 2. We consider the operators

CEY®(f)(x) = lim (b(x) — b)) RE(x, y) f()dly,

e=>0% Je<x—y|<y ()

and

Cye(f)(x) = lim / N )(b(X) —b(y) Re(x — ) f(»)dy,
e<x—=y|<yx

e—>0t

and we define the truncations Cb£ f’loc( f) and CZ’IZOC( f), € > 0, in the usual
way.
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If {¢} jen is areal decreasing sequence that converges to zero, we can write

o0 1/p
(Z }Cf,’i’ (f)x) — C,ff;f’“ (f)(x)!”)
j=0

< (RE(x,y) = Re(x — ) £ (y)dy

gfl e —pO[RE G~ Rete = 1]y
x—yl<y(x

(b(x) = b(y)

p>1//0

(b(x) — b)) RE(x, ) f()dy

/8_/+1 <lx—yl<gj,lx=yl<y(x)

p)l/p
p>1/p

+/| ) |b()€) —b()’)HRé:(x, y)Hf(y)’dy + Vp(czzlzoc)(f)(x)-
x=ylzyx

/gHI <lx—yl<ej,lx=y|>y(x)

(b(x) = b)) Re(x — y) f()dy

‘/*;j-H <lx—yl<gj,lx=yl<y(x)

Hence,

Vo(CEL) ) < Ti(H) + T () + Vo (CE) (),

where the operator 7 and 7> are the ones defined in the proof of Proposition 1.2.
According to the L?-boundedness properties of the operators 77 and 7> (see the
proof of Proposition 1.2) and Proposition 2.1, we conclude that the variation operator
VP(C,S ;) is bounded from L?(R") into itself.
0

Remark 5.1 In [25] (see also [1] and [2]) it is considered, for every £ =1, ..., n, the
adjoint (Rf)* of Rf, when V € B, with 5 < g < n. By proceeding as in the previous
results of this section we can prove the following properties.

Assume that V € B, with % <q,¢=1,2,...,n,and pg < p < 0o, where % =

(é - rlz)-‘r' For every f € L?(R") there exists the limit

lim RE(y,x)f(y)dy, ae. xeR",

e=>0F Jix—y|>e

and defining the operator Rf on LP(R") as

REf(x) = lim RE(y, x)f(y)dy, ae.xeR",

e=>0t Jix—y|>e¢
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RE is bounded from LP (R") into itself.

Moreover, if p > 2 the variation operator V/, (Rf) is bounded from L? (R") into
itself.

Suppose that b € BMOg(y). For every f € LP(R"), there exists the limit

lim (b(x) — b(y))REL(y, x)f(y)dy, ae. xeR"

e—07t lx—y|>¢

and the operator Cbﬁ ; defined on LP(R") by

CEL()(x) = im, (b(x) —bM)RE (. x) f(»)dy, ae. xeR",

lx—yl>e
is bounded from L7 (R") into itself.

Moreover, if p > 2 the variation operator V, (Cbﬁ ’;) is bounded from L? (R") into
itself.

Remark 5.2 The fluctuations of a family {7}},~¢ of operators when ¢ — 0" also
can be analyzed by using oscillation operators (see, for instance, [S] and [19]). If
{tj}jen is a real decreasing sequence that converges to zero, the oscillation operator
O(T3; {tj}jen) is defined by

O(Ti; {17} jen) () (x)
IS 172
=(> s @ -T,f@[) . FeLP(RY).

j=0tj+1§8j+1<8j§tj

L?-boundedness properties for the oscillation operators associated with the heat
semigroup, Riesz transforms and commutators with the Riesz transforms in the
Schrodinger setting can be established by using the procedures developed in this pa-
per.

Acknowledgements The authors would like to thank the referee for pointing out the results in the recent
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