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Abstract In this paper we prove that the variation operators of the heat semigroup
and the truncations of Riesz transforms associated to the Schrödinger operator are
bounded on a suitable BMO type space.
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1 Introduction

We consider the Schrödinger operator L defined by L = −� + V on R
n, n ≥ 3.

Here V is a nonnegative and not identically zero function satisfying, for some q ≥
n/2, the following reverse Hölder inequality:

(RHq) There exists C > 0 such that, for every ball B ⊂ R
n,

( 1
|B|

∫

B
V(x)qdx

)1/q ≤ C
1

|B|
∫

B
V(x)dx.
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We write V ∈ RHq when V verifies the property (RHq). Note that if V is a nonneg-
ative polynomial, then V ∈ RHq for every 1 < q < ∞. Also, if Vα(x) = |x|α , x ∈ R

n,
Vα belongs to RHq provided that αq > −n. Hence, Vα ∈ RHn/2 when α > −2, and
Vα ∈ RHn if α > −1.

Harmonic analysis operators derived from Schrödinger operator (Riesz trans-
forms, maximal operators associated with heat and Poisson semigroups for L ,
Littlewood–Paley g-functions, fractional integrals,...) have been extensively studied
in last years. The papers of Shen [27] and Zhong [33] can be considered as starting
points. In [27] and [33] Riesz transforms in the Schrödinger setting were studied
on Lp-spaces. The behaviour on Lp of other operators related to L has been
investigated on Lp-spaces in [5, 18, 24, 25, 29], amongst others.

Dziubański and Zienkiewicz introduced appropriate Hardy spaces associated with
L (see [12, 13, 15]). A function f ∈ L1(Rn) is said to be in HL

1 (Rn) if and only if
WL∗ ( f ) ∈ L1(Rn), where

WL
∗ ( f ) = sup

t>0
|WL

t ( f )|,

and WL = {WL
t }t>0 denotes the heat semigroup generated by −L .

The dual space of HL
1 (Rn) was investigated in [14]. This dual space, denoted by

BMOL (Rn), was characterized as the natural space of bounded mean oscillation
functions in this setting. More precisely, a function f ∈ L1

loc(R
n) is said to be in

BMOL (Rn) provided that there exists C > 0 such that the following two properties
are satisfied:

(i) For every x ∈ R
n and r > 0,

1
|B(x, r)|

∫

B(x,r)
| f (y) − fB(x,r)|dy ≤ C,

where, as usual, fB(x,r) = 1
|B(x,r)|

∫
B(x,r) f (y)dy, and |B(x, r)| denotes the

Lebesgue measure of B(x, r); and
(ii) For every x ∈ R

n and r ≥ γ (x),

1
|B(x, r)|

∫

B(x,r)
| f (y)|dy ≤ C.

Here, for any x ∈ R
n, the critical radius γ (x) is defined by

γ (x) = sup
{

r > 0 : r2−n
∫

B(x,r)
V(y)dy ≤ 1

}
.

Since V is not identically zero and V ∈ RHq with q ≥ n/2, it follows that
0 < γ < ∞. The norm ‖ f‖BMOL (Rn) of f ∈ BMOL (Rn) is defined by

‖ f‖BMOL (Rn) = inf{C > 0 : (i) and (ii) hold}.

In [14] the behavior of certain maximal operators, Littlewood–Paley g func-
tions and fractional integrals on BMOL (Rn) were studied. Also, the BMOL (Rn)-
boundedness of the Riesz transforms has been analyzed in [4, 11, 31, 32].
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Suppose that {Tt}t>0 is a family of operators defined for functions in Lp(Rn),
1 ≤ p < ∞. If ρ > 2, the ρ-variation operator associated with {Tt}t>0, Vρ(Tt), is
defined by

Vρ(Tt)( f )(x) = sup
{t j}∞j=1↓0

⎛
⎝

∞∑
j=1

|Tt j( f )(x) − Tt j+1( f )(x)|ρ
⎞
⎠

1/ρ

,

where the supremum is taken over all the real decreasing sequences {t j}∞j=1 that
converge to zero. The operator Vρ(Tt) is related to the convergence of Tt, as t → 0+,
and it estimates the fluctuations near the origin of the family {Tt}t>0.

We consider the linear space Eρ that consists of all those real functions F defined
on (0,∞) such that

‖F‖Eρ
= sup

{t j}∞j=1↓0

⎛
⎝

∞∑
j=1

|F(t j) − F(t j+1)|ρ
⎞
⎠

1
ρ

< ∞,

where the supremum is taken over all the real decreasing sequence {t j}∞j=1 that
converge to zero. ‖.‖Eρ

is a seminorm on Eρ . The variation operator Vρ(Tt) can be
rewritten in the following way

Vρ(Tt)( f )(x) = ‖Tt( f )(x)‖Eρ
.

The variation operator Vρ was introduced in the ergodic context by Bourgain [6]
(see also Jones et al. [21]). In last years many authors have investigated the variation
operator associated to semigroups of operators and singular integrals [7–10, 17, 19,
20, 23]. Recently, Oberlin et al. [26] have analyzed the variation norm related to
Carleson Theorem.

In a previous paper (see [2]) the authors studied the Lp-boundedness properties of
the variation operators for the heat semigroup {WL

t }t>0 and the family of truncated
Riesz transforms {RL ,ε

� }ε>0, � = 1, · · · , n, in the Schrödinger context. Here our aim
is to study the behavior of the variation operators Vρ(WL

t ) and Vρ(RL ,ε
� ) acting

on functions in BMOL (Rn). Previously, we shall analyze the variation operators
Vρ(Wt) and Vρ(Rε

�) over the classical BMO(Rn), where {Wt}t>0 and {Rε
�}ε>0, � =

1, . . . , n, stand for the classical heat semigroup and truncated Riesz transforms,
respectively. As usual, by BMO(Rn) we denote the well known space of bounded
mean oscillation functions in R

n. We believe that these results in the classical setting
are of independent interest.

This paper is organized as follows. In Section 2 we state our results. The proof of
the theorems are shown in Sections 3 (classical setting) and 4 (Schrödinger context).

Throughout this paper we denote by C and c positive constants that can change
from one line to another. Moreover, if B(x0, r0) with x0 ∈ R

n and r0 > 0, we define
B∗ = B(x0, 2r0) and B∗∗ = (B∗)∗.

2 Main Results

In this section we present the main results of the paper, stated as Theorems 2.2, 2.4,
2.6, and 2.8 below.
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As it is well known the heat semigroup {Wt}t>0 generated by −� is defined, for
every f ∈ Lp(Rn), 1 ≤ p ≤ ∞, by

Wt( f )(x) =
∫

Rn
Wt(x − y) f (y)dy, x ∈ R

n and t > 0,

where Wt(z) = (4π t)−n/2e−|z|2/4t, z ∈ R
n and t > 0.

The Lp-boundedness properties of the variation operator Vρ(Wt), ρ > 2, were
studied in [22, Theorem 3.3] and [9, Theorem 1.1]. We provide here the precise
statement.

Theorem 2.1 ([22, Theorem 3.3] and [9, Theorem 1.1]) If ρ > 2, the variation opera-
tor Vρ(Wt) is bounded from Lp(Rn) into itself, for every 1 < p < ∞, and from L1(Rn)

into L1,∞(Rn).

In [9] it was shown that the variation operator Vρ(Wt) is not bounded on L∞(Rn).
In fact, in [9, Section 5] , the authors give an example of a function f ∈ L∞(R) such
that Vρ(Wt)( f )(x) = ∞, a.e. x ∈ R, for every ρ > 2. As it is well known L∞(Rn) is
a subset of the space BMO(Rn) of bounded mean oscillation functions. In the next
result we take care of the behavior of Vρ(Wt) on BMO(Rn).

Theorem 2.2 Let ρ > 2. Then, if f ∈ BMO(Rn) and Vρ(Wt)( f )(x) < ∞, a.e. x ∈ R
n,

Vρ(Wt)( f ) ∈ BMO(Rn) and ‖Vρ(Wt)( f )‖BMO(Rn) ≤ C‖ f‖BMO(Rn).

For every � = 1, · · · , n, the Riesz transform R�( f ) of f ∈ Lp(Rn), 1 ≤ p < ∞, is
given by

R�( f )(x) = lim
ε→0+

Rε
�( f )(x), a.e. x ∈ R

n,

where

Rε
�( f )(x) = cn

∫

|x−y|>ε

x� − y�

|x − y|n+1 f (y)dy,

and cn = 	((n + 1)/2)/π(n+1)/2.
Regarding the variation operator for R�, � = 1, . . . , n, their Lp-boundedness was

investigated in [7] and [8]. We reproduce here their precise statement.

Theorem 2.3 ([7, Theorem 1.2] and [8, Theorem A and Corollary 1.4]) Let � =
1, . . . , n. If ρ > 2, the variation operator Vρ(Rε

�) is bounded from Lp(Rn) into itself,
for every 1 < p < ∞, and from L1(Rn) into L1,∞(Rn).

By using transference methods Gillespie and Torrea [17, Theorem B], obtained
dimension free Lp(Rn, |x|αdx) norm inequalities, for every 1 < p < ∞ and −1 < α <

p − 1, for variation operators of the Riesz transform R�, � = 1, . . . , n. Using the idea
developed in the proof of [17, Lemma 1.4], we are able to analyze the behavior of the
operators Vρ(Rε

�) on the space BMO(Rn).
First notice that for � = 1, . . . , n, f ∈ BMO(Rn) and ε > 0, the integral∫

|x−y|>ε
f (y)

y�−x�

|y−x|n+1 dy may be non-convergent. Indeed, for instance, the func-

tion f (x) = 1
log(x+2)

χ(0,∞)(x), x ∈ R, belongs to L∞(R) ⊂ BMO(R) but the limit
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limN→∞
∫
ε<|x−y|<N

f (y)

x−y dy does not exist, for any x ∈ R and ε > 0. However, it is

clear that, for every 0 < ε < η,
∫
ε<|x−y|<η

| f (y)|
|x−y|n dy < ∞ for any f ∈ L1

loc(R
n) and

x ∈ R
n. Therefore, in this situation, the operators Vρ(Rε

�) can be defined on
BMO(Rn) in the obvious way, that is, by replacing R

ε j

� ( f )(x) − R
ε j+1

� ( f )(x) by
cn

∫
ε j+1<|x−y|<ε j

f (y)
y�−x�

|y−x|n+1 dy, � = 1, · · · , n and j ∈ N. Let us mention that in [10, The-
orem B] it was proved that if f ∈ L∞(R) and ρ > 2, then either Vρ(Hε)( f )(x) = ∞,
a.e. x ∈ R, or Vρ(Hε)( f )(x) < ∞, a.e. x ∈ R, where H denotes the Riesz transform
on R, that is, the Hilbert transform. Moreover, as it can be seen in [10, Section 1], if
f (x) = sgn(x), x ∈ R, then Vρ(Hε)( f )(x) = ∞, a.e. x ∈ R.

We can say that the above continuous results have their antecedents in other
discrete results due to Jones et al. [21]. Suppose that {Im}m∈N denotes a nested
sequence of intervals in Z such that I1 = {0} and �Im = m, where �A means, as usual,
the cardinal of A ⊂ Z. For every m ∈ N, we define

Mm( f )(x) = 1
m

∑
j∈Im

f (x + j).

In [21, p. 915] the authors considered the variation operator Vρ(Mm), ρ > 2,
defined by

Vρ(Mm)( f )(x) = sup
{mk}

( ∞∑
i=1

|Mmi( f )(x) − Mmi+1( f )(x)|p

)1/p

.

They proved that, for every ρ > 2, the operator Vρ(Mm) is bounded from L∞(R)

into BMO(R) [21, Theorem 4.4]. Other oscillation operators and square sums type
operators associated with Mm are also considered in [21, Section 4]. Moreover,
they defined a square function that does not map L∞(R) into BMO(R) (see
[21, Remark 4.5]).

In the next result we establish the behavior of the variation operators Vρ(Rε
�) for

functions in BMO(Rn).

Theorem 2.4 Let �=1, . . . , n and ρ >2. Then, if f ∈ BMO(Rn) and Vρ(Rε
�)(f )(x)<∞,

a.e. x ∈ R
n, then Vρ(Rε

�)( f ) ∈ BMO(Rn) and ‖Vρ(Rε
�)( f )‖BMO(Rn) ≤ C‖ f‖BMO(Rn).

We turn now to the Schrödinger operator setting. Let us denote by {WL
t }t>0 the

heat semigroup associated with L . For every t > 0, they can be written in the integral
form

WL
t ( f )(x) =

∫

Rn
WL

t (x, y) f (y)dy, f ∈ L2(Rn).

Even though we do not have an explicit formula for the kernels WL
t (x, y), many

properties are known and can be encountered, for instance, in [14].
Lp-boundedness properties of the variation operator Vρ(WL

t ) were studied in [2].
We reproduce here the exact result.

Theorem 2.5 [2, Theorem 1.1]. Let V ∈ RHq where q > n/2 and let ρ > 2. Then, the
variation operator Vρ(WL

t ) is bounded from Lp(Rn) into itself, for every 1 < p < ∞,
and from L1(Rn) into L1,∞(Rn).
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Our next result shows the behavior of the variation operator Vρ(WL
t ) on

BMOL (Rn).

Theorem 2.6 Let V ∈ RHq where q > n/2 and let ρ > 2. Then, the variation operator
Vρ(WL

t ) is bounded from BMOL (Rn) into itself.

Let � = 1, . . . , n. The Riesz transform RL
� is defined by

RL
� ( f ) = ∂

∂x�

L −1/2 f, f ∈ C∞
c (Rn),

where C∞
c (Rn) denotes the space of smooth functions with compact support in

R
n. Here, the negative square root L −1/2 of L is defined in terms of the heat

semigroup by

L −1/2( f )(x) = 1√
π

∫ ∞

0
WL

t ( f )(x)t−1/2dt.

Fractional powers of the Schrödinger operator L have been studied in [3].
In [2, Proposition 1.1] it was proved that RL

� can be extended to Lp(Rn) as the
principal value operator

RL
� ( f )(x) = lim

ε→0+

∫

|x−y|>ε

RL
� (x, y) f (y)dy, a.e. x ∈ R

n, (1)

where

RL
� (x, y) = − 1

2π

∂

∂x�

∫

R

(−iτ)−1/2	(x, y, τ )dτ, x, y ∈ R
n, x �= y,

and, for every τ ∈ R, 	(x, y, τ ), x, y ∈ R
n, represents the fundamental solution for

the operator L + iτ , provided that

(i) 1 ≤ p < ∞, and V ∈ RHn;
(ii) 1 < p < p0, where 1

p0
= 1

q − 1
n , and V ∈ RHq, n/2 ≤ q < n.

Moreover, RL
� is bounded from Lp(Rn) into itself when 1 < p < ∞ and from

L1(Rn) into L1,∞(Rn), provided that V ∈ RHn. Also, RL
� is bounded from Lp(Rn) into

itself when 1 < p < p0 and V ∈ RHq, with n/2 ≤ q < n [27, Theorems 0.5 and 0.8].
The formal adjoint operator RL

� of RL
� defined by

RL
� ( f )(x) = lim

ε→0+

∫

|x−y|>ε

RL
� (y, x) f (y)dy, a.e. x ∈ R

n,

is bounded from Lp(Rn) into itself when p′
0 < p < ∞ and V ∈ RHq, with n/2 ≤ q <

n, where, as usual, p′
0 denotes the exponent conjugated to p0. In the case that V ∈

RHn, it is bounded in Lp(Rn), for 1 < p < ∞, and it also maps L1(Rn) into L1,∞(Rn).
By defining the truncated Riesz transforms RL ,ε

� , ε > 0, in the natural way, the
Lp-boundedness properties for the variation operator Vρ(RL ,ε

� ) were established
in [2].
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Theorem 2.7 [2, Theorem 1.2] Let � = 1, . . . , n. Assume that ρ > 2. Then, the varia-
tion operator Vρ(RL ,ε

� ) is bounded

(i) from Lp(Rn) into itself, when 1 < p < ∞, and from L1(Rn) into L1,∞(Rn),
provided that V ∈ RHn.

(ii) from Lp(Rn) into itself, when 1 < p < p0, where 1
p0

= 1
q − 1

n , and V ∈ RHq,
n/2 ≤ q < n.

If f ∈ BMOL (Rn) and � = 1, · · · , n, the limit in Eq. 1 exists for a.e. x ∈ R
n

(see [2, Proposition 1.1]). Thus, the Riesz transforms RL
� are defined by Eq. 1

in BMOL (Rn). As it was remarked earlier, the situation is quite different in the
classical case. In the next result we describe the behavior on BMOL (Rn) of the
variation operators associated with the Riesz transforms RL

� and their adjoints.

Theorem 2.8 Let ρ > 2, � = 1, . . . , n. If V ∈ RHq where q ≥ n, then the variation
operator Vρ(RL ,ε

� ) is bounded from BMOL (Rn) into itself. Also, the variation
operator Vρ(RL ,ε

� ) is bounded from BMOL (Rn) into itself, provided that V ∈ RHq

where q > n/2.

Note that there is a remarkable difference between the results in the classical and
in the Schrödinger settings. In the latter, the operators are defined in the whole
BMOL (Rn), while in the classical case it is necessary to impose an additional
"finiteness hypothesis". This fact was observed by the first time in [14].

In order to analyze operators in the Schrödinger context on BMOL (Rn) we shall
use some ideas developed in [14] and we will again exploit that the Schrödinger op-
erator L = −� + V, where V ∈ RHq, with q ≥ n/2, is actually a nice perturbation
of the Laplacian operator −�.

Throughout the proof of the results that we have just stated, the following
properties will play an important role.

According to [14, Proposition 5] it is possible to choose a sequence {xk}∞k=1 ⊂ R
n,

such that if Qk = B(xk, γ (xk)), k ∈ N, the following properties hold:

(i) ∪∞
k=1 Qk = R

n;
(ii) For every m ∈ N there exist C, β > 0 such that, for every k ∈ N,

#{l ∈ N : 2m Ql ∩ 2m Qk �= ∅} ≤ C2mβ .

Also, from [14, p. 346, after Lemma 9], for any operator H and f ∈ BMOL (Rn),
H f ∈ BMOL (Rn) provided that there exists a positive constant C such that, for
every k ∈ N,

(ik) 1
|Qk|

∫
Qk

|H( f )(x)|dx ≤ C|| f ||BMOL (Rn), and
(iik) H f ∈ BMO(Q∗

k) and ||H f ||BMO(Q∗
k) ≤ C|| f ||BMOL (Rn). Here BMO(Q∗

k) de-
notes the usual BMO-space over Q∗

k.

Moreover, we have that

‖H f‖BMOL (Rn) ≤ M‖ f‖BMOL (Rn),

where the constant M > 0 depends only on the constant C.
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Note that if the property (ik) above holds for every k ∈ N then, |H( f )(x)| < ∞ for
almost every x ∈ R

n. This fact is quite different from what happens in the classical
Euclidean case (see Theorem 2.2 and Theorem 2.4, and [1]).

3 Proof of Theorems 2.2 and 2.4

In this section we show our results about the behavior of the variation operator for
the classical heat semigroup and Riesz transforms on BMO(Rn).

3.1 Proof of Theorem 2.2

Let ρ > 2. Assume that f ∈ BMO(Rn) and Vρ(Wt)( f )(x) < ∞, a.e. x ∈ R
n. Let B =

B(x0, r0), with x0 ∈ R
n and r0 > 0. We write

f = ( f − fB)χB∗ + ( f − fB)χ(B∗)c + fB = f1 + f2 + f3.

Note that this type of decomposition allows us to see that Wt(| f |) < ∞, t > 0.
According to Theorem 2.1, we have

∫

Rn

∣∣Vρ(Wt)( f1)(x)
∣∣2

dx ≤ C
∫

B∗
| f (x) − fB|2 dx ≤ C|B|‖ f‖2

BMO(Rn). (2)

In particular this means that Vρ(Wt)( f1)(x) < ∞, a.e. x ∈ R
n. Moreover, since

{Wt}t>0 is Markovian, Vρ(Wt)( f3) = 0. Then, using the hypothesis, we may choose
x1 ∈ B(x0, r0) such that Vρ(Wt)( f2)(x1) < ∞.

If Eρ denotes the space introduced in Section 1, we can write

1
|B|

∫

B

∣∣Vρ(Wt)( f )(x) − Vρ(Wt)( f2)(x1)
∣∣ dx

= 1
|B|

∫

B

∣∣∣‖Wt( f )(x)‖Eρ
− ‖Wt( f2)(x1)‖Eρ

∣∣∣ dx

≤ 1
|B|

∫

B
‖Wt( f )(x) − Wt( f2)(x1)‖Eρ

dx

= 1
|B|

∫

B
‖Wt( f1)(x) + Wt( f2)(x) − Wt( f2)(x1)‖Eρ

dx

≤ 1
|B|

∫

B
‖Wt( f1)(x)‖Eρ

dx + 1
|B|

∫

B
‖Wt( f2)(x) − Wt( f2)(x1)‖Eρ

dx. (3)

Therefore, according to Eq. 2 we get

1
|B|

∫

B
‖Wt( f1)(x)‖Eρ

dx ≤
(

1
|B|

∫

B

∣∣Vρ(Wt)( f1)(x)
∣∣2

dx
) 1

2

≤ C‖ f‖BMO(Rn). (4)
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Also, Minkowski inequality and [9, p. 88] lead to

1
|B|

∫

B
‖Wt( f2)(x) − Wt( f2)(x1)‖Eρ

dx

= 1
|B|

∫

B

∥∥∥∥
∫

Rn
Wt(x − y) f2(y)dy −

∫

Rn
Wt(x1 − y) f2(y)dy

∥∥∥∥
Eρ

dx

≤ C
1

|B|
∫

B

∫

Rn
‖Wt(x − y) − Wt(x1 − y)‖Eρ

| f2(y)|dydx

≤ C
|B|

∫

B

∫

(B∗)c

|x − x1|
|x − y|n+1 | f (y) − fB|dydx

≤ C
r0

|B|
∫

B

∫

(B∗)c

1
(|y − x0| − |x0 − x|)n+1 | f (y) − fB|dydx

≤ C
r0

|B|
∫

B

∞∑
k=1

∫

2kr0≤|y−x0|<2k+1r0

1
(|y − x0| − |x0 − x|)n+1 | f (y) − fB|dydx

≤ C
∞∑

k=1

1
2k

1
(2kr0)n

∫

|y−x0|<2k+1r0

| f (y) − fB|dy ≤ C‖ f‖BMO(Rn). (5)

In the last inequality we have used the well known property (see [[30], VIII,
Proposition 3.2])

1
|2m B|

∫

2m B
| f (y) − fB|dy ≤ Cm‖ f‖BMO(Rn), m ∈ N.

From Eqs. 3, 4 and 5 we conclude that

1
|B|

∫

B

∣∣Vρ(Wt)( f )(x) − Vρ(Wt)( f2)(x1)
∣∣ dx ≤ C‖ f‖BMO(Rn).

Thus, we prove that Vρ(Wt)( f ) ∈ BMO(Rn).

Remark 3.1 After a careful reading of the proof of Theorem 2.2 we can deduce the
following result that will be useful in the proof of Theorem 2.6.

Proposition 3.1 Let ρ > 2 and A be a set of decreasing real sequences converging to
zero. Assume that

Vρ,A (Wt)( f )(x) = sup
{t j}∞j=1∈A

⎛
⎝

∞∑
j=1

|Wt j( f )(x) − Wt j+1( f )(x)|ρ
⎞
⎠

1/ρ

< ∞, a.e. x ∈ Q,

where Q is a ball in R
n. Suppose that f ∈ BMO(Rn) and B is a ball contained in Q.

If we def ine f2 = ( f − fB)χ(B∗)c and choose x1 ∈ B such that Vρ,A (Wt)( f2)(x1) < ∞,
then there is a constant C > 0 independent of A , f , and B such that

1
|B|

∫

B
‖Wt( f )(x) − Wt( f2)(x1)‖Eρ,A dx ≤ C‖ f‖BMO(Rn),
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where, for every function h : (0,∞) �→ C, ‖h‖Eρ,A means

‖h‖Eρ,A = sup
{t j}∞j=1∈A

⎛
⎝

∞∑
j=1

|h(t j) − h(t j+1)|ρ
⎞
⎠

1/ρ

.

3.2 Proof of Theorem 2.4

Let ρ > 2 and � = 1, . . . , n. Assume that f ∈ BMO(Rn) and that Vρ(Rε
�)( f )(x) <

∞, a.e. x ∈ R
n. To see that Vρ(Rε

�)( f ) ∈ BMO(Rn) we extend to R
n the technique

developed in the proof of [17, Lemma 1.4].
Let B = B(x0, r0) be a ball in R

n. We decompose f setting f = f1 + f2 +
f3, where f1 = ( f − fB)χB∗∗ , f2 = ( f − fB)χ(B∗∗)c and f3 = fB. According to
Theorem 2.3, we have

∫

Rn
|Vρ

(
Rε

�

)
( f1)(x)|2dx ≤ C

∫

B∗∗
| f (x) − fB|2dx ≤ C|B|‖ f‖2

BMO(Rn). (6)

Then, Vρ(Rε
�)( f1)(x) < ∞, a.e. x ∈ R

n. Moreover, Vρ(Rε
�)( f3) = 0. Then, we can

choose x1 ∈ B such that Vρ(Rε
�)( f2)(x1) < ∞.

If Eρ denotes the space defined in Section 1, by Eq. 6 we can write

1
|B|

∫

B

∣∣Vρ

(
Rε

�

)
( f )(x) − Vρ

(
Rε

�

)
( f2)(x1)

∣∣ dx

= 1
|B|

∫

B

∣∣‖Rε
�( f )(x)‖Eρ

− ‖Rε
�( f2)(x1)‖Eρ

∣∣ dx

≤ 1
|B|

∫

B
‖Rε

�( f )(x) − Rε
�( f2)(x1)‖Eρ

dx

≤ 1
|B|

∫

B
‖Rε

�( f1)(x)‖Eρ
dx + 1

|B|
∫

B
‖Rε

�( f2)(x) − Rε
�( f2)(x1)‖Eρ

dx

≤ C‖ f‖BMO(Rn) + 1
|B|

∫

B
‖Rε

�( f2)(x) − Rε
�( f2)(x1)‖Eρ

dx. (7)

Here, the expressions with ‖.‖Eρ
have the obvious meaning.

Denoting R�(z) = cn
z�

|z|n+1 , z = (z1, · · · , zn) ∈ R
n \ {0}, we have that

‖Rε
�( f2)(x) − Rε

�( f2)(x1)‖Eρ
≤ A1(x) + A2(x), x ∈ B, (8)

where, for every x ∈ B,

A1(x) =
∥∥∥∥
∫

|x−y|>ε

(R�(x − y) − R�(x1 − y)) f2(y)dy

∥∥∥∥
Eρ

and

A2(x) =
∥∥∥

∫

Rn

(
χ{ε<|x−y|}(y) − χ{ε<|x1−y|}(y)

)
R�(x1 − y) f2(y)dy

∥∥∥
Eρ

.
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By using Minkowski inequality and well known properties of the function R�(z)

we get

A1(x) ≤
∫

Rn
|R�(x − y) − R�(x1 − y)|| f (y) − fB|χ(B∗∗)c(y)dy

≤ C
∞∑

k=2

∫

2kr0≤|x0−y|≤2k+1r0

|x − x1|
|x − y|n+1 | f (y) − fB|dy

≤ C
∞∑

k=1

1
2k

1
(2kr0)n

∫

2k+1 B
| f (y) − fB|dy

≤ C‖ f‖BMO(Rn), x ∈ B. (9)

In order to analyze A2 we split, for every j ∈ N, the integral there in four terms as
follows. Let {ε j}∞j=1 be a real decreasing sequence that converges to zero. It follows
that

∫

Rn

∣∣χ{ε j+1<|x−y|<ε j}(y) − χ{ε j+1<|x1−y|<ε j}(y)
∣∣ |R�(x1 − y)|| f2(y)|dy

≤ C
(∫

Rn
χ{ε j+1<|x−y|<ε j+1+2r0}(y)χ{ε j+1<|x−y|<ε j}(y)

1
|x1 − y|n | f2(y)|dy

+
∫

Rn
χ{ε j≤|x1−y|<ε j+2r0}(y)χ{ε j+1<|x−y|<ε j}(y)

1
|x1 − y|n | f2(y)|dy

+
∫

Rn
χ{ε j+1<|x1−y|<ε j+1+2r0}(y)χ{ε j+1<|x1−y|<ε j}(y)

1
|x1 − y|n | f2(y)|dy

+
∫

Rn
χ{ε j<|x−y|<ε j+2r0}(y)χ{ε j+1<|x1−y|<ε j}(y)

1
|x1 − y|n | f2(y)|dy

)

= C
(

A j
2,1(x) + A j

2,2(x) + A j
2,3(x) + A j

2,4(x)
)

, x ∈ B and j ∈ N. (10)

Observe that if x ∈ B, then A j
2,m(x) = 0, when m = 1, 3, j ∈ N and r0 ≥ ε j+1. Also,

if x ∈ B, then A j
2,m(x) = 0, when m = 2, 4, j ∈ N and r0 ≥ ε j.

Since 2|x − y| ≥ |x1 − y| ≥ 1
2 |x − y|, y /∈ B∗∗ and x ∈ B, Hölder inequality leads,

for every j ∈ N, to

A j
2,1(x) ≤ C

(∫

Rn
χ{ε j+1<|x−y|<ε j}(y)

1
|x − y|ns

| f2(y)|sdy
) 1

s

v
1
s′
j+1, x ∈ B,

A j
2,2(x) ≤ C

(∫

Rn
χ{max{ε j+1,

1
2 ε j}<|x−y|<ε j}(y)

1
|x − y|ns

| f2(y)|sdy
) 1

s

v
1
s′
j , x ∈ B,

A j
2,3(x) ≤ C

(∫

Rn
χ{ε j+1<|x1−y|<ε j}(y)

1
|x1 − y|ns

| f2(y)|sdy
) 1

s

v
1
s′
j+1, x ∈ B,
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and

A j
2,4(x) ≤ C

(∫

Rn
χ{max{ε j+1,

1
2 ε j}<|x1−y|<ε j}(y)

1
|x1 − y|ns

| f2(y)|sdy
) 1

s

v
1
s′
j , x ∈ B.

Here 1 < s < ∞, s′ = s
s−1 , and v j = (ε j + 2r0)

n − εn
j , j ∈ N. Note that v j ≤ C

max{r0, ε j}n−1r0, j ∈ N, for a certain C > 0.
We define the set G = { j ∈ N : r0 < ε j}. We have that

A j
2,1(x) ≤ C

v
1/s′
j+1

ε
(n−1)/s′
j+1

(∫

Rn
χ{ε j+1<|x−y|<ε j}(y)

| f2(y)|s
|x − y|n+s−1 dy

)1/s

≤ Cr1/s′
0

(∫

Rn
χ{ε j+1<|x−y|<ε j}(y)

| f2(y)|s
|x − y|n+s−1 dy

)1/s

,

for every x ∈ B and j + 1 ∈ G . In a similar way we can see that

A j
2,2(x) ≤ Cr1/s′

0

(∫

Rn
χ{ε j+1<|x−y|<ε j}(y)

| f2(y)|s
|x − y|n+s−1 dy

)1/s

, x ∈ B and j ∈ G ,

A j
2,3(x) ≤ Cr1/s′

0

(∫

Rn
χ{ε j+1<|x1−y|<ε j}(y)

| f2(y)|s
|x1 − y|n+s−1 dy

)1/s

, x ∈ B and j + 1 ∈ G ,

and

A j
2,4(x) ≤ Cr1/s′

0

(∫

Rn
χ{ε j+1<|x1−y|<ε j}(y)

| f2(y)|s
|x1 − y|n+s−1 dy

)1/s

, x ∈ B and j ∈ G .

Hence, we get

⎛
⎝

∞∑
j=1

(
A j

2,1(x) + A j
2,2(x)

)ρ

⎞
⎠

1/ρ

≤ C

⎛
⎝ ∑

j+1∈G

|A j
2,1(x)|ρ +

∑
j∈G

|A j
2,2(x)|ρ

⎞
⎠

1/ρ

≤ C

⎛
⎝∑

j∈N

(∫

Rn
χ{ε j+1<|x−y|<ε j}(y)

| f2(y)|s
|x − y|n+s−1 dy

)ρ/s

rρ/s′
0

⎞
⎠

1/ρ

≤ C
(∫

Rn

| f2(y)|s
|x − y|n+s−1 dy

)1/s

r1/s′
0

≤ C

⎛
⎝

( ∞∑
k=1

1
(2kr0)n

∫

|x0−y|<2k+1r0

| f (y) − fB|sdy
1

2k(s−1)

)1/s

≤ C|| f ||BMO(Rn), x ∈ B. (11)
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In a similar way we get

⎛
⎝

∞∑
j=1

|A j
2,3(x) + A j

2,4(x)|ρ
⎞
⎠

1/ρ

≤ C|| f ||BMO(Rn), x ∈ B. (12)

From Eqs. 10, 11 and 12 we infer that

A2(x) ≤ C|| f ||BMO(Rn), x ∈ B. (13)

Altogether Eqs. 7, 8, 9 and 13 imply that

1
|B|

∫

B
|Vρ

(
Rε

�

)
( f )(x) − Vρ(Rε

�)( f2)(x1)|dx ≤ C|| f ||BMO(Rn). (14)

Thus, we prove that Vρ(Rε
�)( f ) ∈ BMO(Rn).

By proceeding as in the above proof we can establish the following result that will
be useful in the sequel.

Proposition 3.2 Let a > 0 and � = 1, ..., n. We def ine, for every ε > 0 and f ∈
L1

loc(R
n),

Rε
�,a( f )(x) =

∫

ε<|x−y|<a

x� − y�

|x − y|n+1 f (y)dy.

Then, if ρ > 2, Vρ(Rε
�,a)( f ) ∈ BMO(Rn), provided that f ∈ BMO(Rn).

Note that, Vρ(Rε
�,a)( f )(x) < ∞, a.e. x ∈ R

n, for every a > 0, f ∈ BMO(Rn) and
� = 1, . . . , n. Indeed, let a > 0, f ∈ BMO(Rn) and � = 1, . . . , n. Suppose that m ∈
N. Since Vρ(Rε

�,a)( f ) ≤ Vρ(Rε
�)( f ) and f ∈ L2

loc(R
n), according to Theorem 2.3, we

have that
∫

B(0,m)

Vρ

(
Rε

�,a

)
( f )(x)dx =

∫

B(0,m)

Vρ

(
Rε

�,a

)
( fχB(0,m+a))(x)dx

≤
∫

B(0,m)

Vρ

(
Rε

�

)
( fχB(0,m+a))(x)dx

≤ Cmn/2
( ∫

B(0,m)

(
Vρ

(
Rε

�

) (
fχB(0,m+a)

)
(x)

)2
dx

)1/2

≤ Cmn/2
( ∫

B(0,m+a)

| f (x)|2dx
)1/2

< ∞.

Hence, Vρ(Rε
�,a)( f )(x) < ∞, a.e. x ∈ B(0, m).

4 Proof of Theorems 2.6 and 2.8

In this section we establish the boundedness in BMOL (Rn) of the variation opera-
tors for the heat semigroup and Riesz transforms in the Schrödinger setting.
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4.1 Proof of Theorem 2.6

Let ρ > 2. Assume that f ∈ BMOL (Rn). Our goal is to show that Vρ(WL
t )( f )

satisfies the properties (ik) and (iik), for every k ∈ N.
Fix k ∈ N. We now prove (ik), that is, there exists C > 0, independent of k,

such that

1
|Qk|

∫

Qk

|Vρ

(
WL

t

)
( f )(x)|dx ≤ C‖ f‖BMOL (Rn).

We decompose WL
t ( f ) as follows

WL
t ( f )(x) = HL

k,t ( f )(x) + LL
k,t( f )(x), x ∈ Qk and t > 0,

where

HL
k,t ( f )(x) = WL

t ( f )(x)χ{t>γ (xk)2}(t), x ∈ Qk and t > 0.

It is clear that

Vρ

(
WL

t

)
( f )(x) ≤ Vρ

(
HL

k,t

)
( f )(x) + Vρ

(
LL

k,t

)
( f )(x), x ∈ Qk. (15)

Let {t j}∞j=1 be a real decreasing sequence that converges to zero. Suppose that jk ∈
N is such that t jk+1 ≤ γ (xk)

2 < t jk . We can write

⎛
⎝

∞∑
j=1

|HL
k,t j

( f )(x) − HL
k,t j+1

( f )(x)|ρ
⎞
⎠

1/ρ

≤
jk−1∑
j=1

|WL
t j

( f )(x) − WL
t j+1

( f )(x)| + |WL
t jk

( f )(x)|

≤
jk−1∑
j=1

∣∣∣
∫ t j

t j+1

∂

∂t
WL

t ( f )(x)dt
∣∣∣ + |WL

t jk
( f )(x)|

≤
∫ ∞

γ (xk)2

∫

Rn

∣∣∣ ∂

∂t
WL

t (x, y)

∣∣∣| f (y)|dydt + sup
t≥γ (xk)2

|WL
t ( f )(x)|

= �1,k( f )(x) + �2,k( f )(x), x ∈ Qk.

Hence

Vρ

(
HL

k,t

)
( f )(x) ≤ �1,k( f )(x) + �2,k( f )(x), x ∈ Qk. (16)

According to [14, (5.4)], we get

1
|Qk|

∫

Qk

�2,k( f )(x)dx ≤ C‖ f‖BMOL (Rn). (17)

By [14, (2.7)] we have that

∣∣∣ ∂

∂t
WL

t (x, y)

∣∣∣ ≤ C
e−c|x−y|2/t

t1+n/2

(
1 + t

γ (x)2

)−1
, x, y ∈ R

n and t > 0.
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Hence, since γ (x) ∼ γ (xk), when x ∈ Qk, we obtain

�1,k( f )(x) ≤ C
∫ ∞

γ (xk)2

∫

Rn

| f (y)|
t1+n/2 e−c|x−y|2/t

(
1 + t

γ (xk)2

)−1

dydt

≤ C
∫ ∞

γ (xk)2

1
t1+n/2

(
1 + t

γ (xk)2

)−1
(∫

|x−y|<√
t
+

∞∑
m=0

∫
√

t2m≤|x−y|<√
t2m+1

)

× | f (y)|
(

1 + |x − y|√
t

)−1−n

dydt

≤ C
∫ ∞

γ (xk)2

1
t1+n/2

(
1 + t

γ (xk)2

)−1 ∞∑
m=0

1
2m(1+n)

∫

|x−y|<2m
√

t
| f (y)|dydt,

x ∈ Qk.

Moreover, by [14, Lemma 2], since | f | ∈ BMOL (Rn), there exists C > 0 (which
does not depend on f ) such that, for every B = B(x, r), with x ∈ R

n and r < γ (x),

1
|B(x, 2r)|

∫

B(x,2r)
| f (y)|dy ≤ C

(
1 + log

γ (x)

r

)
|| f ||BMOL (Rn).

Then, it follows that

∞∑
m=0

1
2m(1+n)tn/2

∫

|x−y|<2m
√

t
| f (y)|dy

≤
∑

m∈N, 2m
√

t<γ (x)

1
2m(1+n)tn/2

∫

|x−y|<2m
√

t
| f (y)|dy

+
∑

m∈N, 2m
√

t≥γ (x)

1
2m(1+n)tn/2

∫

|x−y|<2m
√

t
| f (y)|dy

≤ C‖ f‖BMOL (Rn)

⎛
⎝ ∑

m∈N, 2m
√

t<γ (x)

1
2m

(
1 + log

γ (x)

2m
√

t

)
+

∑
m∈N

1
2m

⎞
⎠

≤ C

(
1 + log

√
t

γ (xk)

)
‖ f‖BMOL (Rn), t ≥ γ (xk)

2 and x ∈ Qk.

Then,

�1,k( f )(x) ≤ C‖ f‖BMOL (Rn)

∫ ∞

γ (xk)2

(
1 + t

γ (xk)2

)−1
(

1 + log
√

t
γ (xk)

)
dt
t

≤ C‖ f‖BMOL (Rn)

∫ ∞

1
(1 + log(u))

du
u(1 + u)

≤ C‖ f‖BMOL (Rn), x ∈ Qk.
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Hence, we obtain

1
|Qk|

∫

Qk

�1,k( f )(x)dx ≤ C‖ f‖BMOL (Rn). (18)

By combining Eqs. 16, 17 and 18 we get

1
|Qk|

∫

Qk

Vρ

(
HL

k,t

)
( f )(x)dx ≤ C‖ f‖BMOL (Rn). (19)

Here C > 0 does not depend on k.
We now decompose f as follows

f = fχQ∗
k
+ fχ(Q∗

k)c = f1 + f2.

It is clear that

Vρ

(
LL

k,t

)
( f ) ≤ Vρ

(
LL

k,t

)
( f1) + Vρ

(
LL

k,t

)
( f2). (20)

By proceeding as above we get

Vρ

(
LL

k,t

)
( f1)(x) ≤ sup

{t j}∞j=1↓0

⎛
⎝ ∑

t j≤γ (xk)2

|WL
t j

( f1)(x) − WL
t j+1

( f1)(x)|ρ
⎞
⎠

1/ρ

+ sup
0<t≤γ (xk)2

|WL
t ( f1)(x)|

≤ Vρ

(
WL

t

)
( f1)(x) + WL

∗ ( f1)(x), x ∈ Qk.

Since WL∗ and Vρ(WL
t ) are bounded operators from L2(Rn) into itself (see

Theorem 2.5) it follows that

1
|Qk|

∫

Qk

Vρ

(
LL

k,t

)
( f1)(x)dx ≤

(
1

|Qk|
∫

Rn

(
Vρ

(
LL

k,t

)
( f1)(x)

)2
dx

)1/2

≤ C

(
1

|Qk|
∫

Q∗
k

| f (x)|2dx

)1/2

.

Then, from [14, Corollary 3], we deduce that

1
|Qk|

∫

Qk

Vρ

(
LL

k,t

)
( f1)(x)dx ≤ C‖ f‖BMOL (Rn). (21)

On the other hand, we can write

Vρ

(
LL

k,t

)
( f2)(x) ≤

∫ γ (xk)2

0

∫

(Q∗
k)c

∣∣∣ ∂

∂t
WL

t (x, y)

∣∣∣| f (y)|dydt + sup
0<t≤γ (xk)2

|WL
t ( f2)(x)|

= �3,k( f )(x) + �4,k( f )(x), x ∈ Qk. (22)
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According to [14, (2.7)], for certain C, c > 0, we get

�3,k( f )(x) ≤
∫ γ (xk)2

0

∫

|x−y|>γ (xk)

∣∣∣∣
∂

∂t
WL

t (x, y)

∣∣∣∣ | f (y)|dydt

≤ C
∫ γ (xk)2

0

∫

|x−y|>γ (xk)

| f (y)|e−c|x−y|2/t

tn/2+1 dydt

≤ C
∫ γ (xk)2

0

1
tn/2+1

∞∑
j=0

∫

2 jγ (xk)<|x−y|≤2 j+1γ (xk)

| f (y)|
(

t
|x − y|2

)(n+1)/2

dydt

≤ C
∫ γ (xk)2

0

1√
t

∞∑
j=0

1
(2 jγ (xk))n+1

∫

|x−y|≤2 j+1γ (xk)

| f (y)|dydt

≤ C
∞∑
j=0

1
2 j(2 jγ (xk))n

∫

|xk−y|≤2 j+2γ (xk)

| f (y)|dy

≤ ˙C|| f ||BMOL (Rn), x ∈ Qk. (23)

Then, by Eq. 23

1
|Qk|

∫

Qk

�3,k( f )(x)dx ≤ C|| f ||BMOL (Rn).

Moreover, since | f | ∈ BMOL (Rn), [14, Theorem 6] implies that

1
|Qk|

∫

Qk

�4,k( f )(x)dx ≤ 1
|Qk|

∫

Qk

WL
∗ (| f |)(x)dx ≤ C|| f ||BMOL (Rn).

Hence, we conclude that

1
|Qk|

∫

Qk

Vρ

(
LL

k,t

)
( f2)(x)dx ≤ C|| f ||BMOL (Rn). (24)

By combining Eqs. 20, 21 and 24 we deduce

1
|Qk|

∫

Qk

Vρ

(
LL

k,t

)
( f )(x)dx ≤ C|| f ||BMOL (Rn). (25)

Finally, Eqs. 15, 19 and 25 imply that

1
|Qk|

∫

Qk

Vρ

(
WL

t

)
( f )(x)dx ≤ C|| f ||BMOL (Rn).

Note that C > 0 does not depend on k.
Thus the property (ik) is established.
Now, we are going to prove assertion (iik). Assume that B = B(x0, r0) ⊂ Q∗

k, with
x0 ∈ R

n and r0 > 0. Our purpose is to check that

1
|B|

∫

B

∣∣∣Vρ

(
WL

t

)
( f )(x) − cB

∣∣∣dx ≤ C|| f ||BMOL (Rn), (26)
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for a certain constant cB and with C > 0 independent of k and B. To this end we
decompose WL

t ( f ) as follows

WL
t ( f )(x) = HL

k,t ( f )(x) +
(

LL
k,t( f ) − Lk,t( f )

)
(x) + Lk,t( f )(x), x ∈ Q∗

k and t > 0,

(27)
where HL

k,t and LL
k,t are defined as above, and

Lk,t( f )(x) = Wt( f )(x)χ{0<t≤γ (xk)2}(t), x ∈ Q∗
k, t > 0.

Suppose that cB = ‖hB‖Eρ
, where hB : (0,∞) �→ C is a function that will be specified

later. Then, we can write

|Vρ

(
WL

t

)
( f )(x) − cB| = |‖WL

t ( f )(x)‖Eρ
− ‖hB‖Eρ

|
≤ ‖WL

t ( f )(x) − hB(t)‖Eρ

≤ ‖HL
k,t ( f )(x)‖Eρ

+ ‖LL
k,t( f )(x)

− Lk,t( f )(x)‖Eρ
+ ‖Lk,t( f )(x) − hB(t)‖Eρ

.

Therefore, Eq. 26 will be proved if we are able to show the following three
inequalities:

(A1) 1
|B|

∫
B ‖HL

k,t ( f )(x)‖Eρ
dx ≤ C|| f ||BMOL (Rn);

(A2) 1
|B|

∫
B ‖LL

k,t( f )(x) − Lk,t( f )(x)‖Eρ
dx ≤ C|| f ||BMOL (Rn); and

(A3) 1
|B|

∫
B ‖Lk,t( f )(x) − hB(t)‖Eρ

dx ≤ C|| f ||BMOL (Rn),

for a certain function hB : (0,∞) �→ C, and a constant C > 0 independent of k
and B.

According to (16) we have

Vρ

(
HL

k,t

)
( f ) ≤ �1,k( f ) + �2,k( f ).

By proceeding as above we get

|�1,k( f )(x)| ≤ C|| f ||BMOL (Rn), x ∈ Q∗
k. (28)

Moreover, by [14, (5.4)],

|�2,k( f )(x)| ≤ C|| f ||BMOL (Rn), x ∈ Q∗
k. (29)

Then, from Eqs. 28 and 29, (A1) holds.
To establish (A2) we firstly observe that

Vρ

(
LL

k,t − Lk,t

)
( f )(x) ≤

∫ γ (xk)2

0

∫

Rn

∣∣∣ ∂

∂t
(WL

t (x, y) − Wt(x − y))

∣∣∣| f (y)|dydt

+ sup
0<t≤γ (xk)2

|WL
t ( f )(x) − Wt( f )(x)|

= �5,k( f )(x) + �6,k( f )(x), x ∈ Q∗
k.

By [14, (5.5)] we get

�6,k( f )(x) ≤ C|| f ||BMOL (Rn), x ∈ Q∗
k. (30)
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The perturbation formula ([14, (5.25)]) allows us to write

∂

∂t

(
Wt(x − y) − WL

t (x, y)
)

=
∫

Rn
V(z)WL

t/2(x, z)Wt/2(z − y)dz

+
∫ t/2

0

∫

Rn
V(z)

∂

∂t
Wt−s(x − z)WL

s (z, y)dzds

+
∫ t

t/2

∫

Rn
V(z)Wt−s(x − z)

∂

∂s
WL

s (z, y)dzds

=
3∑

j=1

K j(x, y, t), x, y ∈ R
n and t > 0.

According to [14, (2.2) and (2.8)], we get

|K1(x, y, t)| ≤ Ct−n
∫

Rn
V(z)e− |x−z|2+|z−y|2

4t dz

≤ Ct−n/2e− |x−y|2
16t

∫

Rn
V(z)t−n/2e− |x−z|2

8t dz

≤ Cγ (x)−δt−1+(δ−n)/2e− |x−y|2
16t , x, y ∈ Q∗

k and 0 < t < γ (xk)
2.

Here and in the sequel δ represents a positive constant.
Moreover, by using [14, (2.2) and (2.8)], since t/2 < t − s < t when 0 < s < t/2, it

follows that

|K2(x, y, t)| ≤ C
∫ t/2

0

∫

Rn
V(z)

1
(t − s)1+n/2 e−c |x−z|2

t−s
1

sn/2 e−c |z−y|2
s dzds

≤ C
∫ t/2

0

∫

Rn
V(z)

1
t1+n/2 e−c |x−z|2

t
1

sn/2 e−c |z−y|2
s dzds

≤ C
1

t1+n/2 e−c |x−y|2
t

∫ t/2

0

∫

Rn
V(z)

1
sn/2 e−c |z−y|2

s dzds

≤ C
1

t1+n/2 e−c |x−y|2
t

∫ t/2

0

s−1+δ/2

γ (y)δ
ds

≤ Cγ (y)−δt−1+(δ−n)/2e−c |x−y|2
t ,

x ∈ Q∗
k, |y − x| ≤ γ (xk) and 0 < t < γ (xk)

2.

By proceeding in a similar way we obtain

|K3(x, y, t)|
≤ Cγ (y)−δt−1+(δ−n)/2e−c |x−y|2

t , x ∈ Q∗
k, |x − y| ≤ γ (xk) and 0 < t < γ (xk)

2.
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Hence, since γ (x) ∼ γ (y) ∼ γ (xk), provided that |x − y| ≤ γ (xk) and x ∈ Q∗
k, we

conclude that

∣∣∣ ∂

∂t

(
WL

t (x, y) − Wt(x − y)
)∣∣∣

≤ Cγ (xk)
−δt−1+(δ−n)/2e−c |x−y|2

t , x ∈ Q∗
k, |x − y| ≤ γ (xk) and 0 < t < γ (xk)

2.

Therefore for some constants C, c > 0 we get

�5,k( f )(x) ≤ C
∫ γ (xk)2

0

tδ/2−1

γ (xk)δ

∫

Rn

e−c|x−y|2/t

tn/2 | f (y)|dydt

≤ C
∫ γ (xk)2

0

tδ/2−1

γ (xk)δ

∞∑
j=0

e−c22 j

tn/2

∫

|x−y|≤2 j
√

t
| f (y)|dydt

≤ C
∫ γ (xk)2

0

tδ/2−1

γ (xk)δ

∞∑
j=0

2 jne−c22 j

(2 j
√

t)n

∫

|x−y|≤2 j
√

t
| f (y)|dydt, x ∈ Q∗

k.

Moreover, by [14, Lemma 2], since γ (x) ∼ γ (xk), x ∈ Q∗
k,

∞∑
j=0

2 jne−c22 j

(2 j
√

t)n

∫

|x−y|≤2 j
√

t
| f (y)|dy

=
∑

j∈N, 2 j
√

t≤γ (x)

2 jne−c22 j

(2 j
√

t)n

∫

|x−y|≤2 j
√

t
| f (y)|dy

+
∑

j∈N, 2 j
√

t>γ (x)

2 jne−c22 j

(2 j
√

t)n

∫

|x−y|≤2 j
√

t
| f (y)|dy

≤ C|| f ||BMOL (Rn)

⎛
⎝ ∑

j∈N, 2 j
√

t≤γ (x)

2 jne−c22 j

(
1 + log

γ (x)

2 j
√

t

)
+

∑

j∈N, 2 j
√

t>γ (x)

2 jne−c22 j

⎞
⎠

≤ C|| f ||BMOL (Rn)

(
γ (xk)√

t

)ε

, x ∈ Q∗
k and 0 < t < γ (xk)

2,

where ε ∈ (0, δ).
With this estimate we have that

�5,k( f )(x) ≤ C|| f ||BMOL (Rn)

∫ γ (xk)2

0

tδ/2−1−ε/2

γ (xk)δ−ε
dt ≤ C|| f ||BMOL (Rn), x ∈ Q∗

k. (31)

Putting together Eqs. 30 and 31, we infer (A2).
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Next we notice that by Eq. 27 it follows that

Vρ(Lk,t)( f ) ≤ Vρ

(
WL

t

)
( f ) + Vρ

(
HL

k,t

)
( f ) + Vρ

(
LL

k,t − Lk,t

)
( f ).

By proceeding as in the proof of (ik) we get

∫

Q∗
k

Vρ

(
WL

t

)
( f )(x)dx < ∞.

Then, Vρ(WL
t )( f )(x) < ∞, a.e. x ∈ Q∗

k.
From Eqs. 30 and 31 we deduce Vρ(LL

k,t − Lk,t)( f )(x) < ∞, a.e. x ∈ Q∗
k. Also, by

Eqs. 28 and 29, Vρ(HL
k,t )( f )(x) < ∞, a.e. x ∈ Q∗

k.
Hence, Vρ(Lk,t)( f )(x) < ∞, a.e. x ∈ Q∗

k. We consider the following decomposi-
tion of f

f = ( f − fB)χB∗ + ( f − fB)χ(B∗)c + fB = f1 + f2 + f3.

Note that

Vρ(Lk,t)( f1)(x) ≤ C

⎛
⎜⎝ sup

{t j}∞j=1↓0, t j≤γ (xk)2

⎛
⎝

∞∑
j=1

|Wt j( f1)(x) − Wt j+1( f1)(x)|ρ
⎞
⎠

1/ρ

+ sup
0<t≤γ (xk)2

|Wt( f1)(x)|
⎞
⎟⎠

≤ C(Vρ(Wt)( f1)(x) + W∗( f1)(x)),

where W∗ represents the maximal operator defined by W∗(g) = supt>0 |Wt(g)|.
Then, since W∗ and Vρ(Wt) are bounded operators from L2(Rn) into itself (see

Theorem 2.1), we obtain

∫

Q∗
k

|Vρ(Lk,t)( f1)(x)|dx ≤ C
(

|Qk|
∫

B∗
| f (x) − fB|2dx

)1/2

≤ C(|B||Qk|)1/2‖ f‖BMOL (Rn) < ∞.

Hence Vρ(Lk,t)( f1)(x) < ∞, a.e. x ∈ Q∗
k.

Also, since
∫

Rn Wt(x, y)dy = 1, x ∈ R
n and t > 0, we get

Vρ(Lk,t)( f3)(x) = | fB| < ∞, x ∈ R
n.

Therefore, we deduce that Vρ(Lk,t)( f2)(x) < ∞, a.e. x ∈ Q∗
k.
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Choosing z1 ∈ B such that Vρ(Lk,t)( f2)(z1) < ∞, we define hB(t) = Lk,t( f2)(z1),
t ∈ (0,∞).

Suppose that {t j}∞j=1 is a real decreasing sequence that converges to zero and let
jk ∈ N be such that t jk ≤ γ (xk)

2 and t jk−1 > γ (xk)
2. We can write

⎛
⎝

∞∑
j=1

∣∣∣Lk,t j( f )(x) − Lk,t j( f2)(z1) − (Lk,t j+1( f )(x) − Lk,t j+1( f2)(z1))

∣∣∣
ρ

⎞
⎠

1/ρ

=
⎛
⎝

∞∑
j= jk

∣∣∣Wt j( f )(x) − Wt j( f2)(z1) − (Wt j+1( f )(x) − Wt j+1( f2)(z1))

∣∣∣
ρ

+
∣∣∣Wt jk

( f )(x) − Wt jk
( f2)(z1)

∣∣∣
ρ

⎞
⎠

1/ρ

≤ C

⎛
⎜⎝

⎛
⎝

∞∑
j= jk

∣∣∣Wt j( f )(x) − Wt j( f2)(z1) − (Wt j+1( f )(x) − Wt j+1( f2)(z1))

∣∣∣
ρ

⎞
⎠

1/ρ

+ sup
0<t≤γ (xk)2

|Wt( f )(x) − Wt( f2)(z1)|
⎞
⎟⎠ , x ∈ Q∗

k,

and then

‖Lk,t( f )(x) − hB(t)‖Eρ

≤ C

⎛
⎝ sup

{t j}∞j=1↓0, 0<t j≤γ (xk)2

⎛
⎝

∞∑
j=1

∣∣∣Wt j( f )(x) − Wt j( f2)(z1)

− (Wt j+1( f )(x) − Wt j+1( f2)(z1))

∣∣∣
ρ

⎞
⎠

1/ρ

+ sup
0<t≤γ (xk)2

|Wt( f )(x) − Wt( f2)(z1)|
⎞
⎟⎠ , x ∈ Q∗

k.

By taking into account Proposition 3.1 with A = {{t j}∞j=1 ⊂ (0,∞)N : {t j}∞j=1 ↓
0, 0 < t j ≤ γ (xk)

2}, we obtain

1
|B|

∫

B
sup

{t j}∞j=1↓0, 0<t j≤γ (xk)2

⎛
⎝

∞∑
j=1

∣∣∣Wt j( f )(x) − Wt j( f2)(z1)

− (Wt j+1( f )(x) − Wt j+1( f2)(z1))

∣∣∣
ρ

⎞
⎠

1/ρ

dx

≤ C‖ f‖BMOL (Rn). (32)
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Also, according to [14, pp. 348–349] it follows that

1
|B|

∫

B
sup

0<t≤γ (xk)2
|Wt( f )(x) − Wt( f2)(z1)|dx ≤ C‖ f‖BMOL (Rn). (33)

From Eqs. 32 and 33 we deduce (A3).
Note that the constant C > 0 does not depend on k and B in all the occurrences.
Thus the proof of (iik) is finished.

4.2 Proof of Theorem 2.8

Let ρ > 2. We may assume without lost of generality that V ∈ RHq with q > n. In
fact, from [16], reverse Hölder inequalities are open, i.e., if g ∈ RHs, then it is also
true that g ∈ RHs+ε for some ε > 0.

In order to prove that the variation operator Vρ(RL ,ε
� ) is bounded from

BMOL (Rn) into itself, we consider, for every k ∈ N, the local operators de-
fined as

RL
�,k( f )(x) = PV

∫

|x−y|<γ (xk)

RL
� (x, y) f (y)dy,

and

R�,k( f )(x) = PV
∫

|x−y|<γ (xk)

R�(x − y) f (y)dy.

Note that |y − xk| ≤ 3γ (xk) when x ∈ Q∗
k and |x − y| < γ (xk). Then, if f ∈

BMOL (Rn),

R�,k( f )(x) = lim
ε→0+

∫

ε<|x−y|<γ (xk)

R�(x − y) f (y)χ3Qk(y)dy, a.e. x ∈ Q∗
k,

that is, this limit exists for almost all x ∈ Q∗
k when f ∈ BMOL (Rn). Also, RL

�,k( f )(x)

is defined for almost every x ∈ Q∗
k when f ∈ BMOL (Rn) (see [2, Proposition 1.1]).

Let f ∈ BMOL (Rn). We are going to analyze the properties (ik) and (iik) when
H = Vρ(RL ,ε

� ). Let k ∈ N. We can write

Vρ

(
RL ,ε

�

)
( f ) =

(
Vρ

(
RL ,ε

�

)
( f ) − Vρ

(
RL ,ε

�,k

)
( f )

)

+
(

Vρ

(
RL ,ε

�,k

)
( f ) − Vρ

(
Rε

�,k

)
( f )

)
+ Vρ

(
Rε

�,k

)
( f )

= F1,k + F2,k + Vρ

(
Rε

�,k

)
( f ).
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For x ∈ Q∗
k we have

|F1,k(x)| ≤ Vρ

(
RL ,ε

� − RL ,ε

�,k

)
( f )(x)

= sup
{ε j}∞j=1↓0

⎛
⎝

∞∑
j=1

∣∣∣∣∣
∫

ε j+1<|x−y|<ε j

RL
� (x, y) f (y)dy

−
∫

ε j+1<|x−y|<ε j, |x−y|<γ (xk)

RL
� (x, y) f (y)dy

∣∣∣∣∣
ρ)1/ρ

= sup
{ε j}∞j=1↓0

⎛
⎝

∞∑
j=1

∣∣∣∣∣
∫

ε j+1<|x−y|<ε j,|x−y|≥γ (xk)

RL
� (x, y) f (y)dy

∣∣∣∣∣
ρ
⎞
⎠

1/ρ

≤
∫

|x−y|>γ (xk)

|RL
� (x, y)|| f (y)|dy.

Then, according to [4, Lemma 3, (a)], since γ (xk) ≥ Mγ (x), x ∈ Q∗
k, for a certain

0 < M < 1 that does not depend on k ∈ N, it follows that

|F1,k(x)| ≤ C
∫

|x−y|>Mγ (x)

1
|x − y|n

1
1 + |x − y|/γ (x)

| f (y)|dy

≤ C
∞∑
j=0

∫

M2 jγ (x)<|x−y|<M2 j+1γ (x)

1
|x − y|n

1
1 + |x − y|/γ (x)

| f (y)|dy

≤ C
∞∑
j=0

1
2 j

1
(2 jγ (x))n

∫

|x−y|<M2 j+1γ (x)

| f (y)|dy ≤ C|| f ||BMOL (Rn), x ∈ Q∗
k.

Also, by using [4, Lemma 3, (b)], we obtain

|F2,k(x)| ≤ Vρ

(
RL ,ε

�,k − Rε
�,k

)
( f )(x)

= sup
{ε j}∞j=1↓0

⎛
⎝

∞∑
j=1

∣∣∣∣∣
∫

ε j+1<|x−y|<ε j, |x−y|<γ (xk)

(RL
� (x, y) − R�(x − y)) f (y)dy

∣∣∣∣∣
ρ
⎞
⎠

1/ρ

≤
∫

|x−y|<γ (xk)

|RL
� (x, y) − R�(x − y)|| f (y)|dy

≤ C
∫

|x−y|<γ (xk)

1
|x − y|n

( |x − y|
γ (x)

)2−n/q

| f (y)|dy, x ∈ Q∗
k.

Then, using Hölder inequality and that γ (x) ∼ γ (xk), x ∈ Q∗
k, we arrive to

|F2,k(x)| ≤ C
(∫

|x−y|<γ (xk)

|x−y|(2−n/q−n)rdy
)1/r 1

γ (xk)2−n/q

(∫

|x−y|<γ (xk)

| f (y)|r′
dy

)1/r′

≤ C
(

1
γ (xk)n

∫

|x−y|<γ (xk)

| f (y)|r′
dy

)1/r′

≤ C|| f ||BMOL (Rn), x ∈ Q∗
k.

Here, 1 < r < n/(n − 2 + n/q).
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Since, for i = 1, 2, Fi,k ∈ L∞(Q∗
k) and ||Fi,k||L∞(Q∗

k) ≤ C|| f ||BMOL (Rn), where C
does not depend on k ∈ N, in order to see that the properties (ik) and (iik) hold for
H = Vρ(RL ,ε

� ) it is sufficient to establish those properties for H = Vρ(Rε
�,k).

Fix again k ∈ N. Then

Vρ

(
Rε

�,k

)
( f )(x) = sup

{ε j}∞j=1↓0

⎛
⎝

∞∑
j=1

∣∣∣∣∣
∫

ε j+1<|x−y|<ε j,|x−y|<γ (xk)

R�(x − y) f (y)dy

∣∣∣∣∣
ρ
⎞
⎠

1/ρ

= sup
{ε j}∞j=1↓0

⎛
⎝

∞∑
j=1

∣∣∣∣∣
∫

ε j+1<|x−y|<ε j,|x−y|<γ (xk)

R�(x − y) f (y)χQ∗∗
k
(y)dy

∣∣∣∣∣
ρ
⎞
⎠

1/ρ

≤ Vρ

(
Rε

�,k

) (
fχQ∗∗

k

)
(x), x ∈ Q∗

k.

Hence, according to Theorem 2.3, we have

1
|Qk|

∫

Qk

|Vρ

(
Rε

�,k

)
( f )(x)|dx ≤

(
1

|Qk|
∫

Qk

|Vρ(Rε
�,k)( fχQ∗∗

k
)(x)|2dx

)1/2

≤ C

(
1

|Qk|
∫

Q∗∗
k

| f (x)|2dx

)1/2

≤ C|| f ||BMOL (Rn). (34)

Let now x0 ∈ R
n and r0 > 0 such that B = B(x0, r0) ⊂ Q∗

k. Then, by using Propo-
sition 3.2 we can see

1
|B|

∫

B
|Vρ

(
Rε

�,k

)
( f )(x) − Vρ

(
Rε

�,k

)
( f2)(z1)|dx ≤ C|| f ||BMOL (Rn),

where f2 = ( f − fB)χ(B∗∗)c and z1 ∈ B is such that Vρ(Rε
�,k)( f2)(z1) < ∞. Hence,

Vρ(Rε
�,k)( f ) ∈ BMO(Q∗

k) and

||Vρ

(
Rε

�,k

)
( f )||BMO(Q∗

k) ≤ C|| f ||BMOL (Rn). (35)

Note that the constants C > 0 appearing in Eqs. 34 and 35 do not depend on k ∈ N.
Thus the proof of the desired result is finished.

Assume now that V ∈ RHq where n/2 < q. In fact it is sufficient to consider n/2 <

q < n. We have to show that the variation operator for the adjoint Riesz transform,
Vρ(RL ,ε

� ), is bounded from BMOL (Rn) into itself. Looking at the proof above, this
result will be established when we see that, for every k ∈ N, the operators defined by

T1,k( f )(x) =
∫

|x−y|>γ (xk)

|RL
� (y, x)|| f (y)|dy,

and

T2,k( f )(x) =
∫

|x−y|<γ (xk)

|RL
� (y, x) − R�(y − x)|| f (y)|dy,
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map BMOL (Rn) into L∞(Q∗
k), and, for i = 1, 2,

||Ti,k( f )||L∞(Q∗
k) ≤ C|| f ||BMOL (Rn), f ∈ BMOL (Rn),

where C > 0 does not depend on k ∈ N.
Let k ∈ N and f ∈ BMOL (Rn). According to [27, p. 538], we have that

|T1,k( f )(x)| ≤ C
(∫

|x−y|>γ (xk)

1
|x − y|n

1
(1 + |x − y|/γ (x))α

| f (y)|dy

+
∫

|x−y|>γ (xk)

1
|x − y|n−1

| f (y)|
(1 + |x − y|/γ (x))α

∫

B(y,
|x−y|

4 )

V(z)

|z − y|n−1 dzdy

)

= C(T1,1,k( f )(x) + T1,2,k( f )(x)), x ∈ Q∗
k,

where α > 0 will be chosen later large enough.
As it was shown earlier, we have

||T1,1,k( f )||L∞(Q∗
k) ≤ C|| f ||BMOL (Rn), (36)

provided that α ≥ 1.
On the other hand, since γ (x) ∼ γ (xk) when x ∈ Q∗

k, we can write

|T1,2,k( f )(x)| ≤ C
∞∑
j=0

1
2 jα(2 jγ (xk))n−1

∫

2 jγ (xk)<|x−y|≤2 j+1γ (xk)

| f (y)|

×
∫

B(y,
|x−y|

4 )

V(z)

|z − y|n−1 dzdy

≤ C
∞∑
j=0

1
2 jα(2 jγ (xk))n−1

(∫

|x−y|≤2 j+1γ (xk)

| f (y)|p′
0 dy

)1/p′
0

×
(∫

Rn

∣∣∣∣
∫

|x−z|<2 j+2γ (xk)

V(z)

|z − y|n−1 dz

∣∣∣∣
p0

dy
)1/p0

, x ∈ Q∗
k,

where 1
p0

= 1
q − 1

n . Then, the Lp-boundedness properties of the fractional integrals
[28, p. 354] lead us to

|T1,2,k( f )(x)| ≤ C|| f ||BMOL (Rn)

∞∑
j=0

1
2 jα(2 jγ (xk))

n−1−n/p′
0

×
(∫

|x−z|<2 j+2γ (xk)

V(z)qdz
)1/q

, x ∈ Q∗
k.

By using the properties of V and γ [4, Lemma 1] we obtain, for a certain μ > 0,

(∫

|x−z|<2 j+2γ (xk)

V(z)qdz
)1/q

≤ C(2 jγ (xk))
−n/q′

2 jμγ (xk)
n−2, x ∈ Q∗

k.
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By choosing α > 0 large enough, it follows that

|T1,2,k( f )(x)| ≤ C|| f ||BMOL (Rn)

∞∑
j=0

1
2 j(α+n/p0−1+n/q′−μ)

≤ C|| f ||BMOL (Rn), x ∈ Q∗
k. (37)

We conclude from Eqs. 36 and 37 that

||T1,k( f )||L∞(Q∗
k) ≤ C|| f ||BMOL (Rn),

where C > 0 does not depend on k ∈ N.
According to [27, (5.9)] we get

|T2,k( f )(x)| ≤ C

(∫

|x−y|<γ (xk)

1
|x − y|n

( |x − y|
γ (x)

)2−n/q

| f (y)|dy

+
∫

|x−y|<γ (xk)

1
|x − y|n−1

∫

|y−z|< |x−y|
4

V(z)

|z − y|n−1 dz| f (y)|dy

)

= C(T2,1,k( f )(x) + T2,2,k( f )(x)), x ∈ Q∗
k.

As in the proof of the first part of this theorem we have that

||T2,1,k( f )||L∞(Q∗
k) ≤ C|| f ||BMOL (Rn). (38)

Also, we can write

|T2,2,k( f )(x)| ≤ C
∞∑
j=0

∫

2− j−1γ (xk)≤|x−y|<2− jγ (xk)

| f (y)|
(2− jγ (xk))n−1

×
∫

|x−z|<2− j+1γ (xk)

V(z)

|y − z|n−1 dzdy

≤ C
∞∑
j=0

1
(2− jγ (xk))n−1

(∫

|x−y|<2− jγ (xk)

| f (y)|p′
0 dy

)1/p′
0

×
(∫

Rn

(∫

|x−z|<2− j+1γ (xk)

V(z)

|y − z|n−1 dz
)p0

dy
)1/p0

≤ C
∞∑
j=0

1
(2− jγ (xk))

n−1−n/p′
0

(∫

|x−z|<2− j+1γ (xk)

V(z)qdz
)1/q

×
(

1
(2− jγ (xk))n

∫

|x−y|<2− jγ (xk)

| f (y)|p′
0 dy

)1/p′
0

, x ∈ Q∗
k,

where 1
p0

= 1
q − 1

n .
Since V ∈ RHq and γ (x) ∼ γ (xk), when x ∈ Q∗

k, we have [4, Lemma 1]

(∫

B(x,2− j+1γ (xk))

V(z)qdz
)1/q

≤ Cγ (xk)
n/q−2, x ∈ Q∗

k.
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Moreover, an argument like the one used to show [14, Lemma 2] allows us to get

(
1

(2− jγ (xk))n

∫

|x−y|<2− jγ (xk)

| f (y)|p′
0 dy

)1/p′
0

≤ Cj|| f ||BMOL (Rn).

Then,

|T2,2,k( f )(x)| ≤ C
∞∑
j=0

j
(2− jγ (xk))n/p0−1 γ (xk)

n/q−2|| f ||BMOL (Rn)

≤ C|| f ||BMOL (Rn), x ∈ Q∗
k. (39)

Note that n
p0

− 1 = n
q − 2 < 0.

By combining Eqs. 38 and 39 we conclude that

||T2,k( f )||L∞(Q∗
k) ≤ C|| f ||BMOL (Rn),

where C > 0 does not depend on k ∈ N.
Thus the proof is finished.
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15. Dziubański, J., Zienkiewicz, J.: H p spaces associated with Schrödinger operators with potentials
from reverse Hölder classes. Colloq. Math. 98(1), 5–38 (2003)

16. Gehring, F.W.: The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta
Math. 130, 265–277 (1973)

http://dx.doi.org/10.1007/s13163-012-0094-y


Variation Operators on BMO in the Schrödinger Setting 739

17. Gillespie, T.A., Torrea, J.L.: Dimension free estimates for the oscillation of Riesz transforms. Isr.
J. Math. 141, 125–144 (2004)

18. Guo, Z., Li, P., Peng, L.: Lp boundedness of commutators of Riesz transforms associated to
Schrödinger operator. J. Math. Anal. Appl. 341, 421–432 (2008)

19. Harboure, E., Macías, R., Menárguez, T., Torrea, J.L.: Oscillation and variation for the Gaussian
Riesz transforms and Poisson integral. Proc. R. Soc. Edinb. Sect. A 135(1), 85–104 (2005)

20. Jones, R.L., Wang, G.: Variation inequalities for the Fejer and Poisson kernels. Trans. Am. Math.
Soc. 356(11), 4493–4518 (2004)

21. Jones, R.L., Kaufman, R., Rosenblatt, J., Wierdl, M.: Oscillation in ergodic theory. Ergod.
Theory Dyn. Syst. 18(4), 889–936 (1998)

22. Jones, R.L., Reinhold, K.: Oscillation and variation inequalities for convolution powers. Ergod.
Theory Dyn. Syst. 21(6), 1809–1829 (2001)

23. Jones, R.L., Seeger, A., Wright, J.: Strong variational and jump inequalities in harmonic analysis.
Trans. Am. Math. Soc. 360(12), 6711–6742 (2008)

24. Liu, Y., Ding, Y.: Some estimates of Schrödinger-type operators with certain nonnegative poten-
tials. Int. J. Math. Math. Sci., article ID 214030, 8 pp. (2008). doi:10.1155/2008/214030

25. Liu, Y., Dong, J.: Some estimates of higher order Riesz transform related to Schrödinger-type
operators. Potential Anal. 32(1), 41–55 (2010)

26. Oberlin, R., Seeger, A., Tao, T., Thiele, C., Wright, J.: A variation norm Carleson theorem. J.
Eur. Math. Soc. 14(2), 421–464 (2012)

27. Shen, Z.W.: Lp estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier
(Grenoble) 45(2), 513–546 (1995)

28. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory In-
tegrals, vol. 43, xiv+695 (1993). With the assistance of Timothy S. Murphy, Monographs in
Harmonic Analysis, III

29. Sugano, S.: Lp estimates for some Schrödinger operators and a Calderón-Zygmund operator of
Schrödinger type. Tokyo J. Math. 30, 179–197 (2007)

30. Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Dover, Mineola (2004)
31. Yang, D., Yang, D.: Characterizations of localized BMO(Rn) via commutators of localized Riesz

transforms and fractional integrals associated to Schrödinger operators. Collect. Math. 61(1),
65–79 (2010)

32. Yang, D., Yang, D., Zhou, Y.: Endpoint properties of localized Riesz transforms and fractional
integrals associated to Schrödinger operators. Potential Anal. 30, 271–300 (2009)

33. Zhong, J.: Harmonic analysis for some Schrödinger type operators. Ph.D. thesis, Princeton
University (1993)

http://dx.doi.org/10.1155/2008/214030

	Variation Operators for Semigroups and Riesz Transforms on BMO in the Schrödinger Setting
	Abstract
	Introduction
	Main Results
	Proof of Theorems 2.2 and 2.4
	Proof of Theorem 2.2
	Proof of Theorem 2.4

	Proof of Theorems 2.6 and 2.8
	Proof of Theorem 2.6
	Proof of Theorem 2.8

	References


