Variation Operators for Semigroups and Riesz Transforms on *BMO* in the Schrödinger Setting

Jorge J. Betancor · Juan C. Fariña · Eleonor Harboure · Lourdes Rodríguez-Mesa

Received: 15 April 2011 / Accepted: 31 May 2012 / Published online: 17 June 2012 © Springer Science+Business Media B.V. 2012

Abstract In this paper we prove that the variation operators of the heat semigroup and the truncations of Riesz transforms associated to the Schrödinger operator are bounded on a suitable *BMO* type space.

Keywords Schrödinger operators · Variation · Riesz transforms · Heat semigroups

Mathematics Subject Classifications (2010) 42B20 • 42B25 • 40A30

1 Introduction

We consider the Schrödinger operator \mathscr{L} defined by $\mathscr{L} = -\Delta + V$ on \mathbb{R}^n , $n \ge 3$. Here V is a nonnegative and not identically zero function satisfying, for some $q \ge n/2$, the following reverse Hölder inequality:

 (RH_q) There exists C > 0 such that, for every ball $B \subset \mathbb{R}^n$,

$$\left(\frac{1}{|B|}\int_B V(x)^q dx\right)^{1/q} \le C\frac{1}{|B|}\int_B V(x)dx.$$

J. J. Betancor e-mail: jbetanco@ull.es

J. C. Fariña e-mail: jcfarina@ull.es

E. Harboure Instituto de Matemática Aplicada del Litoral, IMAL, CONICET-Universidad Nacional del Litoral, Güemes, 3450 Santa Fe, Argentina e-mail: harbour@santafe-conicet.gov.ar

This paper is partially supported by MTM2010/17974 and by Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), PIP 2303.

J. J. Betancor · J. C. Fariña · L. Rodríguez-Mesa (🖂)

Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez, s/n, 38271, La Laguna (Sta. Cruz de Tenerife), Spain e-mail: lrguez@ull.es

We write $V \in RH_q$ when V verifies the property (RH_q) . Note that if V is a nonnegative polynomial, then $V \in RH_q$ for every $1 < q < \infty$. Also, if $V_{\alpha}(x) = |x|^{\alpha}$, $x \in \mathbb{R}^n$, V_{α} belongs to RH_q provided that $\alpha q > -n$. Hence, $V_{\alpha} \in RH_{n/2}$ when $\alpha > -2$, and $V_{\alpha} \in RH_n$ if $\alpha > -1$.

Harmonic analysis operators derived from Schrödinger operator (Riesz transforms, maximal operators associated with heat and Poisson semigroups for \mathcal{L} , Littlewood–Paley g-functions, fractional integrals,...) have been extensively studied in last years. The papers of Shen [27] and Zhong [33] can be considered as starting points. In [27] and [33] Riesz transforms in the Schrödinger setting were studied on L^p -spaces. The behaviour on L^p of other operators related to \mathcal{L} has been investigated on L^p -spaces in [5, 18, 24, 25, 29], amongst others.

Dziubański and Zienkiewicz introduced appropriate Hardy spaces associated with \mathscr{L} (see [12, 13, 15]). A function $f \in L^1(\mathbb{R}^n)$ is said to be in $H_1^{\mathscr{L}}(\mathbb{R}^n)$ if and only if $W_*^{\mathscr{L}}(f) \in L^1(\mathbb{R}^n)$, where

$$W^{\mathscr{L}}_{*}(f) = \sup_{t>0} |W^{\mathscr{L}}_{t}(f)|,$$

and $W^{\mathscr{L}} = \{W_t^{\mathscr{L}}\}_{t>0}$ denotes the heat semigroup generated by $-\mathscr{L}$.

The dual space of $H_1^{\mathscr{L}}(\mathbb{R}^n)$ was investigated in [14]. This dual space, denoted by $BMO^{\mathscr{L}}(\mathbb{R}^n)$, was characterized as the natural space of bounded mean oscillation functions in this setting. More precisely, a function $f \in L^1_{loc}(\mathbb{R}^n)$ is said to be in $BMO^{\mathscr{L}}(\mathbb{R}^n)$ provided that there exists C > 0 such that the following two properties are satisfied:

(i) For every $x \in \mathbb{R}^n$ and r > 0,

$$\frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - f_{B(x,r)}| dy \le C,$$

where, as usual, $f_{B(x,r)} = \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) dy$, and |B(x,r)| denotes the Lebesgue measure of B(x, r); and

(ii) For every $x \in \mathbb{R}^n$ and $r \ge \gamma(x)$,

$$\frac{1}{|B(x,r)|}\int_{B(x,r)}|f(y)|dy\leq C.$$

Here, for any $x \in \mathbb{R}^n$, the critical radius $\gamma(x)$ is defined by

$$\gamma(x) = \sup\left\{r > 0 : r^{2-n} \int_{B(x,r)} V(y) dy \le 1\right\}.$$

Since V is not identically zero and $V \in RH_q$ with $q \ge n/2$, it follows that $0 < \gamma < \infty$. The norm $||f||_{BMO^{\mathscr{L}}(\mathbb{R}^n)}$ of $f \in BMO^{\mathscr{L}}(\mathbb{R}^n)$ is defined by

$$||f||_{BMO\mathscr{L}(\mathbb{R}^n)} = \inf\{C > 0 : (i) \text{ and } (ii) \text{ hold}\}.$$

In [14] the behavior of certain maximal operators, Littlewood–Paley g functions and fractional integrals on $BMO^{\mathscr{L}}(\mathbb{R}^n)$ were studied. Also, the $BMO^{\mathscr{L}}(\mathbb{R}^n)$ boundedness of the Riesz transforms has been analyzed in [4, 11, 31, 32]. Suppose that $\{T_t\}_{t>0}$ is a family of operators defined for functions in $L^p(\mathbb{R}^n)$, $1 \le p < \infty$. If $\rho > 2$, the ρ -variation operator associated with $\{T_t\}_{t>0}$, $V_{\rho}(T_t)$, is defined by

$$V_{\rho}(T_t)(f)(x) = \sup_{\{t_j\}_{j=1}^{\infty} \downarrow 0} \left(\sum_{j=1}^{\infty} |T_{t_j}(f)(x) - T_{t_{j+1}}(f)(x)|^{\rho} \right)^{1/\rho}$$

where the supremum is taken over all the real decreasing sequences $\{t_j\}_{j=1}^{\infty}$ that converge to zero. The operator $V_{\rho}(T_t)$ is related to the convergence of T_t , as $t \to 0^+$, and it estimates the fluctuations near the origin of the family $\{T_t\}_{t>0}$.

We consider the linear space E_{ρ} that consists of all those real functions F defined on $(0, \infty)$ such that

$$\|F\|_{E_{\rho}} = \sup_{\{t_j\}_{j=1}^{\infty}\downarrow 0} \left(\sum_{j=1}^{\infty} |F(t_j) - F(t_{j+1})|^{\rho} \right)^{\frac{1}{\rho}} < \infty,$$

where the supremum is taken over all the real decreasing sequence $\{t_j\}_{j=1}^{\infty}$ that converge to zero. $\|.\|_{E_{\rho}}$ is a seminorm on E_{ρ} . The variation operator $V_{\rho}(T_t)$ can be rewritten in the following way

$$V_{\rho}(T_t)(f)(x) = ||T_t(f)(x)||_{E_{\rho}}.$$

The variation operator V_{ρ} was introduced in the ergodic context by Bourgain [6] (see also Jones et al. [21]). In last years many authors have investigated the variation operator associated to semigroups of operators and singular integrals [7–10, 17, 19, 20, 23]. Recently, Oberlin et al. [26] have analyzed the variation norm related to Carleson Theorem.

In a previous paper (see [2]) the authors studied the L^p -boundedness properties of the variation operators for the heat semigroup $\{W_t^{\mathscr{L}}\}_{t>0}$ and the family of truncated Riesz transforms $\{R_\ell^{\mathscr{L},\varepsilon}\}_{\varepsilon>0}, \ell = 1, \dots, n$, in the Schrödinger context. Here our aim is to study the behavior of the variation operators $V_\rho(W_t^{\mathscr{L}})$ and $V_\rho(R_\ell^{\mathscr{L},\varepsilon})$ acting on functions in $BMO^{\mathscr{L}}(\mathbb{R}^n)$. Previously, we shall analyze the variation operators $V_\rho(W_t)$ and $V_\rho(R_\ell^{\varepsilon})$ over the classical $BMO(\mathbb{R}^n)$, where $\{W_t\}_{t>0}$ and $\{R_\ell^{\varepsilon}\}_{\varepsilon>0}, \ell =$ $1, \dots, n$, stand for the classical heat semigroup and truncated Riesz transforms, respectively. As usual, by $BMO(\mathbb{R}^n)$ we denote the well known space of bounded mean oscillation functions in \mathbb{R}^n . We believe that these results in the classical setting are of independent interest.

This paper is organized as follows. In Section 2 we state our results. The proof of the theorems are shown in Sections 3 (classical setting) and 4 (Schrödinger context).

Throughout this paper we denote by *C* and *c* positive constants that can change from one line to another. Moreover, if $B(x_0, r_0)$ with $x_0 \in \mathbb{R}^n$ and $r_0 > 0$, we define $B^* = B(x_0, 2r_0)$ and $B^{**} = (B^*)^*$.

2 Main Results

In this section we present the main results of the paper, stated as Theorems 2.2, 2.4, 2.6, and 2.8 below.

As it is well known the heat semigroup $\{W_t\}_{t>0}$ generated by $-\Delta$ is defined, for every $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, by

$$W_t(f)(x) = \int_{\mathbb{R}^n} W_t(x-y) f(y) dy, \ x \in \mathbb{R}^n \text{ and } t > 0,$$

where $W_t(z) = (4\pi t)^{-n/2} e^{-|z|^2/4t}$, $z \in \mathbb{R}^n$ and t > 0.

The L^p -boundedness properties of the variation operator $V_{\rho}(W_t)$, $\rho > 2$, were studied in [22, Theorem 3.3] and [9, Theorem 1.1]. We provide here the precise statement.

Theorem 2.1 ([22, Theorem 3.3] and [9, Theorem 1.1]) If $\rho > 2$, the variation operator $V_{\rho}(W_t)$ is bounded from $L^p(\mathbb{R}^n)$ into itself, for every $1 , and from <math>L^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$.

In [9] it was shown that the variation operator $V_{\rho}(W_t)$ is not bounded on $L^{\infty}(\mathbb{R}^n)$. In fact, in [9, Section 5], the authors give an example of a function $f \in L^{\infty}(\mathbb{R})$ such that $V_{\rho}(W_t)(f)(x) = \infty$, a.e. $x \in \mathbb{R}$, for every $\rho > 2$. As it is well known $L^{\infty}(\mathbb{R}^n)$ is a subset of the space $BMO(\mathbb{R}^n)$ of bounded mean oscillation functions. In the next result we take care of the behavior of $V_{\rho}(W_t)$ on $BMO(\mathbb{R}^n)$.

Theorem 2.2 Let $\rho > 2$. Then, if $f \in BMO(\mathbb{R}^n)$ and $V_{\rho}(W_t)(f)(x) < \infty$, a.e. $x \in \mathbb{R}^n$, $V_{\rho}(W_t)(f) \in BMO(\mathbb{R}^n)$ and $\|V_{\rho}(W_t)(f)\|_{BMO(\mathbb{R}^n)} \leq C \|f\|_{BMO(\mathbb{R}^n)}$.

For every $\ell = 1, \dots, n$, the Riesz transform $R_{\ell}(f)$ of $f \in L^{p}(\mathbb{R}^{n}), 1 \leq p < \infty$, is given by

$$R_{\ell}(f)(x) = \lim_{\alpha \to 0^+} R_{\ell}^{\varepsilon}(f)(x), \text{ a.e. } x \in \mathbb{R}^n,$$

where

$$R_{\ell}^{\varepsilon}(f)(x) = c_n \int_{|x-y|>\varepsilon} \frac{x_{\ell} - y_{\ell}}{|x-y|^{n+1}} f(y) dy,$$

and $c_n = \Gamma((n+1)/2)/\pi^{(n+1)/2}$.

Regarding the variation operator for R_{ℓ} , $\ell = 1, ..., n$, their L^p -boundedness was investigated in [7] and [8]. We reproduce here their precise statement.

Theorem 2.3 ([7, Theorem 1.2] and [8, Theorem A and Corollary 1.4]) Let $\ell = 1, ..., n$. If $\rho > 2$, the variation operator $V_{\rho}(R_{\ell}^{\varepsilon})$ is bounded from $L^{p}(\mathbb{R}^{n})$ into itself, for every $1 , and from <math>L^{1}(\mathbb{R}^{n})$ into $L^{1,\infty}(\mathbb{R}^{n})$.

By using transference methods Gillespie and Torrea [17, Theorem B], obtained dimension free $L^p(\mathbb{R}^n, |x|^{\alpha} dx)$ norm inequalities, for every $1 and <math>-1 < \alpha < p - 1$, for variation operators of the Riesz transform R_{ℓ} , $\ell = 1, ..., n$. Using the idea developed in the proof of [17, Lemma 1.4], we are able to analyze the behavior of the operators $V_{\rho}(R_{\ell}^{\epsilon})$ on the space $BMO(\mathbb{R}^n)$.

First notice that for $\ell = 1, ..., n$, $f \in BMO(\mathbb{R}^n)$ and $\varepsilon > 0$, the integral $\int_{|x-y|>\varepsilon} f(y) \frac{y_\ell - x_\ell}{|y-x|^{n+1}} dy$ may be non-convergent. Indeed, for instance, the function $f(x) = \frac{1}{\log(x+2)} \chi_{(0,\infty)}(x), x \in \mathbb{R}$, belongs to $L^{\infty}(\mathbb{R}) \subset BMO(\mathbb{R})$ but the limit

$$\begin{split} \lim_{N\to\infty} \int_{\varepsilon<|x-y|< N} \frac{f(y)}{x-y} dy \text{ does not exist, for any } x\in\mathbb{R} \text{ and } \varepsilon>0. \text{ However, it is clear that, for every } 0<\varepsilon<\eta, \int_{\varepsilon<|x-y|<\eta} \frac{|f(y)|}{|x-y|^n} dy<\infty \text{ for any } f\in L^1_{\text{loc}}(\mathbb{R}^n) \text{ and } x\in\mathbb{R}^n. \text{ Therefore, in this situation, the operators } V_\rho(R^\varepsilon_\ell) \text{ can be defined on } BMO(\mathbb{R}^n) \text{ in the obvious way, that is, by replacing } R^{\varepsilon_j}_\ell(f)(x)-R^{\varepsilon_{j+1}}_\ell(f)(x) \text{ by } c_n\int_{\varepsilon_{j+1}<|x-y|<\varepsilon_j}f(y)\frac{y_\ell-x_\ell}{|y-x|^{n+1}}dy, \ell=1,\cdots,n \text{ and } j\in\mathbb{N}. \text{ Let us mention that in } [10,\text{ Theorem B}] \text{ it was proved that if } f\in L^\infty(\mathbb{R}) \text{ and } \rho>2, \text{ then either } V_\rho(H^\varepsilon)(f)(x)=\infty, \text{ a.e. } x\in\mathbb{R}, \text{ or } V_\rho(H^\varepsilon)(f)(x)<\infty, \text{ a.e. } x\in\mathbb{R}, \text{ where } H \text{ denotes the Riesz transform on } \mathbb{R}, \text{ that is, the Hilbert transform. Moreover, as it can be seen in } [10,\text{ Section 1}], \text{ if } f(x)=\text{sgn}(x), x\in\mathbb{R}, \text{ then } V_\rho(H^\varepsilon)(f)(x)=\infty, \text{ a.e. } x\in\mathbb{R}. \end{split}$$

We can say that the above continuous results have their antecedents in other discrete results due to Jones et al. [21]. Suppose that $\{I_m\}_{m\in\mathbb{N}}$ denotes a nested sequence of intervals in \mathbb{Z} such that $I_1 = \{0\}$ and $\sharp I_m = m$, where $\sharp A$ means, as usual, the cardinal of $A \subset \mathbb{Z}$. For every $m \in \mathbb{N}$, we define

$$M_m(f)(x) = \frac{1}{m} \sum_{j \in I_m} f(x+j).$$

In [21, p. 915] the authors considered the variation operator $V_{\rho}(M_m)$, $\rho > 2$, defined by

$$V_{\rho}(M_m)(f)(x) = \sup_{\{m_k\}} \left(\sum_{i=1}^{\infty} |M_{m_i}(f)(x) - M_{m_{i+1}}(f)(x)|^p \right)^{1/p}.$$

They proved that, for every $\rho > 2$, the operator $V_{\rho}(M_m)$ is bounded from $L^{\infty}(\mathbb{R})$ into $BMO(\mathbb{R})$ [21, Theorem 4.4]. Other oscillation operators and square sums type operators associated with M_m are also considered in [21, Section 4]. Moreover, they defined a square function that does not map $L^{\infty}(\mathbb{R})$ into $BMO(\mathbb{R})$ (see [21, Remark 4.5]).

In the next result we establish the behavior of the variation operators $V_{\rho}(R_{\ell}^{\varepsilon})$ for functions in $BMO(\mathbb{R}^n)$.

Theorem 2.4 Let $\ell = 1, ..., n$ and $\rho > 2$. Then, if $f \in BMO(\mathbb{R}^n)$ and $V_{\rho}(R_{\ell}^{\varepsilon})(f)(x) < \infty$, a.e. $x \in \mathbb{R}^n$, then $V_{\rho}(R_{\ell}^{\varepsilon})(f) \in BMO(\mathbb{R}^n)$ and $\|V_{\rho}(R_{\ell}^{\varepsilon})(f)\|_{BMO(\mathbb{R}^n)} \le C \|f\|_{BMO(\mathbb{R}^n)}$.

We turn now to the Schrödinger operator setting. Let us denote by $\{W_t^{\mathscr{L}}\}_{t>0}$ the heat semigroup associated with \mathscr{L} . For every t > 0, they can be written in the integral form

$$W_t^{\mathscr{L}}(f)(x) = \int_{\mathbb{R}^n} W_t^{\mathscr{L}}(x, y) f(y) dy, \quad f \in L^2(\mathbb{R}^n).$$

Even though we do not have an explicit formula for the kernels $W_t^{\mathscr{L}}(x, y)$, many properties are known and can be encountered, for instance, in [14].

 L^p -boundedness properties of the variation operator $V_{\rho}(W_t^{\mathscr{L}})$ were studied in [2]. We reproduce here the exact result.

Theorem 2.5 [2, Theorem 1.1]. Let $V \in RH_q$ where q > n/2 and let $\rho > 2$. Then, the variation operator $V_{\rho}(W_t^{\mathscr{L}})$ is bounded from $L^p(\mathbb{R}^n)$ into itself, for every $1 , and from <math>L^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$.

Our next result shows the behavior of the variation operator $V_{\rho}(W_t^{\mathscr{L}})$ on BMO^{\mathscr{L}}(\mathbb{R}^n).

Theorem 2.6 Let $V \in RH_q$ where q > n/2 and let $\rho > 2$. Then, the variation operator $V_{\rho}(W_t^{\mathscr{L}})$ is bounded from BMO $^{\mathscr{L}}(\mathbb{R}^n)$ into itself.

Let $\ell = 1, ..., n$. The Riesz transform $R_{\ell}^{\mathcal{L}}$ is defined by

$$R_{\ell}^{\mathscr{L}}(f) = \frac{\partial}{\partial x_{\ell}} \mathscr{L}^{-1/2} f, \quad f \in C_{c}^{\infty}(\mathbb{R}^{n}),$$

where $C_c^{\infty}(\mathbb{R}^n)$ denotes the space of smooth functions with compact support in \mathbb{R}^n . Here, the negative square root $\mathscr{L}^{-1/2}$ of \mathscr{L} is defined in terms of the heat semigroup by

$$\mathscr{L}^{-1/2}(f)(x) = \frac{1}{\sqrt{\pi}} \int_0^\infty W_t^{\mathscr{L}}(f)(x) t^{-1/2} dt$$

Fractional powers of the Schrödinger operator \mathcal{L} have been studied in [3].

In [2, Proposition 1.1] it was proved that $R_{\ell}^{\mathcal{L}}$ can be extended to $L^{p}(\mathbb{R}^{n})$ as the principal value operator

$$R_{\ell}^{\mathscr{L}}(f)(x) = \lim_{\varepsilon \to 0^+} \int_{|x-y| > \varepsilon} R_{\ell}^{\mathscr{L}}(x, y) f(y) dy, \text{ a.e. } x \in \mathbb{R}^n,$$
(1)

where

$$R_{\ell}^{\mathscr{L}}(x, y) = -\frac{1}{2\pi} \frac{\partial}{\partial x_{\ell}} \int_{\mathbb{R}} (-i\tau)^{-1/2} \Gamma(x, y, \tau) d\tau, \ x, y \in \mathbb{R}^{n}, \ x \neq y,$$

and, for every $\tau \in \mathbb{R}$, $\Gamma(x, y, \tau)$, $x, y \in \mathbb{R}^n$, represents the fundamental solution for the operator $\mathcal{L} + i\tau$, provided that

(i) $1 \le p < \infty$, and $V \in RH_n$; (ii) $1 , where <math>\frac{1}{p_0} = \frac{1}{q} - \frac{1}{n}$, and $V \in RH_q$, $n/2 \le q < n$.

Moreover, $R_{\ell}^{\mathscr{L}}$ is bounded from $L^{p}(\mathbb{R}^{n})$ into itself when $1 and from <math>L^{1}(\mathbb{R}^{n})$ into $L^{1,\infty}(\mathbb{R}^{n})$, provided that $V \in RH_{n}$. Also, $R_{\ell}^{\mathscr{L}}$ is bounded from $L^{p}(\mathbb{R}^{n})$ into itself when $1 and <math>V \in RH_{q}$, with $n/2 \leq q < n$ [27, Theorems 0.5 and 0.8].

The formal adjoint operator $\mathscr{R}_{\ell}^{\mathscr{L}}$ of $R_{\ell}^{\mathscr{L}}$ defined by

$$\mathscr{R}_{\ell}^{\mathscr{L}}(f)(x) = \lim_{\varepsilon \to 0^+} \int_{|x-y| > \varepsilon} R_{\ell}^{\mathscr{L}}(y, x) f(y) dy, \text{ a.e. } x \in \mathbb{R}^n,$$

is bounded from $L^p(\mathbb{R}^n)$ into itself when $p'_0 and <math>V \in RH_q$, with $n/2 \le q < n$, where, as usual, p'_0 denotes the exponent conjugated to p_0 . In the case that $V \in RH_n$, it is bounded in $L^p(\mathbb{R}^n)$, for $1 , and it also maps <math>L^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$.

By defining the truncated Riesz transforms $R_{\ell}^{\mathcal{L},\varepsilon}$, $\varepsilon > 0$, in the natural way, the L^p -boundedness properties for the variation operator $V_{\rho}(R_{\ell}^{\mathcal{L},\varepsilon})$ were established in [2].

Theorem 2.7 [2, Theorem 1.2] Let $\ell = 1, ..., n$. Assume that $\rho > 2$. Then, the variation operator $V_{\rho}(R_{\ell}^{\mathscr{L},\varepsilon})$ is bounded

- from $L^p(\mathbb{R}^n)$ into itself, when $1 , and from <math>L^1(\mathbb{R}^n)$ into $L^{1,\infty}(\mathbb{R}^n)$, (i) provided that $V \in RH_n$.
- from $L^p(\mathbb{R}^n)$ into itself, when $1 , where <math>\frac{1}{p_0} = \frac{1}{q} \frac{1}{n}$, and $V \in RH_q$, (ii) n/2 < q < n.

If $f \in BMO^{\mathscr{L}}(\mathbb{R}^n)$ and $\ell = 1, \dots, n$, the limit in Eq. 1 exists for a.e. $x \in \mathbb{R}^n$ (see [2, Proposition 1.1]). Thus, the Riesz transforms $R_{\ell}^{\mathscr{L}}$ are defined by Eq. 1 in $BMO^{\mathscr{L}}(\mathbb{R}^n)$. As it was remarked earlier, the situation is quite different in the classical case. In the next result we describe the behavior on $BMO^{\mathscr{L}}(\mathbb{R}^n)$ of the variation operators associated with the Riesz transforms $R_{\ell}^{\mathscr{L}}$ and their adjoints.

Theorem 2.8 Let $\rho > 2$, $\ell = 1, ..., n$. If $V \in RH_a$ where $q \ge n$, then the variation operator $V_{\rho}(\mathcal{R}_{\ell}^{\mathcal{L},\varepsilon})$ is bounded from $BMO^{\mathcal{L}}(\mathbb{R}^n)$ into itself. Also, the variation operator $V_{\rho}(\mathcal{R}_{\ell}^{\mathcal{L},\varepsilon})$ is bounded from $BMO^{\mathcal{L}}(\mathbb{R}^n)$ into itself, provided that $V \in RH_q$ where q > n/2.

Note that there is a remarkable difference between the results in the classical and in the Schrödinger settings. In the latter, the operators are defined in the whole $BMO^{\mathscr{L}}(\mathbb{R}^n)$, while in the classical case it is necessary to impose an additional "finiteness hypothesis". This fact was observed by the first time in [14].

In order to analyze operators in the Schrödinger context on BMO^{\mathscr{L}} (\mathbb{R}^n) we shall use some ideas developed in [14] and we will again exploit that the Schrödinger operator $\mathscr{L} = -\Delta + V$, where $V \in RH_q$, with $q \ge n/2$, is actually a nice perturbation of the Laplacian operator $-\Delta$.

Throughout the proof of the results that we have just stated, the following properties will play an important role.

According to [14, Proposition 5] it is possible to choose a sequence $\{x_k\}_{k=1}^{\infty} \subset \mathbb{R}^n$, such that if $Q_k = B(x_k, \gamma(x_k)), k \in \mathbb{N}$, the following properties hold:

 $\bigcup_{k=1}^{\infty} Q_k = \mathbb{R}^n;$ (i)

For every $m \in \mathbb{N}$ there exist $C, \beta > 0$ such that, for every $k \in \mathbb{N}$, (ii)

 $#\{l \in \mathbb{N} : 2^m Q_l \cap 2^m Q_k \neq \emptyset\} < C2^{m\beta}.$

Also, from [14, p. 346, after Lemma 9], for any operator H and $f \in BMO^{\mathscr{L}}(\mathbb{R}^n)$. $Hf \in BMO^{\mathscr{L}}(\mathbb{R}^n)$ provided that there exists a positive constant C such that, for every $k \in \mathbb{N}$.

- (i_k)
- $\begin{array}{l} \frac{1}{|Q_k|} \int_{Q_k} |H(f)(x)| dx \leq C ||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^n)}, \text{ and} \\ Hf \in \text{BMO}(Q_k^*) \text{ and } ||Hf||_{\text{BMO}(Q_k^*)} \leq C ||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^n)}. \text{ Here BMO}(Q_k^*) \text{ de-} \end{array}$ (ii_k) notes the usual BMO-space over Q_k^* .

Moreover, we have that

$$\|Hf\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)} \le M \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}$$

where the constant M > 0 depends only on the constant C.

Note that if the property (i_k) above holds for every $k \in \mathbb{N}$ then, $|H(f)(x)| < \infty$ for almost every $x \in \mathbb{R}^n$. This fact is quite different from what happens in the classical Euclidean case (see Theorem 2.2 and Theorem 2.4, and [1]).

3 Proof of Theorems 2.2 and 2.4

In this section we show our results about the behavior of the variation operator for the classical heat semigroup and Riesz transforms on $BMO(\mathbb{R}^n)$.

3.1 Proof of Theorem 2.2

Let $\rho > 2$. Assume that $f \in BMO(\mathbb{R}^n)$ and $V_{\rho}(W_t)(f)(x) < \infty$, a.e. $x \in \mathbb{R}^n$. Let $B = B(x_0, r_0)$, with $x_0 \in \mathbb{R}^n$ and $r_0 > 0$. We write

$$f = (f - f_B)\chi_{B^*} + (f - f_B)\chi_{(B^*)^c} + f_B = f_1 + f_2 + f_3$$

Note that this type of decomposition allows us to see that $W_t(|f|) < \infty$, t > 0. According to Theorem 2.1, we have

$$\int_{\mathbb{R}^n} |V_{\rho}(W_t)(f_1)(x)|^2 \, dx \le C \int_{B^*} |f(x) - f_B|^2 \, dx \le C |B| \|f\|_{BMO(\mathbb{R}^n)}^2. \tag{2}$$

In particular this means that $V_{\rho}(W_t)(f_1)(x) < \infty$, a.e. $x \in \mathbb{R}^n$. Moreover, since $\{W_t\}_{t>0}$ is Markovian, $V_{\rho}(W_t)(f_3) = 0$. Then, using the hypothesis, we may choose $x_1 \in B(x_0, r_0)$ such that $V_{\rho}(W_t)(f_2)(x_1) < \infty$.

If E_{ρ} denotes the space introduced in Section 1, we can write

$$\frac{1}{|B|} \int_{B} \left| V_{\rho}(W_{t})(f)(x) - V_{\rho}(W_{t})(f_{2})(x_{1}) \right| dx$$

$$= \frac{1}{|B|} \int_{B} \left| \|W_{t}(f)(x)\|_{E_{\rho}} - \|W_{t}(f_{2})(x_{1})\|_{E_{\rho}} \right| dx$$

$$\leq \frac{1}{|B|} \int_{B} \|W_{t}(f)(x) - W_{t}(f_{2})(x_{1})\|_{E_{\rho}} dx$$

$$= \frac{1}{|B|} \int_{B} \|W_{t}(f_{1})(x) + W_{t}(f_{2})(x) - W_{t}(f_{2})(x_{1})\|_{E_{\rho}} dx$$

$$\leq \frac{1}{|B|} \int_{B} \|W_{t}(f_{1})(x)\|_{E_{\rho}} dx + \frac{1}{|B|} \int_{B} \|W_{t}(f_{2})(x) - W_{t}(f_{2})(x_{1})\|_{E_{\rho}} dx.$$
(3)

Therefore, according to Eq. 2 we get

$$\frac{1}{|B|} \int_{B} \|W_{t}(f_{1})(x)\|_{E_{\rho}} dx \le \left(\frac{1}{|B|} \int_{B} \left|V_{\rho}(W_{t})(f_{1})(x)\right|^{2} dx\right)^{\frac{1}{2}} \le C \|f\|_{BMO(\mathbb{R}^{n})}.$$
 (4)

🖄 Springer

Also, Minkowski inequality and [9, p. 88] lead to

$$\frac{1}{|B|} \int_{B} \|W_{t}(f_{2})(x) - W_{t}(f_{2})(x_{1})\|_{E_{\rho}} dx$$

$$= \frac{1}{|B|} \int_{B} \left\|\int_{\mathbb{R}^{n}} W_{t}(x - y) f_{2}(y) dy - \int_{\mathbb{R}^{n}} W_{t}(x_{1} - y) f_{2}(y) dy\right\|_{E_{\rho}} dx$$

$$\leq C \frac{1}{|B|} \int_{B} \int_{\mathbb{R}^{n}} \|W_{t}(x - y) - W_{t}(x_{1} - y)\|_{E_{\rho}} |f_{2}(y)| dy dx$$

$$\leq \frac{C}{|B|} \int_{B} \int_{(B^{*})^{c}} \frac{|x - x_{1}|}{|x - y|^{n+1}} |f(y) - f_{B}| dy dx$$

$$\leq C \frac{r_{0}}{|B|} \int_{B} \int_{(B^{*})^{c}} \frac{1}{(|y - x_{0}| - |x_{0} - x|)^{n+1}} |f(y) - f_{B}| dy dx$$

$$\leq C \frac{r_{0}}{|B|} \int_{B} \sum_{k=1}^{\infty} \int_{2^{k} r_{0} \leq |y - x_{0}| < 2^{k+1} r_{0}} \frac{1}{(|y - x_{0}| - |x_{0} - x|)^{n+1}} |f(y) - f_{B}| dy dx$$

$$\leq C \sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{1}{(2^{k} r_{0})^{n}} \int_{|y - x_{0}| < 2^{k+1} r_{0}} |f(y) - f_{B}| dy \leq C \|f\|_{BMO(\mathbb{R}^{n})}.$$
(5)

In the last inequality we have used the well known property (see [[30], VIII, Proposition 3.2])

$$\frac{1}{|2^m B|} \int_{2^m B} |f(y) - f_B| dy \le Cm \|f\|_{BMO(\mathbb{R}^n)}, \ m \in \mathbb{N}.$$

From Eqs. 3, 4 and 5 we conclude that

$$\frac{1}{|B|} \int_{B} \left| V_{\rho}(W_{t})(f)(x) - V_{\rho}(W_{t})(f_{2})(x_{1}) \right| dx \leq C \|f\|_{BMO(\mathbb{R}^{n})}.$$

Thus, we prove that $V_{\rho}(W_t)(f) \in BMO(\mathbb{R}^n)$.

Remark 3.1 After a careful reading of the proof of Theorem 2.2 we can deduce the following result that will be useful in the proof of Theorem 2.6.

Proposition 3.1 Let $\rho > 2$ and \mathscr{A} be a set of decreasing real sequences converging to zero. Assume that

$$V_{\rho,\mathscr{A}}(W_t)(f)(x) = \sup_{\{t_j\}_{j=1}^{\infty} \in \mathscr{A}} \left(\sum_{j=1}^{\infty} |W_{t_j}(f)(x) - W_{t_{j+1}}(f)(x)|^{\rho} \right)^{1/\rho} < \infty, \ a.e. \ x \in Q,$$

where Q is a ball in \mathbb{R}^n . Suppose that $f \in BMO(\mathbb{R}^n)$ and B is a ball contained in Q. If we define $f_2 = (f - f_B)\chi_{(B^*)^c}$ and choose $x_1 \in B$ such that $V_{\rho,\mathscr{A}}(W_t)(f_2)(x_1) < \infty$, then there is a constant C > 0 independent of \mathscr{A} , f, and B such that

$$\frac{1}{|B|} \int_{B} \|W_{t}(f)(x) - W_{t}(f_{2})(x_{1})\|_{E_{\rho,\mathscr{A}}} dx \leq C \|f\|_{BMO(\mathbb{R}^{n})},$$

where, for every function $h: (0, \infty) \mapsto \mathbb{C}$, $||h||_{E_{o,\mathscr{A}}}$ means

$$\|h\|_{E_{\rho,\mathscr{A}}} = \sup_{\{t_j\}_{j=1}^{\infty} \in \mathscr{A}} \left(\sum_{j=1}^{\infty} |h(t_j) - h(t_{j+1})|^{\rho}\right)^{1/\rho}$$

3.2 Proof of Theorem 2.4

Let $\rho > 2$ and $\ell = 1, ..., n$. Assume that $f \in BMO(\mathbb{R}^n)$ and that $V_{\rho}(R_{\ell}^{\varepsilon})(f)(x) < \infty$, a.e. $x \in \mathbb{R}^n$. To see that $V_{\rho}(R_{\ell}^{\varepsilon})(f) \in BMO(\mathbb{R}^n)$ we extend to \mathbb{R}^n the technique developed in the proof of [17, Lemma 1.4].

Let $B = B(x_0, r_0)$ be a ball in \mathbb{R}^n . We decompose f setting $f = f_1 + f_2 + f_3$, where $f_1 = (f - f_B)\chi_{B^{**}}$, $f_2 = (f - f_B)\chi_{(B^{**})^c}$ and $f_3 = f_B$. According to Theorem 2.3, we have

$$\int_{\mathbb{R}^n} |V_{\rho}\left(R_{\ell}^{\varepsilon}\right)(f_1)(x)|^2 dx \le C \int_{B^{**}} |f(x) - f_B|^2 dx \le C |B| \|f\|_{BMO(\mathbb{R}^n)}^2.$$
(6)

Then, $V_{\rho}(R_{\ell}^{\varepsilon})(f_1)(x) < \infty$, a.e. $x \in \mathbb{R}^n$. Moreover, $V_{\rho}(R_{\ell}^{\varepsilon})(f_3) = 0$. Then, we can choose $x_1 \in B$ such that $V_{\rho}(R_{\ell}^{\varepsilon})(f_2)(x_1) < \infty$.

If E_{ρ} denotes the space defined in Section 1, by Eq. 6 we can write

$$\frac{1}{|B|} \int_{B} \left| V_{\rho} \left(R_{\ell}^{\varepsilon} \right) (f)(x) - V_{\rho} \left(R_{\ell}^{\varepsilon} \right) (f_{2})(x_{1}) \right| dx$$

$$= \frac{1}{|B|} \int_{B} \left\| R_{\ell}^{\varepsilon}(f)(x) \right\|_{E_{\rho}} - \left\| R_{\ell}^{\varepsilon}(f_{2})(x_{1}) \right\|_{E_{\rho}} \right| dx$$

$$\leq \frac{1}{|B|} \int_{B} \left\| R_{\ell}^{\varepsilon}(f)(x) - R_{\ell}^{\varepsilon}(f_{2})(x_{1}) \right\|_{E_{\rho}} dx$$

$$\leq \frac{1}{|B|} \int_{B} \left\| R_{\ell}^{\varepsilon}(f_{1})(x) \right\|_{E_{\rho}} dx + \frac{1}{|B|} \int_{B} \left\| R_{\ell}^{\varepsilon}(f_{2})(x) - R_{\ell}^{\varepsilon}(f_{2})(x_{1}) \right\|_{E_{\rho}} dx$$

$$\leq C \| f \|_{BMO(\mathbb{R}^{n})} + \frac{1}{|B|} \int_{B} \left\| R_{\ell}^{\varepsilon}(f_{2})(x) - R_{\ell}^{\varepsilon}(f_{2})(x_{1}) \right\|_{E_{\rho}} dx.$$
(7)

Here, the expressions with $\|.\|_{E_{\rho}}$ have the obvious meaning.

Denoting $R_{\ell}(z) = c_n \frac{z_{\ell}}{|z|^{n+1}}, z = (z_1, \cdots, z_n) \in \mathbb{R}^n \setminus \{0\}$, we have that

$$\|R_{\ell}^{\varepsilon}(f_{2})(x) - R_{\ell}^{\varepsilon}(f_{2})(x_{1})\|_{E_{\rho}} \le A_{1}(x) + A_{2}(x), \ x \in B,$$
(8)

where, for every $x \in B$,

$$A_{1}(x) = \left\| \int_{|x-y| > \varepsilon} (R_{\ell}(x-y) - R_{\ell}(x_{1}-y)) f_{2}(y) dy \right\|_{E_{\rho}}$$

and

$$A_{2}(x) = \left\| \int_{\mathbb{R}^{n}} \left(\chi_{\{\varepsilon < |x-y|\}}(y) - \chi_{\{\varepsilon < |x_{1}-y|\}}(y) \right) R_{\ell}(x_{1}-y) f_{2}(y) dy \right\|_{E_{\rho}}.$$

D Springer

By using Minkowski inequality and well known properties of the function $R_{\ell}(z)$ we get

$$A_{1}(x) \leq \int_{\mathbb{R}^{n}} |R_{\ell}(x-y) - R_{\ell}(x_{1}-y)| |f(y) - f_{B}|\chi_{(B^{**})^{c}}(y) dy$$

$$\leq C \sum_{k=2}^{\infty} \int_{2^{k} r_{0} \leq |x_{0}-y| \leq 2^{k+1} r_{0}} \frac{|x-x_{1}|}{|x-y|^{n+1}} |f(y) - f_{B}| dy$$

$$\leq C \sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{1}{(2^{k} r_{0})^{n}} \int_{2^{k+1} B} |f(y) - f_{B}| dy$$

$$\leq C ||f||_{BMO(\mathbb{R}^{n})}, \ x \in B.$$
(9)

In order to analyze A_2 we split, for every $j \in \mathbb{N}$, the integral there in four terms as follows. Let $\{\varepsilon_j\}_{j=1}^{\infty}$ be a real decreasing sequence that converges to zero. It follows that

$$\begin{split} \int_{\mathbb{R}^{n}} \left| \chi_{\{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}\}}(y) - \chi_{\{\varepsilon_{j+1} < |x_{1}-y| < \varepsilon_{j}\}}(y) \right| |R_{\ell}(x_{1}-y)||f_{2}(y)|dy \\ &\leq C \left(\int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j+1} < |x-y| < \varepsilon_{j+1} + 2r_{0}\}}(y) \chi_{\{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}\}}(y) \frac{1}{|x_{1}-y|^{n}} |f_{2}(y)|dy \\ &+ \int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j} \le |x_{1}-y| < \varepsilon_{j} + 2r_{0}\}}(y) \chi_{\{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}\}}(y) \frac{1}{|x_{1}-y|^{n}} |f_{2}(y)|dy \\ &+ \int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j+1} < |x_{1}-y| < \varepsilon_{j+1} + 2r_{0}\}}(y) \chi_{\{\varepsilon_{j+1} < |x_{1}-y| < \varepsilon_{j}\}}(y) \frac{1}{|x_{1}-y|^{n}} |f_{2}(y)|dy \\ &+ \int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j} < |x-y| < \varepsilon_{j} + 2r_{0}\}}(y) \chi_{\{\varepsilon_{j+1} < |x_{1}-y| < \varepsilon_{j}\}}(y) \frac{1}{|x_{1}-y|^{n}} |f_{2}(y)|dy \\ &= C \left(A_{2,1}^{j}(x) + A_{2,2}^{j}(x) + A_{2,3}^{j}(x) + A_{2,4}^{j}(x) \right), \quad x \in B \text{ and } j \in \mathbb{N}. \end{split}$$

Observe that if $x \in B$, then $A_{2,m}^j(x) = 0$, when $m = 1, 3, j \in \mathbb{N}$ and $r_0 \ge \varepsilon_{j+1}$. Also, if $x \in B$, then $A_{2,m}^j(x) = 0$, when $m = 2, 4, j \in \mathbb{N}$ and $r_0 \ge \varepsilon_j$.

Since $2|x - y| \ge |x_1 - y| \ge \frac{1}{2}|x - y|$, $y \notin B^{**}$ and $x \in B$, Hölder inequality leads, for every $j \in \mathbb{N}$, to

$$\begin{aligned} A_{2,1}^{j}(x) &\leq C\left(\int_{\mathbb{R}^{n}}\chi_{\{\varepsilon_{j+1}<|x-y|<\varepsilon_{j}\}}(y)\frac{1}{|x-y|^{ns}}|f_{2}(y)|^{s}dy\right)^{\frac{1}{s}}v_{j+1}^{\frac{1}{s'}}, \ x \in B, \\ A_{2,2}^{j}(x) &\leq C\left(\int_{\mathbb{R}^{n}}\chi_{\{\max\{\varepsilon_{j+1},\frac{1}{2}\varepsilon_{j}\}<|x-y|<\varepsilon_{j}\}}(y)\frac{1}{|x-y|^{ns}}|f_{2}(y)|^{s}dy\right)^{\frac{1}{s}}v_{j}^{\frac{1}{s'}}, \ x \in B, \\ A_{2,3}^{j}(x) &\leq C\left(\int_{\mathbb{R}^{n}}\chi_{\{\varepsilon_{j+1}<|x_{1}-y|<\varepsilon_{j}\}}(y)\frac{1}{|x_{1}-y|^{ns}}|f_{2}(y)|^{s}dy\right)^{\frac{1}{s}}v_{j+1}^{\frac{1}{s'}}, \ x \in B, \end{aligned}$$

2 Springer

and

$$A_{2,4}^{j}(x) \leq C\left(\int_{\mathbb{R}^{n}} \chi_{\{\max\{\varepsilon_{j+1}, \frac{1}{2}\varepsilon_{j}\} < |x_{1}-y| < \varepsilon_{j}\}}(y) \frac{1}{|x_{1}-y|^{ns}} |f_{2}(y)|^{s} dy\right)^{\frac{1}{s}} v_{j}^{\frac{1}{s'}}, \ x \in B.$$

Here $1 < s < \infty$, $s' = \frac{s}{s-1}$, and $v_j = (\varepsilon_j + 2r_0)^n - \varepsilon_j^n$, $j \in \mathbb{N}$. Note that $v_j \le C$ $\max\{r_0, \varepsilon_j\}^{n-1} r_0, j \in \mathbb{N}, \text{ for a certain } C > 0.$ We define the set $\mathscr{G} = \{j \in \mathbb{N} : r_0 < \varepsilon_j\}$. We have that

$$\begin{split} A_{2,1}^{j}(x) &\leq C \frac{v_{j+1}^{1/s'}}{\varepsilon_{j+1}^{(n-1)/s'}} \left(\int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}\}}(y) \frac{|f_{2}(y)|^{s}}{|x-y|^{n+s-1}} dy \right)^{1/s} \\ &\leq C r_{0}^{1/s'} \left(\int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}\}}(y) \frac{|f_{2}(y)|^{s}}{|x-y|^{n+s-1}} dy \right)^{1/s}, \end{split}$$

for every $x \in B$ and $j + 1 \in \mathcal{G}$. In a similar way we can see that

$$A_{2,2}^{j}(x) \leq Cr_{0}^{1/s'} \left(\int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}\}}(y) \frac{|f_{2}(y)|^{s}}{|x-y|^{n+s-1}} dy \right)^{1/s}, \quad x \in B \text{ and } j \in \mathscr{G},$$

$$A_{2,3}^{j}(x) \leq Cr_{0}^{1/s'} \left(\int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j+1} < |x_{1}-y| < \varepsilon_{j}\}}(y) \frac{|f_{2}(y)|^{s}}{|x_{1}-y|^{n+s-1}} dy \right)^{1/s}, \quad x \in B \text{ and } j+1 \in \mathcal{G},$$

and

$$A_{2,4}^{j}(x) \leq Cr_{0}^{1/s'} \left(\int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j+1} < |x_{1}-y| < \varepsilon_{j}\}}(y) \frac{|f_{2}(y)|^{s}}{|x_{1}-y|^{n+s-1}} dy \right)^{1/s}, \quad x \in B \text{ and } j \in \mathscr{G}.$$

Hence, we get

$$\begin{split} \left(\sum_{j=1}^{\infty} \left(A_{2,1}^{j}(x) + A_{2,2}^{j}(x)\right)^{\rho}\right)^{1/\rho} \\ &\leq C \left(\sum_{j+1\in\mathscr{G}} |A_{2,1}^{j}(x)|^{\rho} + \sum_{j\in\mathscr{G}} |A_{2,2}^{j}(x)|^{\rho}\right)^{1/\rho} \\ &\leq C \left(\sum_{j\in\mathbb{N}} \left(\int_{\mathbb{R}^{n}} \chi_{\{\varepsilon_{j+1}<|x-y|<\varepsilon_{j}\}}(y) \frac{|f_{2}(y)|^{s}}{|x-y|^{n+s-1}} dy\right)^{\rho/s} r_{0}^{\rho/s'}\right)^{1/\rho} \\ &\leq C \left(\int_{\mathbb{R}^{n}} \frac{|f_{2}(y)|^{s}}{|x-y|^{n+s-1}} dy\right)^{1/s} r_{0}^{1/s'} \\ &\leq C \left(\left(\sum_{k=1}^{\infty} \frac{1}{(2^{k}r_{0})^{n}} \int_{|x_{0}-y|<2^{k+1}r_{0}} |f(y) - f_{B}|^{s} dy \frac{1}{2^{k(s-1)}}\right)^{1/s} \\ &\leq C ||f||_{BMO(\mathbb{R}^{n})}, \quad x \in B. \end{split}$$
(11)

In a similar way we get

$$\left(\sum_{j=1}^{\infty} |A_{2,3}^{j}(x) + A_{2,4}^{j}(x)|^{\rho}\right)^{1/\rho} \le C||f||_{\text{BMO}(\mathbb{R}^{n})}, \quad x \in B.$$
(12)

From Eqs. 10, 11 and 12 we infer that

$$A_2(x) \le C||f||_{\text{BMO}(\mathbb{R}^n)}, \quad x \in B.$$
(13)

Altogether Eqs. 7, 8, 9 and 13 imply that

$$\frac{1}{|B|} \int_{B} |V_{\rho}\left(R_{\ell}^{\varepsilon}\right)(f)(x) - V_{\rho}(R_{\ell}^{\varepsilon})(f_{2})(x_{1})|dx \leq C||f||_{\mathrm{BMO}(\mathbb{R}^{n})}.$$
(14)

Thus, we prove that $V_{\rho}(R_{\ell}^{\varepsilon})(f) \in BMO(\mathbb{R}^n)$.

By proceeding as in the above proof we can establish the following result that will be useful in the sequel.

Proposition 3.2 Let a > 0 and $\ell = 1, ..., n$. We define, for every $\varepsilon > 0$ and $f \in L^1_{loc}(\mathbb{R}^n)$,

$$R^{\varepsilon}_{\ell,a}(f)(x) = \int_{\varepsilon < |x-y| < a} \frac{x_{\ell} - y_{\ell}}{|x-y|^{n+1}} f(y) dy.$$

Then, if $\rho > 2$, $V_{\rho}(R_{\ell,a}^{\varepsilon})(f) \in BMO(\mathbb{R}^n)$, provided that $f \in BMO(\mathbb{R}^n)$.

Note that, $V_{\rho}(R_{\ell,a}^{\varepsilon})(f)(x) < \infty$, a.e. $x \in \mathbb{R}^n$, for every a > 0, $f \in BMO(\mathbb{R}^n)$ and $\ell = 1, ..., n$. Indeed, let a > 0, $f \in BMO(\mathbb{R}^n)$ and $\ell = 1, ..., n$. Suppose that $m \in \mathbb{N}$. Since $V_{\rho}(R_{\ell,a}^{\varepsilon})(f) \le V_{\rho}(R_{\ell}^{\varepsilon})(f)$ and $f \in L^2_{loc}(\mathbb{R}^n)$, according to Theorem 2.3, we have that

$$\begin{split} \int_{B(0,m)} V_{\rho} \left(R_{\ell,a}^{\varepsilon} \right) (f)(x) dx &= \int_{B(0,m)} V_{\rho} \left(R_{\ell,a}^{\varepsilon} \right) (f\chi_{B(0,m+a)})(x) dx \\ &\leq \int_{B(0,m)} V_{\rho} \left(R_{\ell}^{\varepsilon} \right) (f\chi_{B(0,m+a)})(x) dx \\ &\leq Cm^{n/2} \Big(\int_{B(0,m)} \left(V_{\rho} \left(R_{\ell}^{\varepsilon} \right) \left(f\chi_{B(0,m+a)} \right) (x) \right)^{2} dx \Big)^{1/2} \\ &\leq Cm^{n/2} \Big(\int_{B(0,m+a)} |f(x)|^{2} dx \Big)^{1/2} < \infty. \end{split}$$

Hence, $V_{\rho}(R_{\ell,a}^{\varepsilon})(f)(x) < \infty$, a.e. $x \in B(0, m)$.

4 Proof of Theorems 2.6 and 2.8

In this section we establish the boundedness in $BMO^{\mathcal{L}}(\mathbb{R}^n)$ of the variation operators for the heat semigroup and Riesz transforms in the Schrödinger setting.

4.1 Proof of Theorem 2.6

Let $\rho > 2$. Assume that $f \in BMO^{\mathscr{L}}(\mathbb{R}^n)$. Our goal is to show that $V_{\rho}(W_t^{\mathscr{L}})(f)$ satisfies the properties (i_k) and (i_k) , for every $k \in \mathbb{N}$.

Fix $k \in \mathbb{N}$. We now prove (i_k) , that is, there exists C > 0, independent of k, such that

$$\frac{1}{|Q_k|} \int_{Q_k} |V_\rho\left(W_t^{\mathscr{L}}\right)(f)(x)| dx \le C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}$$

We decompose $W_t^{\mathscr{L}}(f)$ as follows

$$W_t^{\mathcal{L}}(f)(x) = H_{k,t}^{\mathcal{L}}(f)(x) + L_{k,t}^{\mathcal{L}}(f)(x), \ x \in Q_k \text{ and } t > 0,$$

where

$$H_{k,t}^{\mathscr{L}}(f)(x) = W_t^{\mathscr{L}}(f)(x)\chi_{\{t>\gamma(x_k)^2\}}(t), \ x \in Q_k \text{ and } t > 0.$$

It is clear that

$$V_{\rho}\left(W_{t}^{\mathscr{L}}\right)(f)(x) \leq V_{\rho}\left(H_{k,t}^{\mathscr{L}}\right)(f)(x) + V_{\rho}\left(L_{k,t}^{\mathscr{L}}\right)(f)(x), \ x \in Q_{k}.$$
 (15)

Let $\{t_j\}_{j=1}^{\infty}$ be a real decreasing sequence that converges to zero. Suppose that $j_k \in \mathbb{N}$ is such that $t_{j_k+1} \leq \gamma(x_k)^2 < t_{j_k}$. We can write

$$\begin{split} &\left(\sum_{j=1}^{\infty} |H_{k,t_j}^{\mathscr{L}}(f)(x) - H_{k,t_{j+1}}^{\mathscr{L}}(f)(x)|^{\rho}\right)^{1/\rho} \\ &\leq \sum_{j=1}^{j_k-1} |W_{t_j}^{\mathscr{L}}(f)(x) - W_{t_{j+1}}^{\mathscr{L}}(f)(x)| + |W_{t_{j_k}}^{\mathscr{L}}(f)(x)| \\ &\leq \sum_{j=1}^{j_k-1} \left|\int_{t_{j+1}}^{t_j} \frac{\partial}{\partial t} W_t^{\mathscr{L}}(f)(x)dt\right| + |W_{t_{j_k}}^{\mathscr{L}}(f)(x)| \\ &\leq \int_{\gamma(x_k)^2}^{\infty} \int_{\mathbb{R}^n} \left|\frac{\partial}{\partial t} W_t^{\mathscr{L}}(x,y)\right| |f(y)| dy dt + \sup_{t \geq \gamma(x_k)^2} |W_t^{\mathscr{L}}(f)(x)| \\ &= \Omega_{1,k}(f)(x) + \Omega_{2,k}(f)(x), \ x \in Q_k. \end{split}$$

Hence

$$V_{\rho}\left(H_{k,t}^{\mathscr{L}}\right)(f)(x) \le \Omega_{1,k}(f)(x) + \Omega_{2,k}(f)(x), \quad x \in Q_k.$$

$$\tag{16}$$

According to [14, (5.4)], we get

$$\frac{1}{|Q_k|} \int_{Q_k} \Omega_{2,k}(f)(x) dx \le C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}.$$
(17)

By [14, (2.7)] we have that

$$\left|\frac{\partial}{\partial t}W_t^{\mathscr{L}}(x,y)\right| \le C \frac{e^{-c|x-y|^2/t}}{t^{1+n/2}} \left(1 + \frac{t}{\gamma(x)^2}\right)^{-1}, \quad x, y \in \mathbb{R}^n \text{ and } t > 0.$$

Hence, since $\gamma(x) \sim \gamma(x_k)$, when $x \in Q_k$, we obtain

$$\begin{split} \Omega_{1,k}(f)(x) &\leq C \int_{\gamma(x_k)^2}^{\infty} \int_{\mathbb{R}^n} \frac{|f(y)|}{t^{1+n/2}} e^{-c|x-y|^2/t} \left(1 + \frac{t}{\gamma(x_k)^2}\right)^{-1} dy dt \\ &\leq C \int_{\gamma(x_k)^2}^{\infty} \frac{1}{t^{1+n/2}} \left(1 + \frac{t}{\gamma(x_k)^2}\right)^{-1} \left(\int_{|x-y| < \sqrt{t}} + \sum_{m=0}^{\infty} \int_{\sqrt{t}2^m \leq |x-y| < \sqrt{t}2^{m+1}}\right) \\ &\times |f(y)| \left(1 + \frac{|x-y|}{\sqrt{t}}\right)^{-1-n} dy dt \\ &\leq C \int_{\gamma(x_k)^2}^{\infty} \frac{1}{t^{1+n/2}} \left(1 + \frac{t}{\gamma(x_k)^2}\right)^{-1} \sum_{m=0}^{\infty} \frac{1}{2^{m(1+n)}} \int_{|x-y| < 2^m \sqrt{t}} |f(y)| dy dt, \\ &\quad x \in Q_k. \end{split}$$

Moreover, by [14, Lemma 2], since $|f| \in BMO^{\mathscr{L}}(\mathbb{R}^n)$, there exists C > 0 (which does not depend on f) such that, for every B = B(x, r), with $x \in \mathbb{R}^n$ and $r < \gamma(x)$,

$$\frac{1}{|B(x,2r)|} \int_{B(x,2r)} |f(y)| dy \le C \left(1 + \log \frac{\gamma(x)}{r}\right) ||f||_{BMO^{\mathscr{L}}(\mathbb{R}^n)}.$$

Then, it follows that

$$\begin{split} &\sum_{m=0}^{\infty} \frac{1}{2^{m(1+n)} t^{n/2}} \int_{|x-y|<2^m \sqrt{t}} |f(y)| dy \\ &\leq \sum_{m \in \mathbb{N}, \ 2^m \sqrt{t} < \gamma(x)} \frac{1}{2^{m(1+n)} t^{n/2}} \int_{|x-y|<2^m \sqrt{t}} |f(y)| dy \\ &+ \sum_{m \in \mathbb{N}, \ 2^m \sqrt{t} \ge \gamma(x)} \frac{1}{2^{m(1+n)} t^{n/2}} \int_{|x-y|<2^m \sqrt{t}} |f(y)| dy \\ &\leq C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)} \left(\sum_{m \in \mathbb{N}, \ 2^m \sqrt{t} < \gamma(x)} \frac{1}{2^m} \left(1 + \log \frac{\gamma(x)}{2^m \sqrt{t}}\right) + \sum_{m \in \mathbb{N}} \frac{1}{2^m}\right) \\ &\leq C \left(1 + \log \frac{\sqrt{t}}{\gamma(x_k)}\right) \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}, \ t \ge \gamma(x_k)^2 \ \text{and} \ x \in Q_k. \end{split}$$

Then,

$$\begin{aligned} \Omega_{1,k}(f)(x) &\leq C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)} \int_{\gamma(x_k)^2}^{\infty} \left(1 + \frac{t}{\gamma(x_k)^2}\right)^{-1} \left(1 + \log\frac{\sqrt{t}}{\gamma(x_k)}\right) \frac{dt}{t} \\ &\leq C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)} \int_{1}^{\infty} (1 + \log(u)) \frac{du}{u(1+u)} \\ &\leq C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}, \ x \in Q_k. \end{aligned}$$

Hence, we obtain

$$\frac{1}{|Q_k|} \int_{Q_k} \Omega_{1,k}(f)(x) dx \le C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}.$$
(18)

By combining Eqs. 16, 17 and 18 we get

$$\frac{1}{|Q_k|} \int_{Q_k} V_\rho\left(H_{k,t}^{\mathscr{L}}\right)(f)(x) dx \le C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}.$$
(19)

Here C > 0 does not depend on k.

We now decompose f as follows

$$f = f \chi_{Q_k^*} + f \chi_{(Q_k^*)^c} = f_1 + f_2.$$

It is clear that

$$V_{\rho}\left(L_{k,t}^{\mathscr{L}}\right)(f) \le V_{\rho}\left(L_{k,t}^{\mathscr{L}}\right)(f_{1}) + V_{\rho}\left(L_{k,t}^{\mathscr{L}}\right)(f_{2}).$$

$$(20)$$

By proceeding as above we get

$$\begin{split} V_{\rho}\left(L_{k,t}^{\mathscr{L}}\right)(f_{1})(x) &\leq \sup_{[t_{j}]_{j=1}^{\infty}\downarrow 0} \left(\sum_{t_{j}\leq\gamma(x_{k})^{2}} |W_{t_{j}}^{\mathscr{L}}(f_{1})(x) - W_{t_{j+1}}^{\mathscr{L}}(f_{1})(x)|^{\rho}\right)^{1/\rho} \\ &+ \sup_{0 < t \leq \gamma(x_{k})^{2}} |W_{t}^{\mathscr{L}}(f_{1})(x)| \\ &\leq V_{\rho}\left(W_{t}^{\mathscr{L}}\right)(f_{1})(x) + W_{*}^{\mathscr{L}}(f_{1})(x), \ x \in Q_{k}. \end{split}$$

Since $W^{\mathscr{L}}_*$ and $V_{\rho}(W^{\mathscr{L}}_t)$ are bounded operators from $L^2(\mathbb{R}^n)$ into itself (see Theorem 2.5) it follows that

$$\begin{aligned} \frac{1}{|Q_k|} \int_{Q_k} V_\rho\left(L_{k,t}^{\mathscr{L}}\right) (f_1)(x) dx &\leq \left(\frac{1}{|Q_k|} \int_{\mathbb{R}^n} \left(V_\rho\left(L_{k,t}^{\mathscr{L}}\right) (f_1)(x)\right)^2 dx\right)^{1/2} \\ &\leq C \left(\frac{1}{|Q_k|} \int_{Q_k^*} |f(x)|^2 dx\right)^{1/2}. \end{aligned}$$

Then, from [14, Corollary 3], we deduce that

$$\frac{1}{|\mathcal{Q}_k|} \int_{\mathcal{Q}_k} V_\rho\left(L_{k,t}^{\mathscr{L}}\right) (f_1)(x) dx \le C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}.$$
(21)

On the other hand, we can write

$$V_{\rho}\left(L_{k,t}^{\mathscr{L}}\right)(f_{2})(x) \leq \int_{0}^{\gamma(x_{k})^{2}} \int_{(\underline{Q}_{k}^{*})^{c}} \left|\frac{\partial}{\partial t} W_{t}^{\mathscr{L}}(x,y)\right| |f(y)| dy dt + \sup_{0 < t \leq \gamma(x_{k})^{2}} |W_{t}^{\mathscr{L}}(f_{2})(x)|$$
$$= \Omega_{3,k}(f)(x) + \Omega_{4,k}(f)(x), \quad x \in Q_{k}.$$
(22)

According to [14, (2.7)], for certain C, c > 0, we get

$$\begin{aligned} \Omega_{3,k}(f)(x) &\leq \int_{0}^{\gamma(x_{k})^{2}} \int_{|x-y| > \gamma(x_{k})} \left| \frac{\partial}{\partial t} W_{t}^{\mathscr{L}}(x, y) \right| |f(y)| dy dt \\ &\leq C \int_{0}^{\gamma(x_{k})^{2}} \int_{|x-y| > \gamma(x_{k})} |f(y)| \frac{e^{-c|x-y|^{2}/t}}{t^{n/2+1}} dy dt \\ &\leq C \int_{0}^{\gamma(x_{k})^{2}} \frac{1}{t^{n/2+1}} \sum_{j=0}^{\infty} \int_{2^{j}\gamma(x_{k}) < |x-y| \le 2^{j+1}\gamma(x_{k})} |f(y)| \left(\frac{t}{|x-y|^{2}}\right)^{(n+1)/2} dy dt \\ &\leq C \int_{0}^{\gamma(x_{k})^{2}} \frac{1}{\sqrt{t}} \sum_{j=0}^{\infty} \frac{1}{(2^{j}\gamma(x_{k}))^{n+1}} \int_{|x-y| \le 2^{j+1}\gamma(x_{k})} |f(y)| dy dt \\ &\leq C \sum_{j=0}^{\infty} \frac{1}{2^{j}(2^{j}\gamma(x_{k}))^{n}} \int_{|x_{k}-y| \le 2^{j+2}\gamma(x_{k})} |f(y)| dy \\ &\leq C ||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^{n})}, \quad x \in Q_{k}. \end{aligned}$$

Then, by Eq. 23

$$\frac{1}{|Q_k|}\int_{Q_k}\Omega_{3,k}(f)(x)dx\leq C||f||_{\mathrm{BMO}^{\mathscr{L}}(\mathbb{R}^n)}.$$

Moreover, since $|f| \in BMO^{\mathscr{L}}(\mathbb{R}^n)$, [14, Theorem 6] implies that

$$\frac{1}{|Q_k|} \int_{Q_k} \Omega_{4,k}(f)(x) dx \leq \frac{1}{|Q_k|} \int_{Q_k} W_*^{\mathscr{L}}(|f|)(x) dx \leq C ||f||_{\mathrm{BMO}^{\mathscr{L}}(\mathbb{R}^n)}.$$

Hence, we conclude that

$$\frac{1}{|Q_k|} \int_{Q_k} V_\rho\left(L_{k,t}^{\mathscr{L}}\right) (f_2)(x) dx \le C ||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^n)}.$$
(24)

By combining Eqs. 20, 21 and 24 we deduce

$$\frac{1}{|Q_k|} \int_{Q_k} V_\rho\left(L_{k,t}^{\mathscr{L}}\right)(f)(x) dx \le C ||f||_{\mathrm{BMO}^{\mathscr{L}}(\mathbb{R}^n)}.$$
(25)

Finally, Eqs. 15, 19 and 25 imply that

$$\frac{1}{|Q_k|} \int_{Q_k} V_\rho\left(W_l^{\mathscr{L}}\right)(f)(x) dx \le C ||f||_{\mathrm{BMO}^{\mathscr{L}}(\mathbb{R}^n)}.$$

Note that C > 0 does not depend on k.

Thus the property (i_k) is established.

Now, we are going to prove assertion (ii_k) . Assume that $B = B(x_0, r_0) \subset Q_k^*$, with $x_0 \in \mathbb{R}^n$ and $r_0 > 0$. Our purpose is to check that

$$\frac{1}{|B|} \int_{B} \left| V_{\rho} \left(W_{t}^{\mathscr{L}} \right) (f)(x) - c^{B} \right| dx \le C ||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^{n})},$$
(26)

2 Springer

for a certain constant c^B and with C > 0 independent of k and B. To this end we decompose $W_t^{\mathcal{L}}(f)$ as follows

$$W_t^{\mathscr{L}}(f)(x) = H_{k,t}^{\mathscr{L}}(f)(x) + \left(L_{k,t}^{\mathscr{L}}(f) - L_{k,t}(f)\right)(x) + L_{k,t}(f)(x), \quad x \in Q_k^* \text{ and } t > 0,$$
(27)

where $H_{\vec{k},t}^{\mathscr{L}}$ and $L_{\vec{k},t}^{\mathscr{L}}$ are defined as above, and

$$L_{k,t}(f)(x) = W_t(f)(x)\chi_{\{0 < t \le \gamma(x_k)^2\}}(t), \ x \in Q_k^*, \ t > 0.$$

Suppose that $c^B = ||h^B||_{E_{\rho}}$, where $h^B : (0, \infty) \mapsto \mathbb{C}$ is a function that will be specified later. Then, we can write

$$\begin{split} |V_{\rho}\left(W_{t}^{\mathscr{L}}\right)(f)(x) - c^{B}| &= |||W_{t}^{\mathscr{L}}(f)(x)||_{E_{\rho}} - ||h^{B}||_{E_{\rho}}|\\ &\leq ||W_{t}^{\mathscr{L}}(f)(x) - h^{B}(t)||_{E_{\rho}}\\ &\leq ||H_{k,t}^{\mathscr{L}}(f)(x)||_{E_{\rho}} + ||L_{k,t}^{\mathscr{L}}(f)(x) - h^{B}(t)||_{E_{\rho}}. \end{split}$$

Therefore, Eq. 26 will be proved if we are able to show the following three inequalities:

$$\begin{array}{ll} \text{(A1)} & \frac{1}{|B|} \int_{B} \|H_{k,t}^{\mathscr{L}}(f)(x)\|_{E_{\rho}} dx \leq C ||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^{n})};\\ \text{(A2)} & \frac{1}{|B|} \int_{B} \|L_{k,t}^{\mathscr{L}}(f)(x) - L_{k,t}(f)(x)\|_{E_{\rho}} dx \leq C ||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^{n})}; \text{ and}\\ \text{(A3)} & \frac{1}{|B|} \int_{B} \|L_{k,t}(f)(x) - h^{B}(t)\|_{E_{\rho}} dx \leq C ||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^{n})}, \end{array}$$

for a certain function $h^B: (0, \infty) \mapsto \mathbb{C}$, and a constant C > 0 independent of k and B.

According to (16) we have

$$V_{\rho}\left(H_{k,t}^{\mathscr{L}}\right)(f) \leq \Omega_{1,k}(f) + \Omega_{2,k}(f).$$

By proceeding as above we get

$$|\Omega_{1,k}(f)(x)| \le C||f||_{\text{BMO}}\mathscr{L}_{(\mathbb{R}^n)}, \ x \in Q_k^*.$$
(28)

Moreover, by [14, (5.4)],

$$|\Omega_{2,k}(f)(x)| \le C||f||_{\text{BMO}}\mathscr{L}_{(\mathbb{R}^n)}, \ x \in Q_k^*.$$
(29)

Then, from Eqs. 28 and 29, (A1) holds.

To establish (A2) we firstly observe that

$$V_{\rho}\left(L_{k,t}^{\mathscr{L}}-L_{k,t}\right)(f)(x) \leq \int_{0}^{\gamma(x_{k})^{2}} \int_{\mathbb{R}^{n}} \left|\frac{\partial}{\partial t}(W_{t}^{\mathscr{L}}(x, y)-W_{t}(x-y))\right| |f(y)| dy dt$$
$$+\sup_{0 < t \leq \gamma(x_{k})^{2}} |W_{t}^{\mathscr{L}}(f)(x)-W_{t}(f)(x)|$$
$$= \Omega_{5,k}(f)(x) + \Omega_{6,k}(f)(x), \ x \in Q_{k}^{*}.$$

By [14, (5.5)] we get

$$\Omega_{6,k}(f)(x) \le C||f||_{\text{BMO}}\mathscr{L}_{(\mathbb{R}^n)}, \ x \in Q_k^*.$$
(30)

The perturbation formula ([14, (5.25)]) allows us to write

$$\begin{split} \frac{\partial}{\partial t} \Big(W_t(x-y) - W_t^{\mathscr{L}}(x,y) \Big) &= \int_{\mathbb{R}^n} V(z) W_{t/2}^{\mathscr{L}}(x,z) W_{t/2}(z-y) dz \\ &+ \int_0^{t/2} \int_{\mathbb{R}^n} V(z) \frac{\partial}{\partial t} W_{t-s}(x-z) W_s^{\mathscr{L}}(z,y) dz ds \\ &+ \int_{t/2}^t \int_{\mathbb{R}^n} V(z) W_{t-s}(x-z) \frac{\partial}{\partial s} W_s^{\mathscr{L}}(z,y) dz ds \\ &= \sum_{j=1}^3 K_j(x,y,t), \ x,y \in \mathbb{R}^n \text{ and } t > 0. \end{split}$$

According to [14, (2.2) and (2.8)], we get

$$\begin{aligned} |K_1(x, y, t)| &\leq Ct^{-n} \int_{\mathbb{R}^n} V(z) e^{-\frac{|x-z|^2 + |z-y|^2}{4t}} dz \\ &\leq Ct^{-n/2} e^{-\frac{|x-y|^2}{16t}} \int_{\mathbb{R}^n} V(z) t^{-n/2} e^{-\frac{|x-z|^2}{8t}} dz \\ &\leq C\gamma(x)^{-\delta} t^{-1 + (\delta - n)/2} e^{-\frac{|x-y|^2}{16t}}, \ x, y \in Q_k^* \text{ and } 0 < t < \gamma(x_k)^2. \end{aligned}$$

Here and in the sequel δ represents a positive constant.

Moreover, by using [14, (2.2) and (2.8)], since t/2 < t - s < t when 0 < s < t/2, it follows that

$$\begin{split} |K_{2}(x, y, t)| &\leq C \int_{0}^{t/2} \int_{\mathbb{R}^{n}} V(z) \frac{1}{(t-s)^{1+n/2}} e^{-c \frac{|x-z|^{2}}{t-s}} \frac{1}{s^{n/2}} e^{-c \frac{|z-y|^{2}}{s}} dz ds \\ &\leq C \int_{0}^{t/2} \int_{\mathbb{R}^{n}} V(z) \frac{1}{t^{1+n/2}} e^{-c \frac{|x-z|^{2}}{t}} \frac{1}{s^{n/2}} e^{-c \frac{|z-y|^{2}}{s}} dz ds \\ &\leq C \frac{1}{t^{1+n/2}} e^{-c \frac{|x-y|^{2}}{t}} \int_{0}^{t/2} \int_{\mathbb{R}^{n}} V(z) \frac{1}{s^{n/2}} e^{-c \frac{|z-y|^{2}}{s}} dz ds \\ &\leq C \frac{1}{t^{1+n/2}} e^{-c \frac{|x-y|^{2}}{t}} \int_{0}^{t/2} \frac{s^{-1+\delta/2}}{\gamma(y)^{\delta}} ds \\ &\leq C \gamma(y)^{-\delta} t^{-1+(\delta-n)/2} e^{-c \frac{|x-y|^{2}}{t}}, \\ & x \in Q_{k}^{*}, \ |y-x| \leq \gamma(x_{k}) \ \text{and} \ 0 < t < \gamma(x_{k})^{2}. \end{split}$$

By proceeding in a similar way we obtain

$$|K_3(x, y, t)| \le C\gamma(y)^{-\delta} t^{-1 + (\delta - n)/2} e^{-c \frac{|x - y|^2}{t}}, \ x \in Q_k^*, \ |x - y| \le \gamma(x_k) \text{ and } 0 < t < \gamma(x_k)^2.$$

🖄 Springer

Hence, since $\gamma(x) \sim \gamma(y) \sim \gamma(x_k)$, provided that $|x - y| \leq \gamma(x_k)$ and $x \in Q_k^*$, we conclude that

$$\begin{aligned} &\left|\frac{\partial}{\partial t} \Big(W_t^{\mathscr{L}}(x, y) - W_t(x - y)\Big)\right| \\ &\leq C\gamma(x_k)^{-\delta} t^{-1 + (\delta - n)/2} e^{-c\frac{|x - y|^2}{t}}, \ x \in Q_k^*, \ |x - y| \leq \gamma(x_k) \text{ and } 0 < t < \gamma(x_k)^2. \end{aligned}$$

Therefore for some constants C, c > 0 we get

$$\begin{split} \Omega_{5,k}(f)(x) &\leq C \int_0^{\gamma(x_k)^2} \frac{t^{\delta/2-1}}{\gamma(x_k)^\delta} \int_{\mathbb{R}^n} \frac{e^{-c|x-y|^2/t}}{t^{n/2}} |f(y)| dy dt \\ &\leq C \int_0^{\gamma(x_k)^2} \frac{t^{\delta/2-1}}{\gamma(x_k)^\delta} \sum_{j=0}^\infty \frac{e^{-c2^{2j}}}{t^{n/2}} \int_{|x-y| \leq 2^j \sqrt{t}} |f(y)| dy dt \\ &\leq C \int_0^{\gamma(x_k)^2} \frac{t^{\delta/2-1}}{\gamma(x_k)^\delta} \sum_{j=0}^\infty \frac{2^{jn} e^{-c2^{2j}}}{(2^j \sqrt{t})^n} \int_{|x-y| \leq 2^j \sqrt{t}} |f(y)| dy dt, \quad x \in Q_k^*. \end{split}$$

Moreover, by [14, Lemma 2], since $\gamma(x) \sim \gamma(x_k), x \in Q_k^*$,

$$\begin{split} &\sum_{j=0}^{\infty} \frac{2^{jn} e^{-c2^{2j}}}{(2^{j}\sqrt{t})^{n}} \int_{|x-y| \le 2^{j}\sqrt{t}} |f(y)| dy \\ &= \sum_{j \in \mathbb{N}, 2^{j}\sqrt{t} \le \gamma(x)} \frac{2^{jn} e^{-c2^{2j}}}{(2^{j}\sqrt{t})^{n}} \int_{|x-y| \le 2^{j}\sqrt{t}} |f(y)| dy \\ &+ \sum_{j \in \mathbb{N}, 2^{j}\sqrt{t} > \gamma(x)} \frac{2^{jn} e^{-c2^{2j}}}{(2^{j}\sqrt{t})^{n}} \int_{|x-y| \le 2^{j}\sqrt{t}} |f(y)| dy \\ &\le C ||f||_{BMO^{\mathscr{L}}(\mathbb{R}^{n})} \left(\sum_{j \in \mathbb{N}, 2^{j}\sqrt{t} \le \gamma(x)} 2^{jn} e^{-c2^{2j}} \left(1 + \log \frac{\gamma(x)}{2^{j}\sqrt{t}} \right) + \sum_{j \in \mathbb{N}, 2^{j}\sqrt{t} > \gamma(x)} 2^{jn} e^{-c2^{2j}} \right) \\ &\le C ||f||_{BMO^{\mathscr{L}}(\mathbb{R}^{n})} \left(\frac{\gamma(x_{k})}{\sqrt{t}} \right)^{\varepsilon}, \quad x \in Q_{k}^{*} \text{ and } 0 < t < \gamma(x_{k})^{2}, \end{split}$$

where $\varepsilon \in (0, \delta)$.

With this estimate we have that

$$\Omega_{5,k}(f)(x) \le C||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^n)} \int_0^{\gamma(x_k)^2} \frac{t^{\delta/2 - 1 - \varepsilon/2}}{\gamma(x_k)^{\delta - \varepsilon}} dt \le C||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^n)}, \quad x \in Q_k^*.$$
(31)

Putting together Eqs. 30 and 31, we infer (A2).

Next we notice that by Eq. 27 it follows that

$$V_{\rho}(L_{k,t})(f) \leq V_{\rho}\left(W_{t}^{\mathscr{L}}\right)(f) + V_{\rho}\left(H_{k,t}^{\mathscr{L}}\right)(f) + V_{\rho}\left(L_{k,t}^{\mathscr{L}} - L_{k,t}\right)(f).$$

By proceeding as in the proof of (i_k) we get

$$\int_{Q_k^*} V_\rho\left(W_t^{\mathscr{L}}\right)(f)(x) dx < \infty.$$

Then, $V_{\rho}(W_t^{\mathscr{L}})(f)(x) < \infty$, a.e. $x \in Q_k^*$. From Eqs. 30 and 31 we deduce $V_{\rho}(L_{k,t}^{\mathscr{L}} - L_{k,l})(f)(x) < \infty$, a.e. $x \in Q_k^*$. Also, by Eqs. 28 and 29, $V_{\rho}(H_{k,t}^{\mathscr{L}})(f)(x) < \infty$, a.e. $x \in Q_k^*$. Hence, $V_{\rho}(L_{k,t})(f)(x) < \infty$, a.e. $x \in Q_k^*$. We consider the following decomposi-

tion of f

$$f = (f - f_B)\chi_{B^*} + (f - f_B)\chi_{(B^*)^c} + f_B = f_1 + f_2 + f_3.$$

Note that

$$\begin{split} V_{\rho}(L_{k,t})(f_{1})(x) &\leq C \left(\sup_{\{t_{j}\}_{j=1}^{\infty} \downarrow 0, \, t_{j} \leq \gamma(x_{k})^{2}} \left(\sum_{j=1}^{\infty} |W_{t_{j}}(f_{1})(x) - W_{t_{j+1}}(f_{1})(x)|^{\rho} \right)^{1/\rho} \\ &+ \sup_{0 < t \leq \gamma(x_{k})^{2}} |W_{t}(f_{1})(x)| \right) \\ &\leq C(V_{\rho}(W_{t})(f_{1})(x) + W_{*}(f_{1})(x)), \end{split}$$

where W_* represents the maximal operator defined by $W_*(g) = \sup_{t>0} |W_t(g)|$.

Then, since W_* and $V_{\rho}(W_t)$ are bounded operators from $L^2(\mathbb{R}^n)$ into itself (see Theorem 2.1), we obtain

$$\begin{split} \int_{Q_k^*} |V_{\rho}(L_{k,t})(f_1)(x)| dx &\leq C \left(|Q_k| \int_{B^*} |f(x) - f_B|^2 dx \right)^{1/2} \\ &\leq C (|B||Q_k|)^{1/2} \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)} < \infty. \end{split}$$

Hence $V_{\rho}(L_{k,t})(f_1)(x) < \infty$, a.e. $x \in Q_k^*$. Also, since $\int_{\mathbb{R}^n} W_t(x, y) dy = 1, x \in \mathbb{R}^n$ and t > 0, we get

$$V_{\rho}(L_{k,t})(f_3)(x) = |f_B| < \infty, \ x \in \mathbb{R}^n.$$

Therefore, we deduce that $V_{\rho}(L_{k,l})(f_2)(x) < \infty$, a.e. $x \in Q_k^*$.

Choosing $z_1 \in B$ such that $V_{\rho}(L_{k,t})(f_2)(z_1) < \infty$, we define $h^B(t) = L_{k,t}(f_2)(z_1)$, $t \in (0, \infty)$.

Suppose that $\{t_j\}_{j=1}^{\infty}$ is a real decreasing sequence that converges to zero and let $j_k \in \mathbb{N}$ be such that $t_{j_k} \leq \gamma(x_k)^2$ and $t_{j_k-1} > \gamma(x_k)^2$. We can write

$$\begin{split} \left(\sum_{j=1}^{\infty} \left| L_{k,t_{j}}(f)(x) - L_{k,t_{j}}(f_{2})(z_{1}) - (L_{k,t_{j+1}}(f)(x) - L_{k,t_{j+1}}(f_{2})(z_{1})) \right|^{\rho} \right)^{1/\rho} \\ &= \left(\sum_{j=j_{k}}^{\infty} \left| W_{t_{j}}(f)(x) - W_{t_{j}}(f_{2})(z_{1}) - (W_{t_{j+1}}(f)(x) - W_{t_{j+1}}(f_{2})(z_{1})) \right|^{\rho} \right. \\ &+ \left| W_{t_{j_{k}}}(f)(x) - W_{t_{j_{k}}}(f_{2})(z_{1}) \right|^{\rho} \right)^{1/\rho} \\ &\leq C \left(\left(\left(\sum_{j=j_{k}}^{\infty} \left| W_{t_{j}}(f)(x) - W_{t_{j}}(f_{2})(z_{1}) - (W_{t_{j+1}}(f)(x) - W_{t_{j+1}}(f_{2})(z_{1})) \right|^{\rho} \right)^{1/\rho} \right. \\ &+ \left. \sup_{0 < t \le \gamma(x_{k})^{2}} \left| W_{t}(f)(x) - W_{t}(f_{2})(z_{1}) \right| \right), \ x \in Q_{k}^{*}, \end{split}$$

and then

$$\begin{split} \|L_{k,t}(f)(x) - h^{B}(t)\|_{E_{\rho}} \\ &\leq C \left(\sup_{\{t_{j}\}_{j=1}^{\infty} \downarrow 0, \ 0 < t_{j} \leq \gamma(x_{k})^{2}} \left(\sum_{j=1}^{\infty} \left| W_{t_{j}}(f)(x) - W_{t_{j}}(f_{2})(z_{1}) - (W_{t_{j+1}}(f)(x) - W_{t_{j+1}}(f_{2})(z_{1})) \right|^{\rho} \right)^{1/\rho} \\ &+ \sup_{0 < t \leq \gamma(x_{k})^{2}} \left| W_{t}(f)(x) - W_{t}(f_{2})(z_{1}) \right| \right), \ x \in Q_{k}^{*}. \end{split}$$

By taking into account Proposition 3.1 with $\mathscr{A} = \{\{t_j\}_{j=1}^{\infty} \subset (0, \infty)^{\mathbb{N}} : \{t_j\}_{j=1}^{\infty} \downarrow 0, 0 < t_j \leq \gamma(x_k)^2\}$, we obtain

$$\frac{1}{|B|} \int_{B} \sup_{\{t_j\}_{j=1}^{\infty} \downarrow 0, \ 0 < t_j \le \gamma(x_k)^2} \left(\sum_{j=1}^{\infty} \left| W_{t_j}(f)(x) - W_{t_j}(f_2)(z_1) - (W_{t_{j+1}}(f)(x) - W_{t_{j+1}}(f_2)(z_1)) \right|^{\rho} \right)^{1/\rho} dx$$

$$\leq C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}. \tag{32}$$

🖄 Springer

Also, according to [14, pp. 348–349] it follows that

$$\frac{1}{|B|} \int_{B} \sup_{0 < t \le \gamma(x_k)^2} |W_t(f)(x) - W_t(f_2)(z_1)| dx \le C \|f\|_{BMO^{\mathscr{L}}(\mathbb{R}^n)}.$$
(33)

From Eqs. 32 and 33 we deduce (A3).

Note that the constant C > 0 does not depend on k and B in all the occurrences. Thus the proof of (ii_k) is finished.

4.2 Proof of Theorem 2.8

Let $\rho > 2$. We may assume without lost of generality that $V \in RH_q$ with q > n. In fact, from [16], reverse Hölder inequalities are open, i.e., if $g \in RH_s$, then it is also true that $g \in RH_{s+\varepsilon}$ for some $\varepsilon > 0$.

In order to prove that the variation operator $V_{\rho}(R_{\ell}^{\mathscr{L},\varepsilon})$ is bounded from $BMO^{\mathscr{L}}(\mathbb{R}^n)$ into itself, we consider, for every $k \in \mathbb{N}$, the local operators defined as

$$R_{\ell,k}^{\mathscr{L}}(f)(x) = PV \int_{|x-y| < \gamma(x_k)} R_{\ell}^{\mathscr{L}}(x,y) f(y) dy,$$

and

$$R_{\ell,k}(f)(x) = PV \int_{|x-y| < \gamma(x_k)} R_\ell(x-y) f(y) dy.$$

Note that $|y - x_k| \le 3\gamma(x_k)$ when $x \in Q_k^*$ and $|x - y| < \gamma(x_k)$. Then, if $f \in BMO^{\mathcal{L}}(\mathbb{R}^n)$,

$$R_{\ell,k}(f)(x) = \lim_{\epsilon \to 0^+} \int_{\epsilon < |x-y| < \gamma(x_k)} R_{\ell}(x-y) f(y) \chi_{3Q_k}(y) dy, \text{ a.e. } x \in Q_k^*,$$

that is, this limit exists for almost all $x \in Q_k^*$ when $f \in BMO^{\mathscr{L}}(\mathbb{R}^n)$. Also, $R_{\ell,k}^{\mathscr{L}}(f)(x)$ is defined for almost every $x \in Q_k^*$ when $f \in BMO^{\mathscr{L}}(\mathbb{R}^n)$ (see [2, Proposition 1.1]).

Let $f \in BMO^{\mathscr{L}}(\mathbb{R}^n)$. We are going to analyze the properties (i_k) and (i_k) when $H = V_{\rho}(R_{\ell}^{\mathscr{L},\varepsilon})$. Let $k \in \mathbb{N}$. We can write

$$\begin{split} V_{\rho}\left(R_{\ell}^{\mathscr{L},\varepsilon}\right)(f) &= \left(V_{\rho}\left(R_{\ell}^{\mathscr{L},\varepsilon}\right)(f) - V_{\rho}\left(R_{\ell,k}^{\mathscr{L},\varepsilon}\right)(f)\right) \\ &+ \left(V_{\rho}\left(R_{\ell,k}^{\mathscr{L},\varepsilon}\right)(f) - V_{\rho}\left(R_{\ell,k}^{\varepsilon}\right)(f)\right) + V_{\rho}\left(R_{\ell,k}^{\varepsilon}\right)(f) \\ &= F_{1,k} + F_{2,k} + V_{\rho}\left(R_{\ell,k}^{\varepsilon}\right)(f). \end{split}$$

2 Springer

For $x \in Q_k^*$ we have

$$\begin{split} |F_{1,k}(x)| &\leq V_{\rho} \left(R_{\ell}^{\mathscr{L},\varepsilon} - R_{\ell,k}^{\mathscr{L},\varepsilon} \right) (f)(x) \\ &= \sup_{\{\varepsilon_{j}\}_{j=1}^{\infty}\downarrow 0} \left(\sum_{j=1}^{\infty} \left| \int_{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}} R_{\ell}^{\mathscr{L}}(x,y) f(y) dy \right|^{\rho} \right)^{1/\rho} \\ &- \int_{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}, |x-y| < \gamma(x_{k})} R_{\ell}^{\mathscr{L}}(x,y) f(y) dy \Big|^{\rho} \right)^{1/\rho} \\ &= \sup_{\{\varepsilon_{j}\}_{j=1}^{\infty}\downarrow 0} \left(\sum_{j=1}^{\infty} \left| \int_{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}, |x-y| \geq \gamma(x_{k})} R_{\ell}^{\mathscr{L}}(x,y) f(y) dy \right|^{\rho} \right)^{1/\rho} \\ &\leq \int_{|x-y| > \gamma(x_{k})} |R_{\ell}^{\mathscr{L}}(x,y)| |f(y)| dy. \end{split}$$

Then, according to [4, Lemma 3, (a)], since $\gamma(x_k) \ge M\gamma(x)$, $x \in Q_k^*$, for a certain 0 < M < 1 that does not depend on $k \in \mathbb{N}$, it follows that

$$\begin{split} |F_{1,k}(x)| &\leq C \int_{|x-y| > M\gamma(x)} \frac{1}{|x-y|^n} \frac{1}{1+|x-y|/\gamma(x)|} |f(y)| dy \\ &\leq C \sum_{j=0}^{\infty} \int_{M2^{j}\gamma(x) < |x-y| < M2^{j+1}\gamma(x)} \frac{1}{|x-y|^n} \frac{1}{1+|x-y|/\gamma(x)|} |f(y)| dy \\ &\leq C \sum_{j=0}^{\infty} \frac{1}{2^j} \frac{1}{(2^{j}\gamma(x))^n} \int_{|x-y| < M2^{j+1}\gamma(x)} |f(y)| dy \leq C ||f||_{\text{BMO}} \mathscr{L}_{(\mathbb{R}^n)}, \quad x \in Q_k^*. \end{split}$$

Also, by using [4, Lemma 3, (b)], we obtain

$$\begin{split} |F_{2,k}(x)| &\leq V_{\rho} \left(R_{\ell,k}^{\mathscr{L},\varepsilon} - R_{\ell,k}^{\varepsilon} \right) (f)(x) \\ &= \sup_{\{\varepsilon_{j}\}_{j=1}^{\infty} \downarrow 0} \left(\sum_{j=1}^{\infty} \left| \int_{\varepsilon_{j+1} < |x-y| < \varepsilon_{j,} |x-y| < \gamma(x_{k})} (R_{\ell}^{\mathscr{L}}(x,y) - R_{\ell}(x-y)) f(y) dy \right|^{\rho} \right)^{1/\rho} \\ &\leq \int_{|x-y| < \gamma(x_{k})} |R_{\ell}^{\mathscr{L}}(x,y) - R_{\ell}(x-y)| |f(y)| dy \\ &\leq C \int_{|x-y| < \gamma(x_{k})} \frac{1}{|x-y|^{n}} \left(\frac{|x-y|}{\gamma(x)} \right)^{2-n/q} |f(y)| dy, \quad x \in Q_{k}^{*}. \end{split}$$

Then, using Hölder inequality and that $\gamma(x) \sim \gamma(x_k), x \in Q_k^*$, we arrive to

$$\begin{aligned} |F_{2,k}(x)| &\leq C \left(\int_{|x-y| < \gamma(x_k)} |x-y|^{(2-n/q-n)r} dy \right)^{1/r} \frac{1}{\gamma(x_k)^{2-n/q}} \left(\int_{|x-y| < \gamma(x_k)} |f(y)|^{r'} dy \right)^{1/r'} \\ &\leq C \left(\frac{1}{\gamma(x_k)^n} \int_{|x-y| < \gamma(x_k)} |f(y)|^{r'} dy \right)^{1/r'} \leq C ||f||_{\text{BMO}} \mathscr{L}_{(\mathbb{R}^n)}, \quad x \in Q_k^*. \end{aligned}$$

Here, 1 < r < n/(n - 2 + n/q).

D Springer

Since, for $i = 1, 2, F_{i,k} \in L^{\infty}(Q_k^*)$ and $||F_{i,k}||_{L^{\infty}(Q_k^*)} \leq C||f||_{BMO^{\mathscr{L}}(\mathbb{R}^n)}$, where C does not depend on $k \in \mathbb{N}$, in order to see that the properties (i_k) and (i_k) hold for $H = V_{\rho}(R_{\ell,k}^{\mathscr{L},\varepsilon})$ it is sufficient to establish those properties for $H = V_{\rho}(R_{\ell,k}^{\varepsilon})$.

Fix again $k \in \mathbb{N}$. Then

$$\begin{split} V_{\rho}\left(R_{\ell,k}^{\varepsilon}\right)(f)(x) &= \sup_{\{\varepsilon_{j}\}_{j=1}^{\infty}\downarrow 0} \left(\sum_{j=1}^{\infty} \left| \int_{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}, |x-y| < \gamma(x_{k})} R_{\ell}(x-y) f(y) dy \right|^{\rho} \right)^{1/\rho} \\ &= \sup_{\{\varepsilon_{j}\}_{j=1}^{\infty}\downarrow 0} \left(\sum_{j=1}^{\infty} \left| \int_{\varepsilon_{j+1} < |x-y| < \varepsilon_{j}, |x-y| < \gamma(x_{k})} R_{\ell}(x-y) f(y) \chi_{Q_{k}^{**}}(y) dy \right|^{\rho} \right)^{1/\rho} \\ &\leq V_{\rho}\left(R_{\ell,k}^{\varepsilon}\right) \left(f \chi_{Q_{k}^{**}}\right)(x), \quad x \in Q_{k}^{*}. \end{split}$$

Hence, according to Theorem 2.3, we have

$$\frac{1}{|Q_k|} \int_{Q_k} |V_\rho\left(R_{\ell,k}^\varepsilon\right)(f)(x)| dx \leq \left(\frac{1}{|Q_k|} \int_{Q_k} |V_\rho(R_{\ell,k}^\varepsilon)(f\chi_{Q_k^{**}})(x)|^2 dx\right)^{1/2} \\
\leq C \left(\frac{1}{|Q_k|} \int_{Q_k^{**}} |f(x)|^2 dx\right)^{1/2} \\
\leq C ||f||_{BMO^{\mathscr{L}}(\mathbb{R}^n)}.$$
(34)

Let now $x_0 \in \mathbb{R}^n$ and $r_0 > 0$ such that $B = B(x_0, r_0) \subset Q_k^*$. Then, by using Proposition 3.2 we can see

$$\frac{1}{|B|} \int_{B} |V_{\rho}\left(R_{\ell,k}^{\varepsilon}\right)(f)(x) - V_{\rho}\left(R_{\ell,k}^{\varepsilon}\right)(f_{2})(z_{1})|dx \leq C||f||_{\mathsf{BMO}^{\mathscr{L}}(\mathbb{R}^{n})}$$

where $f_2 = (f - f_B)\chi_{(B^{**})^c}$ and $z_1 \in B$ is such that $V_\rho(R_{\ell,k}^\varepsilon)(f_2)(z_1) < \infty$. Hence, $V_\rho(R_{\ell,k}^\varepsilon)(f) \in BMO(Q_k^\varepsilon)$ and

$$||V_{\rho}\left(R_{\ell,k}^{\varepsilon}\right)(f)||_{\mathrm{BMO}(\mathcal{Q}_{k}^{*})} \leq C||f||_{\mathrm{BMO}^{\mathscr{L}}(\mathbb{R}^{n})}.$$
(35)

Note that the constants C > 0 appearing in Eqs. 34 and 35 do not depend on $k \in \mathbb{N}$. Thus the proof of the desired result is finished.

Assume now that $V \in RH_q$ where n/2 < q. In fact it is sufficient to consider n/2 < q < n. We have to show that the variation operator for the adjoint Riesz transform, $V_{\rho}(\mathscr{R}_{\ell}^{\mathscr{L},\varepsilon})$, is bounded from $BMO^{\mathscr{L}}(\mathbb{R}^n)$ into itself. Looking at the proof above, this result will be established when we see that, for every $k \in \mathbb{N}$, the operators defined by

$$T_{1,k}(f)(x) = \int_{|x-y| > \gamma(x_k)} |R_{\ell}^{\mathscr{L}}(y,x)| |f(y)| dy,$$

and

$$T_{2,k}(f)(x) = \int_{|x-y| < \gamma(x_k)} |R_{\ell}^{\mathscr{L}}(y,x) - R_{\ell}(y-x)||f(y)|dy,$$

map BMO^{\mathscr{L}}(\mathbb{R}^n) into $L^{\infty}(Q_k^*)$, and, for i = 1, 2,

$$||T_{i,k}(f)||_{L^{\infty}(\mathcal{Q}_{k}^{*})} \leq C||f||_{\text{BMO}^{\mathscr{L}}(\mathbb{R}^{n})}, \quad f \in \text{BMO}^{\mathscr{L}}(\mathbb{R}^{n}),$$

where C > 0 does not depend on $k \in \mathbb{N}$. Let $k \in \mathbb{N}$ and $f \in BMO^{\mathscr{L}}(\mathbb{R}^n)$. According to [27, p. 538], we have that

$$\begin{split} |T_{1,k}(f)(x)| &\leq C \left(\int_{|x-y| > \gamma(x_k)} \frac{1}{|x-y|^n} \frac{1}{(1+|x-y|/\gamma(x))^{\alpha}} |f(y)| dy \right. \\ &+ \int_{|x-y| > \gamma(x_k)} \frac{1}{|x-y|^{n-1}} \frac{|f(y)|}{(1+|x-y|/\gamma(x))^{\alpha}} \int_{B(y,\frac{|x-y|}{4})} \frac{V(z)}{|z-y|^{n-1}} dz dy \right) \\ &= C(T_{1,1,k}(f)(x) + T_{1,2,k}(f)(x)), \quad x \in Q_k^*, \end{split}$$

where $\alpha > 0$ will be chosen later large enough.

As it was shown earlier, we have

$$||T_{1,1,k}(f)||_{L^{\infty}(Q_{k}^{*})} \leq C||f||_{BMO}\mathscr{L}_{(\mathbb{R}^{n})},$$
(36)

provided that $\alpha \geq 1$.

On the other hand, since $\gamma(x) \sim \gamma(x_k)$ when $x \in Q_k^*$, we can write

$$\begin{split} |T_{1,2,k}(f)(x)| &\leq C \sum_{j=0}^{\infty} \frac{1}{2^{j\alpha} (2^{j}\gamma(x_{k}))^{n-1}} \int_{2^{j}\gamma(x_{k}) < |x-y| \le 2^{j+1}\gamma(x_{k})} |f(y)| \\ &\qquad \times \int_{B(y, \frac{|x-y|}{4})} \frac{V(z)}{|z-y|^{n-1}} dz dy \\ &\leq C \sum_{j=0}^{\infty} \frac{1}{2^{j\alpha} (2^{j}\gamma(x_{k}))^{n-1}} \left(\int_{|x-y| \le 2^{j+1}\gamma(x_{k})} |f(y)|^{p_{0}'} dy \right)^{1/p_{0}'} \\ &\qquad \times \left(\int_{\mathbb{R}^{n}} \left| \int_{|x-z| < 2^{j+2}\gamma(x_{k})} \frac{V(z)}{|z-y|^{n-1}} dz \right|^{p_{0}} dy \right)^{1/p_{0}}, \quad x \in Q_{k}^{*} \end{split}$$

where $\frac{1}{p_0} = \frac{1}{q} - \frac{1}{n}$. Then, the L^p -boundedness properties of the fractional integrals [28, p. 354] lead us to

$$\begin{aligned} |T_{1,2,k}(f)(x)| &\leq C ||f||_{\text{BMO}} \mathscr{L}_{(\mathbb{R}^n)} \sum_{j=0}^{\infty} \frac{1}{2^{j\alpha} (2^j \gamma(x_k))^{n-1-n/p'_0}} \\ & \times \left(\int_{|x-z| < 2^{j+2} \gamma(x_k)} V(z)^q dz \right)^{1/q}, \ x \in Q_k^*. \end{aligned}$$

By using the properties of V and γ [4, Lemma 1] we obtain, for a certain $\mu > 0$,

$$\left(\int_{|x-z|<2^{j+2}\gamma(x_k)} V(z)^q dz\right)^{1/q} \le C(2^j \gamma(x_k))^{-n/q'} 2^{j\mu} \gamma(x_k)^{n-2}, \quad x \in Q_k^*.$$

By choosing $\alpha > 0$ large enough, it follows that

$$|T_{1,2,k}(f)(x)| \leq C||f||_{\text{BMO}}\mathscr{L}_{(\mathbb{R}^n)} \sum_{j=0}^{\infty} \frac{1}{2^{j(\alpha+n/p_0-1+n/q'-\mu)}}$$
$$\leq C||f||_{\text{BMO}}\mathscr{L}_{(\mathbb{R}^n)}, \quad x \in Q_k^*.$$
(37)

We conclude from Eqs. 36 and 37 that

$$||T_{1,k}(f)||_{L^{\infty}(\mathcal{Q}_k^*)} \leq C||f||_{\mathrm{BMO}}\mathscr{L}_{(\mathbb{R}^n)},$$

where C > 0 does not depend on $k \in \mathbb{N}$.

According to [27, (5.9)] we get

$$\begin{aligned} |T_{2,k}(f)(x)| &\leq C\left(\int_{|x-y|<\gamma(x_k)} \frac{1}{|x-y|^n} \left(\frac{|x-y|}{\gamma(x)}\right)^{2-n/q} |f(y)| dy \\ &+ \int_{|x-y|<\gamma(x_k)} \frac{1}{|x-y|^{n-1}} \int_{|y-z|<\frac{|x-y|}{4}} \frac{V(z)}{|z-y|^{n-1}} dz |f(y)| dy \right) \\ &= C(T_{2,1,k}(f)(x) + T_{2,2,k}(f)(x)), \ x \in Q_k^*. \end{aligned}$$

As in the proof of the first part of this theorem we have that

$$||T_{2,1,k}(f)||_{L^{\infty}(Q_k^*)} \le C||f||_{\text{BMO}}\mathscr{L}_{(\mathbb{R}^n)}.$$
(38)

Also, we can write

$$\begin{split} |T_{2,2,k}(f)(x)| &\leq C \sum_{j=0}^{\infty} \int_{2^{-j-1}\gamma(x_k) \leq |x-y| < 2^{-j}\gamma(x_k)} \frac{|f(y)|}{(2^{-j}\gamma(x_k))^{n-1}} \\ &\qquad \times \int_{|x-z| < 2^{-j+1}\gamma(x_k)} \frac{V(z)}{|y-z|^{n-1}} dz dy \\ &\leq C \sum_{j=0}^{\infty} \frac{1}{(2^{-j}\gamma(x_k))^{n-1}} \left(\int_{|x-y| < 2^{-j}\gamma(x_k)} |f(y)|^{p'_0} dy \right)^{1/p'_0} \\ &\qquad \times \left(\int_{\mathbb{R}^n} \left(\int_{|x-z| < 2^{-j+1}\gamma(x_k)} \frac{V(z)}{|y-z|^{n-1}} dz \right)^{p_0} dy \right)^{1/p_0} \\ &\leq C \sum_{j=0}^{\infty} \frac{1}{(2^{-j}\gamma(x_k))^{n-1-n/p'_0}} \left(\int_{|x-y| < 2^{-j+1}\gamma(x_k)} V(z)^q dz \right)^{1/q} \\ &\qquad \times \left(\frac{1}{(2^{-j}\gamma(x_k))^n} \int_{|x-y| < 2^{-j}\gamma(x_k)} |f(y)|^{p'_0} dy \right)^{1/p'_0}, \quad x \in Q_k^*, \end{split}$$

where $\frac{1}{p_0} = \frac{1}{q} - \frac{1}{n}$. Since $V \in RH_q$ and $\gamma(x) \sim \gamma(x_k)$, when $x \in Q_k^*$, we have [4, Lemma 1]

$$\left(\int_{B(x,2^{-j+1}\gamma(x_k))} V(z)^q dz\right)^{1/q} \le C\gamma(x_k)^{n/q-2}, \quad x \in Q_k^*.$$

2 Springer

Moreover, an argument like the one used to show [14, Lemma 2] allows us to get

$$\left(\frac{1}{(2^{-j}\gamma(x_k))^n}\int_{|x-y|<2^{-j}\gamma(x_k)}|f(y)|^{p'_0}dy\right)^{1/p'_0}\leq Cj||f||_{\mathrm{BMO}}\mathscr{L}_{(\mathbb{R}^n)}.$$

Then,

$$|T_{2,2,k}(f)(x)| \leq C \sum_{j=0}^{\infty} \frac{j}{(2^{-j}\gamma(x_k))^{n/p_0-1}} \gamma(x_k)^{n/q-2} ||f||_{BMO^{\mathscr{L}}(\mathbb{R}^n)}$$

$$\leq C ||f||_{BMO^{\mathscr{L}}(\mathbb{R}^n)}, \quad x \in Q_k^*.$$
(39)

Note that $\frac{n}{p_0} - 1 = \frac{n}{q} - 2 < 0$. By combining Eqs. 38 and 39 we conclude that

$$||T_{2,k}(f)||_{L^{\infty}(Q_k^*)} \leq C||f||_{\mathrm{BMO}^{\mathscr{L}}(\mathbb{R}^n)},$$

where C > 0 does not depend on $k \in \mathbb{N}$.

Thus the proof is finished.

References

- 1. Bennet, C., DeVore, R.A., Sharpley, R.: Weak- L^{∞} and BMO. Ann. Math. (2) 113(3), 601–611 (1981)
- 2. Betancor, J.J., Fariña, J.C., Harboure, E., Rodríguez-Mesa, L.: L^p-boundedness properties of variation and oscillation operators in the Schrödinger setting. Rev. Mat. Complut. (2012). doi:10.1007/s13163-012-0094-y
- 3. Bongioanni, B., Harboure, E., Salinas, O.: Weighted inequalities for negative powers of Schrödinger operators. J. Math. Anal. Appl. 348(1), 12-27 (2008)
- 4. Bongioanni, B., Harboure, E., Salinas, O.: Riesz transform related to Schrödinger operators acting on BMO type spaces. J. Math. Anal. Appl. 357, 115-131 (2009)
- 5. Bongioanni, B., Harboure, E., Salinas, O.: Commutators of Riesz transform related to Schrödinger operators. J. Fourier Anal. Appl. 17(1), 115–134 (2011)
- 6. Bourgain, J.: Pointwise ergodic theorems for arithmetic sets. Publ. Math. IHES 69, 5–45 (1989)
- 7. Campbell, J.T., Jones, R.L., Reinhold, K., Wierdl, M.: Oscillation and variation for the Hilbert transform. Duke Math. J. 105(1), 59-83 (2000)
- 8. Campbell, J.T., Jones, R.L., Reinhold, K., Wierdl, M.: Oscillation and variation for singular integrals in higher dimensions. Trans. Am. Math. Soc. 355(5), 2115-2137 (2003)
- 9. Crescimbeni, R., Macías, R.A., Menárguez, T., Torrea, J.L., Viviani, B.: The ρ-variation as an operator between maximal operators and singular integrals. J. Evol. Equ. 9(1), 81-102 (2009)
- 10. Crescimbeni, R., Martín-Reyes, F., de la Torre, A., Torrea, J.L.: The ρ -variation of the Hermitian Riesz transform. Acta Math. Sin. Engl. Ser. 26(10), 1827–1838 (2010)
- 11. Dong, J.-F., Liu, H.-P.: The BMO_L space and Riesz transforms associated with Schrödinger operators. Acta Math. Sin. 26(4), 659-668 (2010)
- 12. Dziubański, J., Zienkiewicz, J.: Hardy space H^1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoam. 15(2), 279–296 (1999)
- 13. Dziubański, J., Zienkiewicz, J.: H^p spaces for Schrödinger operators. In: Fourier Analysis and Related Topics, vol. 56, pp. 45–53. Banach Center Publications (2002)
- 14. Dziubański, J., Garrigós, G., Martínez, T., Torrea, J.L., Zienkiewicz, J.: BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249(2), 329-356 (2005)
- 15. Dziubański, J., Zienkiewicz, J.: H^p spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math. 98(1), 5-38 (2003)
- 16. Gehring, F.W.: The L^p -integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265-277 (1973)

- Gillespie, T.A., Torrea, J.L.: Dimension free estimates for the oscillation of Riesz transforms. Isr. J. Math. 141, 125–144 (2004)
- Guo, Z., Li, P., Peng, L.: L^p boundedness of commutators of Riesz transforms associated to Schrödinger operator. J. Math. Anal. Appl. 341, 421–432 (2008)
- Harboure, E., Macías, R., Menárguez, T., Torrea, J.L.: Oscillation and variation for the Gaussian Riesz transforms and Poisson integral. Proc. R. Soc. Edinb. Sect. A 135(1), 85–104 (2005)
- Jones, R.L., Wang, G.: Variation inequalities for the Fejer and Poisson kernels. Trans. Am. Math. Soc. 356(11), 4493–4518 (2004)
- Jones, R.L., Kaufman, R., Rosenblatt, J., Wierdl, M.: Oscillation in ergodic theory. Ergod. Theory Dyn. Syst. 18(4), 889–936 (1998)
- Jones, R.L., Reinhold, K.: Oscillation and variation inequalities for convolution powers. Ergod. Theory Dyn. Syst. 21(6), 1809–1829 (2001)
- Jones, R.L., Seeger, A., Wright, J.: Strong variational and jump inequalities in harmonic analysis. Trans. Am. Math. Soc. 360(12), 6711–6742 (2008)
- Liu, Y., Ding, Y.: Some estimates of Schrödinger-type operators with certain nonnegative potentials. Int. J. Math. Math. Sci., article ID 214030, 8 pp. (2008). doi:10.1155/2008/214030
- Liu, Y., Dong, J.: Some estimates of higher order Riesz transform related to Schrödinger-type operators. Potential Anal. 32(1), 41–55 (2010)
- Oberlin, R., Seeger, A., Tao, T., Thiele, C., Wright, J.: A variation norm Carleson theorem. J. Eur. Math. Soc. 14(2), 421–464 (2012)
- Shen, Z.W.: L^p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45(2), 513–546 (1995)
- Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 43, xiv+695 (1993). With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III
- Sugano, S.: L^p estimates for some Schrödinger operators and a Calderón-Zygmund operator of Schrödinger type. Tokyo J. Math. 30, 179–197 (2007)
- 30. Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Dover, Mineola (2004)
- Yang, D., Yang, D.: Characterizations of localized BMO(Rⁿ) via commutators of localized Riesz transforms and fractional integrals associated to Schrödinger operators. Collect. Math. 61(1), 65–79 (2010)
- 32. Yang, D., Yang, D., Zhou, Y.: Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators. Potential Anal. **30**, 271–300 (2009)
- Zhong, J.: Harmonic analysis for some Schrödinger type operators. Ph.D. thesis, Princeton University (1993)