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Current induction and macroscopic forces for superconducting strings

Fernando Chamizo∗ Osvaldo P. Santillán†

Abstract

Vortons are extended superconducting rings, which hypothetically may play a role in cosmology
and even may have significance in connection with cosmic rays of high energy. Some of these
objects are able to confine fermions which consequently become massless in the core of the object
[1], [11]. These fermions travel at light speed in the core and may generate a large current without
dissipation. This raises interest about the generation mechanisms for these currents inside the
defect. This question is analyzed here by studying the inverse photoelectric effect for these objects
namely, the absorption of a fermion with the consequent emission of a photon or a massive boson
by the extended defect. Another motivation for the present work is that there exists a discussion
in condensed matter about the role of the bound spectrum in the macroscopic Magnus force that
the vortex experiences in certain type of superfluids or superconductors. The discussion is about
wether the main force comes from scattering of these fermions by the object or by the effect of
the environment on the bound states in the object, which may induce a spectral flow leading to
an effective macroscopic force [49], [56], [61]. Without claiming that the results described here are
conclusive in the context of condensed matter, this work presents a comparison between these two
effects for vortons interacting with a plasma of fermions.

1. Introduction

Among the topological defects that can be generated at early universe stages, string like objects are the
most attractive at first sight. The reason is that monopoles or domain walls can overcome the critical
density of the universe, the first due to the super abundance of very light objects and the second due
to the enormous energy contribution of the walls. The Standard Model does not include such objects.
However, the possibility that its completion at large energies may accommodate them is not excluded.
One interesting possibility are superconducting strings [1], which in their fermionic version can confine
fermions in their core which travels at very large speeds without dissipation. This superconducting
property, which is clear if the fermions are charged, has several consequences in cosmology. There
exist some scenarios involving axions or U(1)L−B gauged models which include this type of defects
[2]-[8]. A particular set of these objects are vortons, which are superconducting rings. An initially
small current is amplified [9]-[11] when the object makes dissipative contraction until the centrifugal
force of the current carriers compensates this contraction, thus rendering these objects stable.

Although the existence of vortons is of vivid interest, there are some issues with the introduction
of these objects in cosmology. A conservative number of the scale of symmetry breaking allowed
for these objects is 109GeV, otherwise they may overcome the critical density of the universe at an
unacceptable level [11]-[15]. This does not rule out these objects, but it excludes them as candidates
for galaxy formation or to leave imprints in the cosmic microwave radiation. However, the assumption
for those references is that these objects appear at the time of string formation, and this hypothesis
was considered in [16]-[17] by employing a Boltzmann formalism, allowing to these authors to enlarge
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the parameter space for these objects, see also [18]. In addition, mechanisms that partially spoil
the stability of these defects are of particular importance. Examples may be quantum tunneling,
or modifications of the original Witten scenarios with further couplings leading to current leakage
[20]-[21]. An additional idea is to introduce electromagnetic corrections of the self-interactions of
the vorton with itself, which induce further decay channels [19]. Still an interesting possibility is to
consider fermionic superconducting strings, in which a zero mode fermion moving at a light speed
inside the core. It is a possibility that, due to the way the corresponding mass generating scalar field
couples, this mode ceases to be a zero mode when a phase transition occurs, thus the vorton stability
is not ensured anymore [22]. Such phase transitions are likely to hold in the early universe, and this
may allows to enlarge the 109GeV value for the symmetry breaking scale.

Despite these problems, there are further attractive properties of these objects, even when they
do not violate the above mentioned symmetry breaking scale bound. It is a possibility that vortons
may generate cosmic rays of ultra high energy, above the GKZ energy [23]-[24]. In addition, if their
collapse is gradual, it may have interesting applications in baryogenesis, as discussed for instance in
[25] and references therein.

There is another apparently unrelated motivation for the present work, which comes from con-
densed matter physics and is related to vortices in superconductors and superfluids [26]-[62]. There
exists in this context a discussion about the role of the bound states spectrum of the vortex on the
forces the object experiences in these systems [49], [56], [61]. The reference [56] has proposed a force
that does not depend on these bound states. On the other hand, based on the experimental data [62]
it was argued in [61] that the bound states living in the core of the vortex should have a macroscopic
effect in the force these objects experience. The arguments of [61] are based on an effective picture in
which the equations for the bound state in a moving vortex resemble a Dirac equation with an electric
field turned on. The application of anomaly arguments for this model [53], see also [63], leads to the
conclusion that there is a spectral flow of the energy levels, which may generate a macroscopic effect
resulting into an effective vortex force. However, this point of view was argued in [49], a reference
which states that the scattering states are the most important for the force calculation. The reference
[32] suggests that, in the optical geometric limit, there is a precession phenomenom originated by the
vortex rotation and Andreev reflection, and there is a tendency of the states to migrate from different
angular momentum states, which is compensated by the vortex motion. Thus, the flow becomes os-
cillating and spectral flow does not really takes place. However, this reference also suggests that even
though spectral flow is suppressed by these oscillations, it has some phenomenological consequence in
the calculation of the coefficients of the Magnus and Iordanskii forces these objects experience. In any
case, there is a debate about the role of the bound spectra for vortex physics in superconductors and
superfluids.

As is suggested by the paragraphs given above, in the cosmological context the discussion is cen-
tered on vortons and their decays channels by assuming that the vorton is formed. However, for
a vorton to mantain a superconducting current, it should absorb fermions somehow which become
massless in the core. This capture effect is important since if, at the time of string formation, the
corresponding cross section is suppressed, then only a little fraction of these defects become super-
conducting and this may be helpful in the context of the abundance problem. To the extent of the
authors knowledge, there is little discussion in the literature about this capture and we would like to
fill this gap. In addition, without claiming that the results to be presented here are conclusive in the
context of condensed matter physics, a comparison between the macroscopic force on the vortex by
the scattering of fermions and by this absorption process is presented. In other words, the macroscopic
effect of absorption of particles by the vortex, which is an effect due to the existence of bound state
energies in the object, is analyzed for vorton scenarios.

The present work is organized as follows. In §2 the equations ruling fermions on the vortex are
stated. Essentially they are the Dirac equation coupled to an electromagnetic field with cylindrical
symmetry and to a massive field with angle dependence. In §3 the Fourier expansion of the bounded

2



states is found for the case of general winding number in the scalar field via a synthetic complex
analytical approach. This technique is also employed to fully compute the zero modes and to deduce
a kind of Weyl’s law for the energy levels. In §4 the cross section corresponding to the capture of a
fermion is estimated, by working with certain analogy with the photoeffect. In §5 it is discussed the
Aharonov-Bohm scattering cross section to compare it to the result in the previous section. Finally,
in §6 it is studied the behavior of the corresponding cross section and the forces acting on the object
as a function of the parameters of the problem.

2. The Dirac equation for an abelian vortex

The following description of the Dirac equation in presence of a vortex will be schematic, and the
reader is referred to any QFT reference such as [75] for further details.

By gauge invariance arguments, as follows from formula (14.58) of [75], in presence of a gauge field
Aµ and a complex scalar φ, the Lagrangian density L = iΨγµ∂µΨ−mΨΨ corresponding to the Dirac
equation should be modified, under the Weyl representation, to

L = iΨγµ diag
(
D−

µ ,D
+
µ

)
Ψ − hΨ diag

(
φ, φ∗)Ψ.

In the last expression the covariant derivative D±
µ = ∂µ ∓ 1

2Aµ was introduced and h ∈ R is the
coupling constant. In the following the charge of the fermion will be taken as e, other options are
possible but they are not essential for our purposes.

To model a vortex along the z-axis, cylindrical symmetry is assumed in the fields profiles except
for an angular dependence in φ representing a winding number n. These fields are then parameterized
as

Aµ =
B(r)

r
(0,− sin θ, cos θ, 0), φ = veinθF (r)

for some radial functions B(r) and F (r) and v a real constant. In principle n is any integer (positive
or negative). In this work special interest will be put in the case n = 1. The radius r and the angle θ
are the standard polar coordinates on the plane xy.

The symmetry of the problem and the static nature of the vortex suggest to look for solutions of
the form ei(kz−ωt)Ψ(x, y). As shown in §16.3 and §14.3 of [75] the equations of motion characterize Ψ
as eigenstates of the reduced operator DΨ = λΨ with1

D =

(
−iσ1D−

1 − iσ2D−
2 −hφ∗

−hφ iσ1D+
1 + iσ2D+

2

)
, (2.1)

where the reduced covariant derivative D±
j = ∂j ± 1

2 ir
−1B(r)(− sin θ, cos θ) was introduced.

By use of charge conjugation, it is enough to examine the case λ ≥ 0 [75]. The operator D
commutes with the anti-linear operator Ψ = (χ, η) 7→ (σ1η∗, σ1χ∗). This latter operator diagonalizes
over R with eigenvalues ±1. Then the eigenstates of (2.1) may be taken to satisfy η = ±σ1χ∗. The
quantities χ and η of course, constitute a two component spinor. The previous reduction to two
degrees of freedom allows to restrict ourselves to the first two coordinates of the eigenstate equation.
After multiplying by iσ1, they read

(D−
1 + iσ3D−

2 )χ− ihve−inθF (r)σ1η = iλσ1χ (2.2)

where η = ±σ1χ∗. The map Ψ 7→ iΨ establishes a one-to-one correspondence between the spinors
satisfying (2.2) with η = σ1χ∗ and η = −σ1χ∗. Therefore the reduced Dirac equation can be studied

1Note that in (16.45) there is a misprint with a wrong sign in φ. However, the conclusions of that reference are, in
our opinion, correct.
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in the real space of the spinors satisfying the first condition and by then complexify it. In other words,
the solutions of DΨ = λΨ are of the form

Ψ = z0
(
χ, σ1χ∗)T with z0 ∈ C. (2.3)

In connection with the possibility of taking η = ±σ1χ, note that changing the sign of η is the same as
changing the sign of hv. This implies that the positivity condition hv > 0 can be freely assumed.

For simplicity, in the following discussion the profiles B(r) and F (r) will be taken as Heaviside step
functions. This is an approximation for the true smooth functions appearing when solving the field
equations for the corresponding Lagrangian (7.46) of [75] having boundary values F (0) = B(0) = 0
and F (∞) = 1, B(∞) = n [74], which suggests

B(r) = nH(r − r0) and F (r) = H(r − r0)

with H(x) the Heaviside step function and r0 a positive constant playing the role of the radius of the
vortex.

Note that, in the above approximation, the inner part of the vortex formally corresponds to
disconnect the gauge and scalar fields putting n = h = 0.

3. The vortex eigenfunctions

3.1 A complex variable approach

In the following, a complex variable approach for dealing with the reduced Dirac equations (2.2) will
be employed, which has the advantage of making the presentation more compact. It will be shown
that the resulting system of four first order equations can be reduced to two independent systems of
two first order equations. If the reader is not familiar or not confortable with the complex variable
arguments given below, in the appendix there is a straightforward but brief proof of the mentioned
reduction.

In order to start, note that in (2.2), inside the derivatives in D−
1 + iσ3D−

2 , they appear the
combinations ∂x ± i∂y. The notation

∂ =
1

2
(∂x − i∂y), z = x+ iy = reiθ,

is standard in complex analysis, see for instance §1.2 of [72]. The interest on the operator ∂ is that it
annihilates anti-holomorphic functions and it is the standard derivative for holomorphic functions, so

∂zα = αzα−1 ∂(z∗)α = 0.

This operator furthermore factorizes the Laplace operator in the form 4∂∂∗ = 4∂∗∂ = ∇2 and, as it
will be shown later, acts as a raising order operator on Bessel like functions, which be fundamental
for the present mathematical problem.

With the notation given above and by taking into account that η = σ1χ∗ the equation (2.2) reads





2
(
∂∗ − B(r)

4z∗

)
χ1 − ie−niθhvF (r)χ∗

1 = iλχ2,

2
(
∂ + B(r)

4z

)
χ2 − ie−niθhvF (r)χ∗

2 = iλχ1.

By the aforementioned property of ∂ with respect to holomorphic and anti-holomorphic functions, for
χ = (z∗/z)αγ the last equations become

(
∂∗ − α

z∗

)
χ =

(z∗
z

)α
∂∗γ and

(
∂ +

α

z

)
χ =

(z∗
z

)α
∂γ.
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If the last formula is applied in the case α = n/4 the equations in the outer part of the vortex r > r0
become

2Dγ − ihvγ∗ = iλσ1γ with D = diag
(
∂∗, ∂

)
. (3.4)

In the inner part of the vortex r < r0, as noticed before, the equations correspond to n = h = 0. This
implies that they reduce to

2Dχ = iλσ1χ. (3.5)

It should be remarked that a branch cut appears in γ if n is odd since (z∗/z)n/4 = e−inθ/2. Rigorously
speaking, (3.4) does not apply on that cut. This singularity of γ will be compensated below to get a
smooth spinor χ.

Define the operator acting on a two component spinor β by

Cβ = −iσ2β∗.

It is a simple exercise to check that [iσ1, 1 + C] = 0. Trivially [D, 1 + C] = 0 and since the conjugate
of (1 + C)β is −i(1 + C)σ2β, this means that the change γ = (1 + C)β in (3.4) produces the equation

2Dβ = iλσ1β + hvσ2β.

This formula implies that in the outer part of the vorton

2∂∗β1 = i(λ− hv)β2, 2∂β2 = i(λ+ hv)β1 with χ = e−inθ/2(1 + C)β, (3.6)

and, correspondingly, in the inner part

2∂∗β1 = iλβ2, 2∂β2 = iλβ1 with χ = (1 + C)β. (3.7)

To assure the regularity of χ in the outer part, the possible branch cut has to be cancelled by imposing
that

eiθδβ is regular with δ =

{
0 if n is even,

1/2 if n is odd.
(3.8)

Since 4∂∂∗ = ∇2, then the task of solving (3.6) reduces to finding β1 such that

∇2β1 = −(λ2 − h2v2)β1, (3.9)

and, after that, by taking
β2 = −2i(λ− hv)−1∂∗β1.

The same argument applies to (3.7) by putting h = 0.

3.2 Bound states and energies

According to the previous paragraph, in particular equation (3.9), the problem boils down to solve an
equation of the Helmholtz type

∇2u = −µ2u.
It is well known, see for instance V.5. of [71], that eiνθZν(µr) is a solution when Zν satisfies the Bessel
equation. In the classical theory ν ∈ Z, but here the half integral case has to be considered as well due
to the branch cut for n odd. The standard basis of the Bessel functions is given by

{
Jν(x), Yν(x)

}
with

Yν(x) having a singularity at the origin and both functions decaying as x−1/2. If µ2 < 0, the parameter
µ is pure imaginary and, although one may consider

{
Jν(ix), Yν(ix)

}
as a basis, the standard basis is{

Kν(x), Iν(x)
}

with
Kν(x) ∼ e−x/

√
x Iν(x) ∼ ex/

√
x,
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when x is large. By employing that 2∂∗ = eiθ
(
∂r + ir−1∂θ) or by expressing r and θ in terms of z and

z∗, this together with the recursion formula (8.472.2) of reference [64] leads to

2∂∗
(
eiνθZν(µr)

)
= −µei(ν+1)θZν+1(µr). (3.10)

After this brief summary about Bessel functions, the task is to solve (3.7) and (3.6). The unknown
β1 can be expanded in the inner part into Fourier series β1 =

∑
k e

ikθfk(r). As the case under study
is λ2 > 0, then the previous considerations show that fk is a multiple of Jk(λr) and from this, it is
found that

β =
∑

k∈Z

(
ak

iak−1

)
eikθJk(λr) and χ =

∑

k∈Z

(
Ak

iAk−1

)
eikθJk(λr) for r < r0.

The operator 1 + C does not change the form of the expansion because χ and β satisfy the same
equations namely, (3.5) and (3.7).

Instead, in the outer part, as eiθδβ has to be regular, the Fourier expansion to consider is β1 =∑
k e

i(k−δ)θfk(r). For λ2 − h2v2 > 0 there are not bound states since Jk−δ and Yk−δ do not decay
quick enough. If instead λ2 − h2v2 < 0 one is driven to take fk as a Kk−δ Bessel function. Hence

β =
∑

k∈Z

(
s−bk

−is+bk−1

)
ei(k−δ)θKk−δ(λhvr) for r > r0 (3.11)

where s± =
√
hv ± λ and λhv = s+s− =

√
h2v2 − λ2.

The condition imposing that the solutions of (3.6) and (3.7) agree on the boundary r = r0 is

e−inθ/2(1 + C)
∑

k∈Z

(
s−bk

−is+bk−1

)
ei(k−δ)θKk−δ(λhvr0) =

∑

k∈Z

(
Ak

iAk−1

)
eikθJk(λr0).

Comparing the Fourier coefficients of both sides, linear conditions are obtained.
Let us work out the details for n = 1 (hence δ = 1/2) to get the energy equation. In this case,

after applying 1 + C, it is deduced equating the k − 1 Fourier coefficients

(
s−bk − is+b

∗
−k

−is+bk−1 + s−b
∗
1−k

)
Kk−1/2(λhvr0) =

(
Ak−1

iAk−2

)
Jk−1(λr0). (3.12)

The first coordinate expresses Ak−1 in terms of X = bk, Y = b∗−k and the second coordinate after the
shift k 7→ k + 1 gives an independent expression for iAk−1. The condition to be both compatible is

Kk−1/2(λhvr0)

Jk−1(λr0)

(
s−X − is+Y

)
= −i

Kk+1/2(λhvr0)

Jk(λr0)

(
− is+X + s−Y

)
. (3.13)

On the other hand, conjugating the first coordinate and changing k 7→ −k the value of A∗
−k−1 is

expressed as a linear combination of X and Y , by use of the symmetries J−n = (−1)nJn and Kν = K−ν

which follow from the formulas (8.404.2) and (8.486.16) of [64]. Another formula for A∗
−k−1 follows

conjugating the second coordinate and changing k 7→ 1 − k. The compatibility of both formulas
imposes this time

Kk+1/2(λhvr0)

Jk+1(λr0)

(
s−Y + is+X

)
= −iKk−1/2(λhvr0)

Jk(λr0)

(
is+Y + s−X

)
. (3.14)

No more equations can be deduced from (3.12) involving bk, b−k, Ak−1 or A−k−1. Therefore, it is
concluded that the existence of nontrivial solutions of the homogeneous linear system (3.13), (3.14)
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gives rise to a bound state. It happens exactly when the determinant vanishes, leading to the energy
equation

λhv

(Kk+1/2

Kk−1/2
Jk−1 −

Kk−1/2

Kk+1/2
Jk+1

)
Jk = λ

(
J2
k + Jk−1Jk+1

)
(3.15)

where for the sake of simplicity the arguments λhvr0 and λr0 have been omitted in the K and J Bessel
functions, respectively.

Just for illustration, consider the case k = 1, hv = 5 of the previous analysis with r0 = 0.34845416.
This value has been chosen to force the energy equation to have the solution λ = 4. Introducing
these data in (3.13) and (3.14) the resulting underdetermined linear system shows that (b1, b−1) is any
multiple of (1, 7.6709342 i). Taking this as its value and recalling that both sides of (3.13) equal to
A0 and both sides of (3.14) to A∗

−2. It is deduced A0 = −16.637090 and A−2 = 19.134381 i.
Substituting these numerical values in the formulas for the Fourier expansions and setting the rest

of the bj and Aj as zero, it is obtained that the χ-part of the bound state corresponding to λ = 4 is
given by

χ =

(
19.134381i J2(4r)e−2iθ − 16.637090J0(4r)

−16.637090i J1(4r)eiθ + 19.134381J1(4r)e−iθ

)
for r ≤ r0.

and, substituting K1/2 and K3/2 by their formulas as elementary functions,

χ = r−3/2e−3r

(
(3.3798938 r + 1.1266313) ie−2iθ − 15.928492 r

(−7.7215014 r − 2.5738338)ieiθ + 17.375694 re−iθ

)
for r ≥ r0.

The constants have been rounded to 8 significant digits. Recall that the spinor is completed with the
η-part η = σ1χ∗. Note the exponential decay in the last formula and the continuous definition.

3.3 The zero mode space

A particular physical important set of eigenvalues and eigenvectors are the zero modes, that is, solu-
tions corresponding to λ = 0. This is due to the fact that these modes are the ones that may generate
large currents inside the extended object. According to (3.5) and (3.4), the zero modes correspond to
solutions of {

2∂∗χ1 = 0, 2∂χ2 = 0 if r < r0,

2∂∗γ1 = ihvγ∗1 , 2∂γ2 = ihvγ∗2 if r > r0,
(3.16)

where χ = e−inθ/2γ for r > r0 and χ is continuous through the boundary. The equations are decoupled
and are transformed into each other under the change γ2 into −iγ∗1 . Then the attention is focused on
solving

∂∗(e−inθ/2γ1) = 0 if r < r0, 2∂∗γ1 = ihvγ∗1 if r > r0.

The first equation is satisfied for any e−inθ/2γ1 holomorphic. On the other hand, writing γ1(r) =
(1 − i)f(hvr) the second equation is 2∂∗f = −f∗ for r > hvr0. It follows the characterization of the
real space of the χ-part of the zeros modes2 as the linear space generated by

{
(1 − i)e−inθ/2

(
f−(hvr)
f∗+(hvr)

)
: f± ∈ S±

}
(3.17)

where S± is the (real) space of functions f with e±inθ/2f normalizable and continuous on r = hvr0
such that

2∂∗f = −f∗ in r > r1 = hvr0 and e±inθ/2f holomorphic in r < r1.

2Recall that η = σ1χ.
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By conjugating the equation and by substituting it into itself, it is found that ∇2f = f which corre-
sponds to the case µ = i of the Helmholtz equation leading as before to

f =
∑

k∈Z

cke
iθ(k−δ)Kk−δ(r).

The recursion formula (3.10) implies that 2∂∗ acts on eiθ(k−δ)Kk−δ(r) just shifting k into k+ 1, hence
2∂∗f = −f∗ imposes c∗k = c2δ−1−k and is equivalent to it. This is clearly seen by taking into account
that Kν = K−ν , as follows from formula (8.486.16) of reference [64].

Form the above discussion, it is concluded that f in r > r1, the outer part, belongs to the real
space generated by

{
Ho

ν +Ho
−1−ν , iH

o
ν − iHo

−1−ν

}
ν∈δ+Z

with Ho
ν = Kν(r)eiνθ (3.18)

where δ is as in (3.8). By the symmetry ν 7→ −1 − ν it can be freely assumed that ν ≥ −1/2 and
in this range the previous set is linearly independent except for iHo

ν − iHo
−1−ν = 0 when ν = −1/2,

which only appears for n odd (k = 0, δ = 1/2).
Now, an analytic function is uniquely determined by its values on a curve. This means that the

only holomorphic function in r ≤ r1 matching A1e
im1θ +A2e

im2θ on r = r1, with A1, A2 6= 0, is

A1(z/r1)m1 +A2(z/r1)m2 ,

which forces m1 and m2 to be nonnegative integers. So, the necessary and sufficient condition for the
elements in (3.18) to belong to S± is ν ± n/2,−(ν + 1) ± n/2 ∈ Z≥0. As ν ≥ −1/2 both numbers are
integers and differ in a nonnegative integer. Therefore it is enough to require ±n/2 ≥ ν+ 1 and hence
S+ = ∅ for n ≤ 0 and S− = ∅ for n ≥ 0. Summing up, the following characterization of S±

f ∈ S± if and only if f ∈ LR

{
Uν , Vν

}
− 1

2
≤ν≤± 1

2
n−1

, (3.19)

holds. In the last expression LR indicates the real linear combinations and

Uν =

{
Ho

ν +Ho
−1−ν if r > r1,

H i
ν +H i

−1−ν if r ≤ r1
, Vν =

{
iHo

ν − iHo
−1−ν if r > r1,

iH i
ν − iH i

−1−ν if r ≤ r1

with H i
ν = Kν(r1)eiνθ(r/r1)ν+|n|/2, which is the holomorphic extension to the inner part of e±inθ/2Ho

ν .
By substituting in (3.17) and by defining Z(r) = (1 − i)ei|n|θ/2f(hvr) with f ∈ {Uν , Vν} the

generators of the zero mode space

ψ =




Z
0
0
Z∗


 if n < 0, ψ =




0
−iZ∗

iZ
0


 if n > 0, for − 1

2
≤ ν ≤ |n| − 2

2
, (3.20)

are obtained. There are |n|/2+δ values of ν in the range and the Uν and Vν form a linearly independent
set except for V−1/2 = 0 occurring when n is odd. In total there are 2(|n|/2+δ)−2δ = |n| independent
zero modes. Note that the operator iσ1 ⊗ σ3 passes the zero modes for −n to those for n.

Qualitatively the above results match the formal arguments given in [73], for instance about the
number of zero modes and the structure of them. These arguments follow from the application
of the outstanding index theorem. In that reference, the problem is addressed for B(r) and F (r)
generic smooth functions. The explicit expressions of these zero modes were found explicit due to our
specialization to the step function model. The advantage of the present complex variable approach is
that reduces the amount of calculations.
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3.4 Some examples of zero modes

In order to make the statements given above less abstract, it may be of interest to derive some zero
modes explicitly. For n odd the resulting zero modes are elementary functions for ν half-integral, as
follows from the formulas (8.468) and (8.486.16) of [64]

Kν(r) =

√
π

2r
e−r

|ν|−1/2∑

m=0

(|ν| +m− 1/2)!

m!(|ν| −m− 1/2)!
(2r)−m.

In particular, for any n,

√
2

π
Ho

ν =




r−1/2e−r±iθ/2 if ν = ±1

2 ,

r−3/2(r + 1)e−r−3iθ/2 if ν = −3
2

and √
2

π
H i

ν =




r
−1/2
1 (r/r1)(|n|±1)/2e−r1±iθ/2 if ν = ±1

2 ,

r
−|n|/2
1 (r1 + 1)r(|n|−3)/2e−r1−3iθ/2 if ν = −3

2 .

These expressions allows to work out fully the zero modes (3.20) for any n. Below, they will be
specialized for n = ±1 and n = ±3.

For n = ±1 the range for ν forces ν = −1/2 and thus V−1/2 = 0 and, according to the previous
formulas, U−1/2 equals, except for a real constant factor,

f =

{
r−1/2e−r−iθ/2 if r > r1,

r
−1/2
1 e−r1−iθ/2 if r ≤ r1.

The corresponding (not normalized) zero modes are in the outer part

Ψ0 =
e−hvr

√
hvr




0
1 − i
1 + i

0


 for n = 1, Ψ0 =

e−hvr

√
hvr




1 − i
0
0

1 + i


 for n = −1, (3.21)

while in the inner part they are the constants corresponding to substitute r = r0 (recall that r1 = hvr0,
then f(hvr) changes its definition on r = r0). Note that, up to an irrelevant complex factor, the
solution with n = 1 coincides with the one found in the reference [69]. The resulting spinor components
are purely radial in this case, but the situation is different for higher values of |n|.

For n = ±3, ν ∈ {−1/2, 1/2}. For ν = −1/2 again Vν = 0 and, omitting a real constant factor, Uν

is

f =

{
r−1/2e−r−iθ/2 if r > r1,

r
−3/2
1 re−r1−iθ/2 if r ≤ r1.

On the other hand, for ν = 1/2, Uν is a real constant multiple of

g =

{
r−1/2e−r+iθ/2 + r−3/2(r + 1)e−r−3iθ/2 if r > r1,

r
−5/2
1 r2e−r1+iθ/2 + r

−3/2
1 (r1 + 1)e−r1−3iθ/2 if r ≤ r1

and Vν is a real multiple of 2−1/2eπi/4g(r, θ + π/2) because eπi/4eπi/4 and eπi/4e−3πi/4 introduce the
required i and −i factors. Hence, the zero modes for n = 3 are




0
Z1

Z∗
1

0


 ,




0
Z2

Z∗
2

0


 ,




0
Z3

Z∗
3

0


 with





Z1 = (1 − i)e−3iθ/2f∗(hvr)

Z2 = (1 − i)e−3iθ/2g∗(hvr)

Z3 = ie−3iθ/2g∗
(
hvr, θ + π

2

)

9



For n = −3, there are similar expressions, which, according to (3.20), are obtained applying to these
spinors the operator −iσ1 ⊗ σ3.

3.5 On the number of bound states

The zero modes have been characterized above. The remaining part of the bound state spectrum is
difficult to be found explicitly. However, some words can be said about the number of such eigenvalues.

From the energy equation (3.15) for n = 1 it is possible to infer that for each k fixed

#{bounded states} ∼ 2hv

πr0
for hvr−1

0 large (3.22)

and there are not bounded states, apart from the zero mode, for hvr−1
0 small. In fact, the argument

below suggests that the error term in this asymptotic formula is O(1). This is related to a claim made
in [75, p. 367] through dimensional analysis.

Note that the number of solutions of (3.15) is invariant by the scaling λ 7→ λr−1
0 , hv 7→ hvr−1

0 ,
then it is enough to show (3.22) when r0 = 1. Another reduction is to assume k ≥ 0 because (3.15) is
invariant by k ↔ −k [64, 8.404.2,8.486.16]. The case k = 0 is somewhat special and it will treated at
the end.

If hv is small, using that

Kk−1/2(x)

Kk+1/2(x)
∼ x

k
and Jk(x) ∼ xk

2kk!
when x→ 0,

the energy equation (with r0 = 1) translates asymptotically into c1λ
2k−2 = c2λ

2k for some positive
constants c1 and c2 depending on k and it has no solution for λ > 0 small.

If hv is large, typically, in the most of the range, λ and λhv =
√
h2v2 − λ2 are large too. Let us

now deal with this situation, which is the main case, and the rest of the cases will be considered later.
The asymptotics

Kk−1/2(x)

Kk+1/2(x)
∼ 1 and Jk(x) ∼

√
2

πx
cos

(
x− π

2
k − π

4

)
when x→ ∞,

show (Kk−1/2(λhv)

Kk+1/2(λhv)
Jk−1(λ) −

Kk+1/2(λhv)

Kk−1/2(λhv)
Jk+1(λ)

)
Jk(λ) ∼ 2(−1)k

πλ
cos(2λ)

and

J2
k (λ) + Jk−1(λ)Jk+1(λ) ∼ 2(−1)k

πλ
sin(2λ).

Substituting this in the energy equation (3.15), it behaves asymptotically as

λ√
h2v2 − λ2

= tan(2λ).

Now the argument is like in the standard treatment of the finite potential well appearing in basic
quantum mechanics textbooks. The function tan(2λ) has π

2 -spaced vertical asymptotes and each of
them is cut by the graph of the function in the left hand side. So, the spacing of the eigenvalues is
asymptotically π/2, showing (3.22).

Still when hv is large, there are two marginal situations to consider. We discuss them briefly. For
small values of λ, again the first term in the Taylor expansion of the J-Bessel function shows as before
that there are not solutions. It may also occur λ large and λhv small, if λ is very close to hv. In this
case, the first quotient of the K-Bessel functions in (3.15) is dominant because it behaves as k/λhv,
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but λhv < c implies λ = hv+O
(
h−1v−1

)
, then the J-Bessel functions cannot complete full oscillations

and the number of solutions is bounded.

Finally, the case k = 0 is not covered by the previous treatment when λ is small since k denomi-
nators may appear. In this case, using K−1/2 = K1/2 and J−1 = J1, the energy equation becomes

2
√
h2v2 − λ2

λ
=
J1(λ)

J0(λ)
− J0(λ)

J1(λ)

and employing that the zeros of J0 and J1 are simple and asymptotically equal to
(
m − 1

4

)
π and(

m + 1
4

)
π respectively [64, 8.547], it is obtained again a collection of vertical asymptotes with a

spacing tending to π/2.

A final comment is that the employed estimates are not uniform in k and hence (3.22) does not
remain valid when k grows. The functions Jk(x) change dramatically its behavior when k surpasses
a short transition range around x. It loses its oscillation decaying exponentially [64, 8.455.1] and
then the solutions of the energy equation tend to disappear. Taking this into account, k is essentially
limited to hv and, if some uniformity can be established in this range, the π/2-spacing detected by
each k should be replaced by an average spacing of order h−1v−1 when k is allowed to vary.

4. The superconducting string absorption cross section for fermions

After the previous section characterization of the energy levels and the zero modes, the next task is to
study the absorption process of fermions by the vortex. These quantities are important for this task.

Consider first a naked superconducting string, that is, a string which did not absorb yet any
fermion. Such string has a set of energy levels En =

√
λ2n + p2z inside its core, which are to be filled

with fermions. This would lead to a large current inside the object, specially from those fermions
occupying the zero modes. As it will be clear from the discussion below, the Fermi line of zero modes
has “radius” Ef = 2pz = Ei, with Ei the initial fermion energy. The value of this radius follows from
the fact that the impulse in pz is not fixed, but only bounded by the energy conservation condition in
the absorption process ψf+vortex→ γ+ψb+vortex, with ψf and ψb free and bounded fermions states.
In addition, γ denotes an abelian gauge field excitation, which is not necessarily identified with an
ordinary photon. The current production will be effective if the filling of levels is effective as well,
and this will be the case if the absorption scattering cross section is not suppressed. For this reason,
specially in the context of vorton formation, the study of this cross section may be relevant. This will
be studied below for light fermions mr0 << 1 or heavy fermions mr0 >> 1, and the intermediate case
mr0 ∼ 1. Some of the arguments of [11]-[15] are related to the intermediate case, which is a situation
more or less reasonable for solid state physics. However, there is no reason to confine the attention
only to this case. For instance, a large coupling with the curvature of the space time R may induce a
large mr0 value, or an effective suppressed coupling may induce a very small value of this parameter.
For this reason, the discussion given. below will be general, not related to a particular mr0 value.

4.1 General formulas for the cross section

The process to be considered in the following resembles partially the photoelectric effect, which cor-
responds to a process in which an atom captures a photon and emits an electron, which is initially in
a bound state and then escapes to the continuous spectrum. In the present case the role of the atom
is played by the vorton, but the effect to be considered is the inverse one, that is, the absorption of
a fermion, which consequently falls into the bound state λ < hv. This process is accompanied by a
photon or scalar boson emission. However, the former possibility is expected to be leading because
massive particles are more difficult to excite. For this reason, the following discussion will be centered
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in the photon emission. The differential cross section for this process can be worked out by analogy
with the photoeffect, and the result is

dσ =
2πV

ve
|Vfi|2δ(Eγ + Ef −Ei)

V d3kLvdpz
(2π)4

. (4.23)

Here k denotes the photon impulse, ve is the initial electron velocity, Eγ = ω = |k| is the photon
energy ω = |k| and

Ei =
√
p2x +m2, Ef =

√
λ2n + p2z, (4.24)

are the initial and final fermion energies. The fermion impulse inside the vorton pz has to be integrated,
since its possible values are bounded but continuous. On the other hand, |Vfi|2δ(Eγ +Ef−Ei) denotes
the transition probability for unit time for the process. This matrix can be defined as follows. First,
the photon free field is described as

A =
ǫi√
ωV

eik·r (4.25)

Here the polarization vectors ǫi with i = 1, 2 are orthogonal to the wave propagation direction k and
orthogonal between them. In other words ǫi · ǫj = δij and ǫi ·k = 0. In addition, the incoming fermion
field is free, that is, λ > hv and, by assuming that it travels through the x-axis, it is given by a
superposition of the following options

ψ±
s = u±s e

−ipxx, u+s =
m√

2V Ei




1
0
Ei

m
px
m


 , u−s =

m√
2V Ei




0
1
px
m
Ei

m


 . (4.26)

On the other hand, the final fermion state ψf has λ < hv, and corresponds to a discrete energy state.
More precisely, it is given by

ψf =
1√
Lv
ψT
f (x, y)e−ipzz, (4.27)

with ψT
f (x, y) denoting one of the solutions found in the previous sections, and Lv being the vortex

length, which is very large. Note that the T in ψT
f does not denote a transpose. The wave function

in the discrete spectrum will be normalized by the condition
∫
R2 ψ

T †
f ψT

f dxdy = 1. In these terms the
transition matrix is defined by

Vfi =

∫

V
ψfγ

µψsAµd
3x =

2π√
Lv
δ(kz − pz)

∫

R2

ψ
T
f γ

µψsA
T
µ dxdy,

where the Fourier representation of the Dirac delta function was employed and

A
T

=
ǫi√
ωV

e−ikxx−ikyy, (4.28)

denotes the vector potential without the term eikzz. It is clear that |Vfi|2 ∼ δ2(kz − pz)/Lv =
δ(kz − pz)δ(0)/Lv . The quantity δ(0) is divergent and has length units, and cancel the factor Lv. The
term 2πδ(kz − pz) can be considered as a model for the integral of ei(kz−pz)z along the vortex, which
is assumed to be very long, and then it makes sense to change its square, appearing in |Vfi|2, by the
integral of Lve

i(kz−pz)z, which is 2πLvδ(kz − pz).
The volume V cancels in the final expression for the scattering cross section. The point of making

explicit these factors is that the quantity |Vij |2 becomes proportional to the transition probability for
unit time. For simplicity, the following formulas are adapted to the case V = 1. This leads to the
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following expression for the differential cross section per unit of length dσ̃ = L−1
v dσ after cancelling

all the volume factors

dσ̃ =
1

ve(2π)2

∣∣∣∣
∫

R2

ψ
T
f γ

µusǫiµ e
ipxx−ikxx−ikyy dxdy

∣∣∣∣
2

δ(Eγ + Ef − Ei)δ(kz − pz)
d3kdpz
ω

. (4.29)

The expression (4.29) has to be summed over all the initial spins and all the polarizations. The sum
over all the polarizations ǫi can be performed by use of the relation

2∑

i=1

ǫiaǫib = δab −
kakb

|k|2
,

valid in the transverse gauge employed here, with a and b spatial indices. The integral term in (4.29)
is related to the Fourier transform of the spinor components. Then, by summing over the final states
u∗i and u−i it is found after some calculations that

2

2∑

j=1

−∑

a=+

∣∣∣∣
∫

R2

ψ
T
f γ

µuasǫjµ e
i(px−kx)x−ikyy dxdy

∣∣∣∣
2

= (|χf
1 |2 + |χf

2 |2)
2m2

E2
i

+|ηf1 |2
[
1 +

p2x
E2

i

− 2pxkpz cosα

Ei|k|2
]

+ |ηf2 |2
[
1 +

p2x
E2

i

+
2pxkpz cosα

Ei|k|2
]

−ηf∗1 ηf2
px
Ei

[
pxpzke

−iα

Ei|k|2
+
k2e2iα

|k|2
]
− ηf1η

f∗
2

px
Ei

[
pxpzke

iα

Ei|k|2
+
k2e−2iα

|k|2
]

−χf∗
2 η

f
2

2m

Ei

[
1 − 2mpxpzke

iα

Ei|k|2
]
− χf

2η
f∗
2

2m

Ei

[
1 − 2mpxpzke

−iα

Ei|k|2
]

+ (χf∗
2 η

f
1 + χf∗

1 η
f
2 )
mpx
E2

i

[
1 +

p2z
|k|2

+
k2e−iα

|k|2
]

+ (χf
2η

f∗
1 + χf

1η
f∗
2 )

mpx
E2

i

[
1 +

p2z
|k|2

+
k2eiα

|k|2
]
. (4.30)

Here the spinor coordinates χj and ηj are the two dimensional transforms of the spinor component
in the transferred momentum space. Namely, they are functions of (px − kx, py), the transferred
momentum from the initial fermion to the abelian gauge field. Note that kz was replaced by pz, due

to the delta term δ(pz − kz) in (4.29). In addition k =
√
k2x + k2y is the absolute value of the photon

impulse projection over the plane xy and the angle α is defined by kx = k cosα and ky = k sinα.
Therefore the quantity of interest is given by

2dσ̃ =
2

ve(2π)2

2∑

i=1

−∑

a=+

∣∣∣∣
∫

R2

ψ
T
f γ

µuasǫiµ e
ipxx−ikxx−ikyy dxdy

∣∣∣∣
2

δ(Eγ + Ef − Ei)
dkxdkydpz

|k|
, (4.31)

together with (4.30).
When a beam of fermions is incident over the vorton, some of them will be absorbed by the object

and will start to fill all the energy levels. The Pauli exclusion principle entails that they may occupy a
given level λn if the value of the impulse or spin direction are different. The whole discrete spectrum
is to be filled by fermions, and the ones occupying the zero mode will move at the light speed because
Ef = pz. In the following, the contribution of these modes will be taken as leading.

From now on attention will be focused on the case of winding number one. The corresponding
zero mode (3.21) can be normalized as ΨT

0 = (0,−if, f, 0) with

f(r) =
1√

πr0(r0 + 1
m )
, r < r0, f(r) =

e−m(r−r0)

√
πr(r0 + 1

m)
, r ≥ r0. (4.32)
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The differential cross section (4.31) simplifies considerably, due to the fact that two spinor component
vanishes. The delta term δ(Eγ + Ef − Ei) implies that

√
k2 + p2z + |pz| = Ei.

This results in
k2 = E2

i − 2Ei|pz|, kdk = −Eid|pz| |k| = Ei − |pz|. (4.33)

The last relations imply that 0 < k < Ei and that −Ei < 2pz < Ei, and that the values of these
variables are related to each other. Therefore, using the general change of variables formula δ

(
g(t)

)
=

|g′(t)|−1δ
(
t− g−1(0)

)
for the δ function

δ(Eγ +Ef − Ei)
dkxdkydpz

|k|
=

1

Ei

[
δ

(
pz −

E2
i − k2

2Ei

)
− δ

(
pz +

E2
i − k2

2Ei

)]
kdkdpzdα.

In these terms the cross section by unit length is

2dσ̃ =
1

ve(2π)2Ei

{
|χf

2 |2
2m2

E2
i

+ |ηf1 |2
[
1 +

p2x
E2

i

+
k

Ei

(
E2

i − k2

E2
i + k2

)2]

+χf∗
2 η

f
1

mpx
E2

i

[
1 +

(
E2

i − k2

E2
i + k2

)2

+
4E2

i k
2e−iα

(E2
i + k2)2

]

+χf
2η

f∗
1

mpx
E2

i

[
1 +

(
E2

i − k2

E2
i + k2

)2

+
4E2

i k
2eiα

(E2
i + k2)2

]}
kdkdα.

A further simplification is obtained by taking into account that the zero mode is entirely described by
the Fourier transform of the function f(r) in (4.32). For this mode, χ2 = −iη1, and the same relation
holds for their Fourier transforms, which are given by the transform F (px − kx, py) of f(r) up to an
imaginary unit. This in particular implies that the fourth and the sixth terms in the last expression
cancel, as they are purely imaginary. Thus, the simpler expression for the scattering cross section for
unit length

2dσ̃ =
|F |2

(2π)2px

{
2m2

E2
i

+ 1 +
p2x
E2

i

+
k

Ei

(
E2

i − k2

E2
i + k2

)2

+
8mpxk

2 sinα

(E2
i + k2)2

}
kdkdα, (4.34)

is obtained. Here the fact that veEi = px was employed.

4.2 The estimation of the cross section

The task is now to estimate σ̃ by integration of (4.34). We would like to emphasize that we have
made a large calculation by use of special functions, which allowed us to make the desired estimation
as a function of the dimensionless parameters pxr0, mr0 and Exr0. However, after doing all this large
calculation, we have found a way to make a quick estimation which essentially captures all the relevant
behavior. For this reason, this last calculation is the one employed below. It has the disadvantage of
being less sophisticated or specific, but it has the advantage of capturing the main behavior with a
relatively compact procedure.

In the following, it will be shown that c1p
−1
x < σ̃ < c2p

−1
x for some absolute positive constants

c1 and c2. Actually, in the next arguments the possible values of the involved constants are not very
large and they could be explicitly displayed.

Note that when integrating (4.34), the term involving sinα vanishes because kx = k cosα, appear-
ing in |F |2 is even in α. The expression (E2

i − k2)/(E2
i + k2) lies between 0 and 1, then by the mean

value theorem for integrals it can be extracted as a bounded quantity from the integral. Finally, it
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is obvious that 1 ≤ 2m2/E2
i + p2x/E

2
i ≤ 2. Taking these remarks into account, by defining the radial

function h : R2 −→ R having
h(r) = r0f(r0r) (4.35)

as profile, after the change of variables kx 7→ χ/r0, ky 7→ η/r0, the cross section per unit of length
becomes

σ̃ ∼ cp−1
x

∫∫

D

∣∣ĥ(χ, η)
∣∣2 dχdη, (4.36)

where D denotes the disk D =
{

(χ− pxr0)
2 + η2 ≤ E2

i r
2
0

}
. More precisely, the cross section is given

by the last expression with 2 < c < 4. Here χ and η are by their definition dimensionless real variables
and ĥ(χ, η) denote the Fourier transform of the function h(r) defined in (4.35). The disk D comes
form the limitation k2 ≤ Ei, which follows from equation (4.33).

The square of the component f(r) is normalized in the plane xy, as seen from equation (4.32).
Therefore h is also normalized in (4.35). The Parseval-Plancherel identity applied to h reads

1 =

∫

R2

|h|2 = (2π)−2

∫

R2

|ĥ|2.

Hence σ̃ < c2p
−1
x . The remaining part of the calculation is to show that there exists c1 such that

σ̃ > c1p
−1
x . (4.37)

Note the disk D defined below (4.36) contain the origin (χ, η) = (0, 0) and its radius is at least
M0 = mr0, which is the minimal energy the particle may have. Consider a centered disk D0 of radius
R0 = ǫM0 with 0 < ǫ < 1, its specific value is to be chosen later. A simple draw shows that both D
and D0 overlap at least on the sector of the plane (χ, η) defined by −π/3 ≤ α ≤ π/3 and r < R0.
This fact and the purely radial dependence of h imply that

∫∫

D

∣∣ĥ(χ, η)
∣∣2 dχdη ≥

∫∫

D0

∣∣ĥ(χ, η)
∣∣2 dχdη ≥ 2π

3

∫ ǫM0

0
R
∣∣ĥ(R)

∣∣2 dR,

with R =
√
χ2 + η2. As the function h(r) depends only on the radius, its transform ĥ may be written

as a Hankel transform [65] as follows

ĥ(R) = 2π

∫ ∞

0
vh(v)J0(Rv) dv.

By taking into account the definitions of f(r) and h(r) given in (4.32) and (4.35), and that the
derivative of xJ1(x) is xJ0(x) then, by separating the part v ∈ [0, 1], it is found that

Cĥ(R) =
J1(R)

R
+ I (4.38)

with

I =

∫ ∞

1

√
ve−M0(v−1)J0(rv) dv, C =

1

2

√
M0 + 1

πM0
.

For the case M0 ≤ 1, it is seen after a change of variables that

I = M
−3/2
0 eM0

∫ ∞

M0

√
ve−vJ0

( r

M0
v
)
dv.

This integral is estimated as

I = M
−3/2
0 eM0

[ ∫ ∞

M0

√
ve−v dv +O(ǫ2)

]
,
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for 0 ≤ r ≤ ǫM0. This result can be found by taking into account that

J0(x) = 1 +O(x2), J1(x)/x ∼ 1

2
+O(x2),

the last follows by employing that J1(x) = 1
2x + O(x3). By introducing this is (4.38) and by taking

into account that C < M
−1/2
0 , the following estimation

ĥ(R) > M−1
0

∫ ∞

1

√
ve−v dv +O(ǫ2) >

1

2
M−1

0 ,

valid for ǫ small enough, is found. Therefore
∫ ǫM0

0 R
∣∣ĥ(R)

∣∣2 dR is greater than a positive constant,
with values not far from unity, and (4.37) is proved.

If instead M0 ≥ 1 then by employing the same expansions of J0 and J1 as above, it is found for
0 ≤ r ≤ ǫ that

I =

∫ ∞

1

√
ve−M0(v−1) dv +O(ǫ2).

As C ≤ 1/
√

2π, it is deduced that

ĥ(R) >
1

2

√
2π +O(ǫ2) > 1

for ǫ small enough. Therefore
∫ ǫM0

0 R
∣∣ĥ(R)

∣∣2 dR ≥
∫ ǫ
0 R

∣∣ĥ(R)
∣∣2 dR is greater than a positive constant,

of the order of unity as well.
Overall, the above discussion shows that the cross section is given by

σ =
f(mr0, pxr0)

px
,

where the function f(mr0, pxr0) parameterize the dependence on the radius of the object. This function
may be difficult to be found explicitly. However, this function is bounded by two constants c1 and c2
which have moderate values, not very far from unity. Thus the cross section is not very sensitive to
the values of r0, and it is divergent just as px → 0 regardless the value of the mass m or the radius r0.

5. The Aharanov-Bohm scattering cross section

Having estimated the absorption cross section for fermions incident over the vorton, the next task is to
compare it with the Aharonov-Bohm scattering cross section. The exact form of this section is known
for a delta type of singularity in r [67]. As the interest of the present work is the behavior of this
section in several regimes involving mr0 or pxr0, even taking into account that there exists literature
about the subject, it is convenient to make an independent estimation.

From the definition of the scattering section, an incident beam of fermions with energy E > hv
and momentum px is dispersed by the vortex. The calculation of this cross section entails the partial
expansion of the wave function (4.26), which is given by

ψ±
s =




χ±
1

χ±
2

η±1
η±2


 = u±s e

ipxr cos θ = u±s

∞∑

n=−∞

e
inπ
2 Jn(pxr)e

inθ.

For large r values the asymptotic of the Bessel function Jn(pxr) shows that

ψ±
s ∼ 1

2
u±s

√
2

πpxr

∞∑

n=−∞

e
inπ
2 (eipxr−

iπ
4
− inπ

2 + e−ipxr+
iπ
4
+ inπ

2 )einθ. (5.39)
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The last formula expresses the asymptotic wave function as a combination of an incident wave in r,
proportional to e−ipxr, and a reflected one proportional to eipxr. The calculation of the cross section
requires to find a solution of the equation of motion that asymptotically tends to this ingoing wave
for large r. The outgoing wave will be of course different than above, and this difference term is what
determines the scattering cross section.

According to the appendix below, the component of the unbounded states admit linear formulas
as expansions of the form

∞∑

n=−∞

einθ
(
AnJn+ 1

2

(
r
√
λ2 − h2v2

)
+BnYn+ 1

2

(
r
√
λ2 − h2v2

))

affected by constant factors and eiθ. Comparing the asymptotics of this to (5.39) as r → ∞, it is
deduced px =

√
λ2 − h2v2. Then the calculations indicated in the appendix give

χ1 =
e−iθ

2

∞∑

n=−∞

einθ
[
(d1n + c1n)Jn− 1

2
(pxr) + (d2n + c2n)Yn− 1

2
(pxr)

]
,

χ2 =
i

2px

∞∑

n=−∞

einθ
[(

(E +m)d1n + (E −m)c1n
)
Jn+ 1

2
(pxr) +

(
(E +m)d2n + (E −m)c2n

)
Yn+ 1

2
(pxr)

]
,

η1 =
1

2

∞∑

n=−∞

einθ
[
(d1n − c1n)Jn− 1

2
(pxr) + (d2n − c2n)Yn− 1

2
(pxr)

]
,

η2 =
ieiθ

2px

∞∑

n=−∞

einθ
[(

(E +m)d1n − (E −m)c1n
)
Jn+ 1

2
(px r) +

(
(E +m)d2n − (E −m)c2n

)
Yn+ 1

2
(pxr)

]
,

(5.40)
where Ei is the initial particle energy and, as before, the volume will be taken as V = 1. A hint

that the above formula is correct is related to the counting of unknowns, and goes as follows. The
asymptotic behavior of the Bessel functions allows to fix the coefficients cin and din with i = 1, 2 in
order to match the behavior (5.39) for the incoming wave. This in principle will give four equations.
In addition, the inner part of the spinor components has in principle four unknowns ain and bin with
i = 1, 2. These may be determined by the four continuity conditions at r = r0. The apparent problem
is that the wave function is highly divergent at r = 0 if the coefficients multiplying the Bessel function
Yn(x) do not vanish. Thus, the situation is that there are four equations for two unknowns, and this
may be problematic at first sight. However, this is not the case, and this gives confidence about the
correctness of (5.40). To see this, consider for instance the solution ψ+

s . In this case the requirement
that the incoming wave part in asymptotic form e−ipxr has the form (5.39) gives four equations for
the four unknowns c1n, c2n, d1n and d2n. However, the reader is challenged to check that only two
equations are linearly independent, the other two do not give further information. The result is

c1n + ic2n = −E +m

2
√

2E
e

(2n+1)iπ
4 , d1n + id2n =

E −m

2
√

2E
e

(2n+1)iπ
4 . (5.41)

This means that two of these four coefficients are still undetermined. The introduction of the last
formula into (5.40) and the use of the asymptotic expressions for the Bessel functions shows that the
incoming wave part is identical to the one in (5.39).

On the other hand, the continuity condition at the border of the object, which is the region r = r0,
constitutes a non homogeneous system for c1n, c2n, d1n and d2n, and the constants an and bn defining
the core wave functions (1.50)-(1.51) in the appendix. This, together with the last expression (5.41),
constitutes a 6 dimensional non homogeneous system with non trivial solution. Before going about
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the explicit calculation of these coefficients, it may be convenient to characterize the scattering cross
section for the process. Consider the function

Zν(x) = Jν(x) + iYν(x) ∼
√

2

πx
eix−

iπ
4
− νπ

2 . (5.42)

The relation (5.41) allows to write the wave function as

χ1 =
e−iθ

2

∞∑

n=−∞

einθ
[
− m√

2E
e(

2n+1
4

)iπJn− 1
2
(pxr) − i(d2n + c2n)Zn− 1

2
(pxr)

]
,

χ2 =
1

2px

∞∑

n=−∞

einθ
(
(E +m)d2n + (E −m)c2n

)
Zn+ 1

2
(pxr)

]
,

η1 =
1

2

∞∑

n=−∞

einθ
[

1√
2
e(

2n+1
4

)iπJn− 1
2
(pxr) − i(d2n − c2n)Zn− 1

2
(pxr)

]
,

η2 =
ieiθ

2px

∞∑

n=−∞

einθ
[
p2x√
2E

e(
2n+1

4
)iπJn+ 1

2
(pxr) − i

(
(E +m)d2n − (E −m)c2n

)
Zn+ 1

2
(pxr)

]
.

The asymptotics of Zν shows that the terms containing Zn±1/2, which are affected by the coefficients
d2n and c2n, are outgoing waves. The remaining terms compose a mixture of ingoing and outgoing
waves. Thus, the determination of the coefficients d2n and c2n is fundamental for determining the
scattering cross section. This is given by [67]

dσ̃

dα
= lim

r→∞

r · Jo
−Jix

, J0 = ψoγ
µψo,

where ψo is the outgoing contribution and Jix in the ingoing contribution. The result is

dσ̃

dα
= lim

r→∞

m(η1η
∗
2 − χ1χ

∗
2)

px
eiθ + h.c.

The asymptotic form of the outgoing wave function that follows from (5.42) is

χo1 ∼ −1

2

√
2

πpxr

∞∑

n=−∞

ei(n−1)θ

[
m

2
√

2E
+ (d2n + c2n)e−( 2n−1

4
)iπ

]
eipxr+

iπ
4 ,

χo2 ∼ − i

2

√
2

πpxr

∞∑

n=−∞

einθ
(√

E +m

E −m
d2n +

√
E −m

E +m
c2n

)
e−( 2n−1

4
)iπeipxr+

iπ
4 ,

ηo1 ∼
1

2

√
2

πpxr

∞∑

n=−∞

einθ
[

1

2
√

2
− (d2n − c2n)e−( 2n−1

4
)iπ

]
eipxr+

iπ
4 ,

ηo2 ∼
i

2

√
2

πpxr

∞∑

n=−∞

ei(n+1)θ

[
px

2
√

2E
−

(√
E +m

E −m
d2n −

√
E −m

E +m
c2n

)
e−( 2n+1

4
)iπ

]
eipxr+

iπ
4 . (5.43)

This asymptotic form will be fully characterized only by determining c2n and d2n. This is achieved by
use the continuity conditions at the border of the object. These equations are given by

anJn(Er0) − bn+1Jn+1(Er0) =

√
E −m

E +m

[
c1nJ 2n+1

2
(pxr0) + c2nY 2n+1

2
(pxr0)

]
,
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anJn(Er0) + bn+1Jn+1(Er0) =

√
E +m

E −m

[
d1nJ 2n+1

2
(pxr0) + d2nY 2n+1

2
(pxr0)

]
,

anJn−1(Er0) − bn+1Jn(Er0) = c1nJ 2n−1
2

(pxr0) + c2nY 2n−1
2

(pxr0),

anJn−1(Er0) + bn+1Jn(Er0) = d1nJ 2n−1
2

(pxr0) + d2nY 2n−1
2

(pxr0). (5.44)

where the coefficients an and bn correspond to the inner part as shown in the appendix and λ has
been identified with the energy E. This calculation in the generic situation is not very illuminating,
for this reason it is more convenient to consider it in several regimes, in which the Bessel functions
have limits which are expressed in terms of elementary functions. Consider first large values of px. By
eliminating an and bn+1 respectively, the system reduces to the two dimensional one

− tan(Er0 −
π

4
− nπ

2
)

[(√
E +m

E −m
d1n +

√
E −m

E +m
c1n

)
cosα+

(√
E +m

E −m
d2n +

√
E −m

E +m
c2n

)
sinα

]

= (d1n + c1n) cosα+ (d2n + c2n) sinα,

cot(Er0 −
π

4
− nπ

2
)

[(√
E +m

E −m
d1n −

√
E −m

E +m
c1n

)
cosα+

(√
E +m

E −m
d2n −

√
E −m

E +m
c2n

)
sinα

]

= (d1n − c1n) cosα+ (d2n − c2n) sinα.

where

α = pxr0 −
π

4
− (2n + 1)

4
π.

The last two equations together with (5.41) conform a non homogeneous four dimensional linear system
for the four unknowns din and cin with i = 1, 2. The functional form of these coefficients can be found
explicit, and it is of course cumbersome. This complicates the hope of computing the sums in (5.43.
However, something interesting happens when

pxr0 =
Mπ

2
,

where M is an integer. In this case, depending on the value of n, either the sine or the cosine in the
last expression vanishes and the result is an homogeneous system for either c1n and d1n or c2n and
d2n. For a generic energy, either one pair of coefficients or the other vanish. The non vanishing pair
is then found by use of (5.41). This means that the coefficients for n = 2m or n = 2m + 1 have the
same functional form, except for a multiplication by −i. Therefore, for the discrete set of impulses
corresponding to this situation, the asymptotic form (5.43) is simply

χo1 = −1

2

√
2

πpxr

meipxr+
iπ
4

2
√

2E
(1 − ieiθ)

∞∑

m=−∞

ei(2m−1)θ , χo2 = −0,

ηo1 =
1

2

√
2

πpxr

eipxr+
iπ
4

2
√

2
(1− ieiθ)

∞∑

m=−∞

e2imθ , ηo2 =
i

2

√
2

πpxr

pxe
ipxr+

iπ
4

2
√

2E
(1− ieiθ)

∞∑

m=−∞

e(2m+1)iθ .

(5.45)
The angular sums are divergent, proportional to the Dirac delta δ(θ) + δ(θ − π). This is expected
since it is known that the Aharonov-Bohm total scattering section possesses this behavior [66]. The
cross section can be renormalized as

dσ̃

dθ
∼ m

2Epx

sin θ(1 − sin θ) sin2(2L+ 1)θ

sin2 θ
, L >> 1, (5.46)
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with L a cutoff, which has to be sent to infinite when integrating over θ. The proportionality factor
to the angular divergent term goes as

m

Epx
=

m

px
√
m2 + p2x

,

which shows that if the particle is light and has high energy due to a large momentum, then this
coefficient is suppressed. On the other hand, if the mass is very large, the factor is still suppressed by
px, which means that for large momenta the cross section is suppressed regardless the particle is light
or heavy. This conclusion only holds for the discrete set described above, nevertheless we expect the
same behavior in the more generic situation, since we do not expect that the cross section will have
enormous peacks in the middle value energies between this set.

The formula (5.46) is also approximately true for small px when m is large. The reason is that if
pxr0 takes a small value, then (5.44) contains the highly divergent Yν(x) functions at the origin, which
implies that c2n and d2n are approximately zero. Thus, the asymptotic form (5.45) is still valid, up
to a factor (1 − eiθ) and (5.46) is deduced, up to the factor (1 − sin θ). For very small masses and
impulses, the standard Aharonov-Bohm scattering cross section is expected. In this case the cross
section goes as 1/px.

Based on this facts, it can be suggested that the differential cross section has the form

dσ̃

dθ
∼ 1

px
f(m, px)a(θ), (5.47)

with a(θ) an angular factor whose integration over a period is divergent, and with a dimensionless
function f(x, y) such that f(0, 0) = 1 and f(m, px) ∼ m

Ei
for px large.

6. Discussion

In the present work, the Dirac equation and the bound and scattering states for a vortex with winding
number one was studied. In addition, the n zero modes corresponding to the generic winding number
n, under the crude assumption that the vortex profile is given by a step function, were constructed
explicitly. Furthermore, the absorption cross sections for fermions incident on a vortex with generic
masses and impulses was estimated in several regimes. The main formula is that the cross section
for unit length is σ̃ ∼ f(mr0, pxr0)/px with the function f(mr0, pxr0) taking moderate values, not far
from unity, regardless the value of the parameters px, m and r0. This means that if the object has a
perimeter of a centimeter, then only if px > Mp the cross section will be smaller than a typical nuclear
one σn ∼ 10−26cm2. Thus, the interaction of the fermions with these objects is noticeable. However, if
a nuclear cross section by unit length for nuclear forces σn/rn ∼ 1013 cm, then an impulse px ∼ 109GeV
is enough for having a smaller value of the cross section by unit length. Thus the interaction between
fermions and these objects may depend on the density of this objects in comparison with other particles
in the plasma which interact with those fermions. However, unless the plasma density is too high, the
absorption process will be effective and large currents will be induced on the object.

Given the cross sections found above, it may be of interest to discuss the force the vortex resulting
from the absorption of fermions with gauge field emission, and to compare it to the one due to
Aharonov-Bohm scattering. It may be convenient to make a simple estimation instead of a lengthy
specific calculation. First, as follows from [49], [47], for Aharonov-Bohm scattering the transversal
and longitudinal forces are determined by the differential scattering cross sections

dσl
dα

=
dσ

dα
(1 − cos θ),

dσt
dα

=
dσ

dα
sin θ.

Note that, even taking into account that the cross section σ for the Aharonov-Bohm scattering (5.46),
the sections σt and σl are convergent. These sections of course, have to be multiplied by momentum
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factors and integrated along their possible values. They have also to be multiplied by factors describing
the fermion density, since the larger the density is, the stronger the force will be over the vortex. In
fact, the formulas derived in those references are designed in order to match with the average of the
momentum flux tensor Πij = Pδij + ρvivj , with P the plasma pressure, vi the fermion density and ρ
its mass density. This flux has to be integrated over a surface surrounding the object dŜi.

Based on the reading of those references, the estimation to be proposed is the following. It may
be assumed that the photon mean value momentum by unit time in some direction, say x̂, is given by

< kx >

T
=

1
∫ |w(k)|2

T d2k

∫ |w(k)|2
T

kxd
2k

where |w(k)|2/T is the transition probability for unit time. The denominator in the last expression is
due to the fact that it is not normalized, since there are other possible transitions than absorption.
An analogous formula holds for ky. In addition, the density of photons can be estimated as

Nγ = Nf

∫ |w(k)|2
T

d2k,

with Nf the fermion density. Therefore one may introduce a quantity with force density units

< Fx >=
Nγ < kx >

T
=

∫ |w(k)|2
T

kxd
2k.

A similar quantity can be defined for the Aharonov-Bohm effect. On the other hand, the probability
|w(k)|2/T is proportional to |Vij|2δ(Ei − Ef − k), and up to flux factors, to the full scattering cross
section (4.23). Therefore, in order to compare the forces for the absorption process and the Aharonov-
Bohm one along the direction x̂, it is convenient to study the quotient

Fax

Fsx
=

∫
(p − k cosα)dσa∫
(1 − cosα)pdσs

,

where the index a denotes the absorption quantities and s the scattering (Aharonov-Bohm) ones
found along the text. In fact, the transferred momentum is related to averages of p − k cosα for the
absorption process or to p(1 − cos θ) for scattering, while the transversal is proportional to k sinα or
p sin θ. Based on this, we made a calculation similar to those in the previous section, but with these
factors included. We have considered only the longitudinal force, since the Aharonov-Bohm section
is divergent but the multiplication by (1 − cos θ) cures the divergence. For the transversal forces, one
may assume that the magnitude orders are conserved, although a more careful analysis may be of
interest. In any case, the repetition of all the arguments of the text with these factors now included
leads us to the following upper bound

Fax

Fsx
≥ c1
f(m, px)

{
4m2E2

i − 2pxEi(10m2 − 2p2x) + (m2 + p2x)(8m2 − 4p2x)

4m2px
√
m2 + (Ei − px)2

−4m2p2x − 2p2x(10m2 − 2p2x) + (m2 + p2x)(8m2 − 4p2x)

4pxm3
+ 3 log

(
2
√
m2 + (Ei − px)2 + 2Ei − 2px

2m

)}
.

+
c2

f(m, px)

[
2m2

E2
i

+ 1 +
p2x
E2

i

+ µ

][
π −

√
2

√
1 +

px
Ei

E

(
2px

Ei + px

)]
,

valid for small or intermediate values mr0 ≤ 1. The function f(x, y) is the one defined in the Aharonov-
Bohm cross section (5.47) and c1 and c2 are constants, with moderate values. In addition, E(k) is
the second elliptic integral. It is seen that for large px, as f → m/Ei, the quotient is very large. The
particle with large px is difficult to be absorbed but once it is, it gives a large momentum to the vortex.
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For this reason, it becomes important. For small values of px, the absorption force seems also relevant.
However, for this situation, the expressions that have been found above for the Aharonov-Bohm factor
f(m,Ei) are less trustable.

For large masses mr0 >> 1 the approximation goes as

Fax

Fsx
≥ c1Ei

px
+ c2

[
2m2

E2
i

+ 1 +
p2x
E2

i

+ µ

]
.

This quotient takes considerable values when px is very small, or when px is very large. The physical
interpretation for that is that for px small, the particles which are very massive tend to be absorbed
since in this region they change abruptly the mass to a zero value, with a large gap, and are approaching
slowly. The absorption in this case is favored and thus large forces on the vortex emerge. On the other
hand, if pxr0 is larger than mr0 then the absorption is suppressed but a single absorption involves a
huge amount of energy which generates a large recoil in the vortex.

It should be emphasized that, even taking into account that the references [26]-[62] are part of the
inspiration for the calculation of the above forces, the situation these works analyze is not exactly the
same as here. In those works, a beam of fermions is incident over a vortex with filled bound states, and
the spectrum of bound states hypothetically has influence on the macroscopic force. In the present
case, the vortex is initially naked, that is, it does not confine fermions. The vortex starts to absorb
the fermions, which consequently fall into the bound spectrum, and this generates a recoil which is
manifested in a macroscopic force. The possible implications of these results are model dependent,
and are of interest for a future work.
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A The unbound states for n = 1

For winding number n = 1, the Dirac eigenfunction equation DΨ = λΨ considered in the text with D
defined in (2.1) can be given explicitly in polar coordinates as

[
− ie−iθ∂r −

e−iθ

r
∂θ −

ie−iθB(r)

2r

]
χ2 − hve−iθF (r)η1 = λχ1,

[
− ieiθ∂r +

eiθ

r
∂θ +

ieiθB(r)

2r

]
χ1 − hve−iθF (r)η2 = λχ2,

[
ie−iθ∂r +

e−iθ

r
∂θ −

ie−iθB(r)

2r

]
η2 − hveiθF (r)χ1 = λη1,

[
ieiθ∂r −

eiθ

r
∂θ +

ieiθB(r)

2r

]
η1 − hveiθF (r)χ2 = λη2. (1.48)

Consider the solution outside first. First, note that if the first two equations (1.48) are multiplied by
i and the last two ones by −i, and the specific profiles B = F = 1 are chosen, then the identities
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eiθ∂θf = −if + ∂θ(e
iθf) and e−iθ∂θf = if + ∂θ(e

−iθf), when applied in the second and third equation
respectively, lead to the following equivalent system

[
∂r +

1

2r
− i

r
∂θ

]
x2 − ihvy1 = iλx1,

[
∂r +

1

2r
+
i

r
∂θ

]
x1 − ihvy2 = iλx2,

[
∂r +

1

2r
− i

r
∂θ

]
y2 + ihvx1 = −iλy1,

[
∂r +

1

2r
+
i

r
∂θ

]
y1 + ihvx2 = −iλy2.

Here x1 = eiθχ1, x2 = χ2, y1 = η1, y2 = e−iθη2. From here it is found, by introducing the variables
U = x2 + y2, V = x1 − y1, W = x2 − y2 and X = x1 + y1 and adding and subtracting the equations
properly, the decoupled in pair system

[
∂r +

1

2r
− i

r
∂θ

]
U = i(λ− hv)V,

[
∂r +

1

2r
+
i

r
∂θ

]
V = i(λ+ hv)U,

[
∂r +

1

2r
− i

r
∂θ

]
W = i(λ+ hv)X,

[
∂r +

1

2r
+
i

r
∂θ

]
X = i(λ− hv)W. (1.49)

The reader can check that compatibility condition for both decoupled systems reduces, after the
Fourier expansion U =

∑∞
n=−∞Un e

inθ and the analogous for V , W and X, to Bessel equations of
half-integral order for the Fourier components. Furthermore, the standard recursion formulas for these
Bessel solutions allows to find the full solution from (1.49). In the core where B(r) = F (r) = 0 the
equations are decoupled directly, they are simpler than for the outside zone and also are related to
Bessel functions. The resulting expressions can be worked out in straightforward manner and, after
going back to the original variables χi and ηi with i = 1, 2, the result are the formulas (5.40) for the
region outside and

χ1 =

∞∑

n=−∞

einθan+1Jn(λ r), χ2 =

∞∑

n=−∞

einθianJn(λ r). (1.50)

η1 =

∞∑

n=−∞

einθbn+1Jn(λ r), η2 = −
∞∑

n=−∞

einθibnJn(λ r), (1.51)

for the inside region. The unknown coefficients an and bn and the ones cin and din with i = 1, 2
in (5.40) have to be determined by the continuity of the solution at r = r0, leading to the system
(5.44) described above. Note that the Bessel functions Yn(x) are discarded in the inner region, due
to the fact that they are highly divergent at x = 0. The generalization of these formulas for arbitrary
winding number can be done straightforwardly.
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