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Abstract

The dynamic effects on a magnetic system exposed to a time-oscillating external temperature are studied
using Monte Carlo simulations on the classic 2D Ising Model. The time dependence of temperature is defined
as T (t) = T0 + A · sin(2πt/τ ). Magnetization M(t) and period-averaged magnetization 〈Q〉 are analyzed to
characterize out-of-equilibrium phenomena. Hysteresis-like loops in M(t) are observed as a function of T (t).
The area of the loops is well-defined outside the critical Ising temperature (Tc) but takes more time to close
it when the system crosses the critical curve. Results show a power-law dependence of 〈Q〉 (the averaged area
of loops) on both L and τ , with exponents α = 1.0(1) and β = 0.70(1), respectively. Furthermore, the impact
of shifting the initial temperature T0 on 〈Q〉 is analyzed, suggesting the existence of an effective τ -dependent
critical temperature Tc(τ ). A scaling law behavior for 〈Q〉 is found on the base of this τ -dependent critical
temperature.

1 Introduction

The study of magnetic systems subject to oscillating magnetic fields has attracted the attention of the scientific
community in the last decades (see [1–6] and reference therein). From the point of view of Statistical Physics,
phenomena of great interest occur in these systems, such as hysteresis and dynamic phase transitions. The
magnetization delay behind the applied field, influenced by relaxation delays, leads to the formation of hysteresis
loops, the loop area of which indicates the extent of this delay.

When a ferromagnetic material is exposed to a periodically changing magnetic field over time, it may not re-
spond immediately to the external magnetic influence. This delay arises from a competition between the relaxation
time scales of the material’s internal dynamics and those of the external magnetic field. At high temperatures
and for large amplitudes in the periodic magnetic field, the material can gradually synchronize with the external
field, although with a noticeable lag. Conversely, this adaptability diminishes under low temperatures and small
magnetic field amplitudes. The occurrence of spontaneous symmetry breaking signals the onset of a dynamic
phase transition [2]. This is evident in the dynamic order parameter, defined as the temporal average of the
magnetization throughout a complete period of the oscillating magnetic field.

As the period of oscillation of the magnetic field decreases, approaching the typical relaxation time of the system,
a notable transformation occurs: the hysteresis loop becomes asymmetric around the origin. This asymmetry
heralds the emergence of a new thermodynamic phase, a consequence of dynamically broken symmetries due to
competing time scales within the system. This dynamic phase transition is characterized by a dynamic order
parameter that exhibits universal power law behavior near the critical point. In particular, the critical exponents
reflect those observed in equilibrium transitions, with the temperature and the static external field replaced by
the period of the oscillating field and a small bias field, respectively.

In this context, it is worth wondering what effects could occur when such a magnetic system is in contact with
a thermal bath whose temperature oscillates over time. In this regard, there are few theoretical studies in this
sense [7, 8], due to the complexity of the phenomenon that will occur completely out of equilibrium.

In this paper, we explore the consequences of subjecting a magnetic system to an oscillating temperature. To
achieve this goal we have studied by means of Monte Carlo Simulations, the classic two-dimensional Ising Model
when it is subjected to an oscillating temperature.
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The work is organized as follows. In Sec. 2, we give a brief overview of the Ising spin model and Monte Carlo
simulations. In Sec. 3 we present and discuss the results obtained. Finally, the conclusions are stated in Sec. 4.

2 Model and Simulations

As it was mentioned in Section 1 the proposed model is based on the two-dimensional magnetic Ising Model [9],
whose Hamiltonian (H) can be written as

H = −J ·
∑

<i,j>

sisj , (1)

where si is the Ising spin variable that can assume two different values si = ±1, the indexes 1 ≤ i, j ≤ N = L2

are used to label the spins, J > 0 is the coupling constant of the ferromagnet, and the summation is made over
nearest-neighbor sites only.

In the absence of an external magnetic field (as in the present work) and at low temperature, for d > 1, the
system is in the ferromagnetic phase and, on average, a majority of spins are pointing in the same direction. In
contrast, at high temperatures the system maximizes the entropy, thermal fluctuations break the order and the
system is in the paramagnetic phase. This ferromagnetic-paramagnetic critical transition is a second-order phase
transition and it occurs at a well-defined critical temperature Tc. The value of Tc in the 2-d case is obtained from
the exact solution proposed by Onsager in 1944 [10], and its value (in terms of J) is

Tc =
2J

k ln(1 +
√
2)

(2)

The main idea of the present work is the understanding of the effects on a magnetic material when it is
introduced on a thermal bath with a time-oscillating temperature. The simplest mathematical approach is to
consider

T (t) = T0 +A · sin(2πt/τ) (3)

where T0 represents the initial temperature, and A and τ represent the amplitude and period of the oscillation,
respectively.

For this purpose, we have simulated –using the standard Monte Carlo method– an L×L square lattice of Ising
interacting spins (eq. 1) with periodic boundary conditions. The dynamic of the standard model is simulated using
well-defined rules, such as the Metropolis rate [11], where the probability of flipping a single spin at temperature
T is given by

Wstandard = min[1, e−∆H/kBT ], (4)

, where kB is the Boltzmann constant, T is the temperature of the thermal bath, and ∆H is the difference between
the energy of the would-be new configuration and the old configuration.

For the purpose of introducing the time-dependent temperature, we have modified Wstandard (eq. 4) as

W (t) = min[1, e−∆H/kBT (t)]. (5)

Certainly, the definition moves the system out of equilibrium, and new phenomena are expected.
The system is left to evolve in time as usual on Monte Carlo simulations, and the time is measured in Monte

Carlo time steps (MCs), such as during one MCs all L2 spins of the sample are flipped once, on average.

3 Results and Discussion

Monte Carlo simulations were performed on square lattices of size L2, with 64 ≤ L ≤ 1024, initial temperatures
0.9TC ≤ T0 ≤ 1.2TC, the oscillation amplitude was studied in the range 0 < A ≤ 0.5TC, and 4 ≤ τ ≤ 256 (in units
of 1/MCs).

The system was initialized at the ordered condition corresponding to T = 0. To ensure the system could arrive
at a stationary state, we have left evolve the system a time L2 to start the measure of the observables, and we
have averaged our results on at least 5000 different realizations of thermal noise.

The relevant observables analyzed were the absolute magnetization

M(t) = |
L2

∑

i=1

si|/L2, (6)
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and the period-averaged magnetization

Q =
1

τ

∮

m(t)dt. (7)

As a first step, we have analyzed the time behavior of M(t) vs temperature with constant amplitude A, and
different initial temperatures T0. Figure 1 shows the results obtained for L = 256, A = 0.2 and τ = 64. The
dashed-dotted line indicates the exact solution for the Ising Model phase diagram, and colored symbols correspond
to the data obtained with the time-oscillating temperature. In all cases, a hysteresis-like loop is observed. However,
it seems that when the bulk temperature oscillates out of the Tc range (T0 = 0.7Tc and T0 = 1.3Tc) the loop area
is close to zero, and it is well defined (the loop closes over itself). On the contrary, when the system crosses the
critical curve the loop needs more time to be closed. Similar behavior is observed for different values of L and τ .

Figure 1: Magnetization vs. Temperature L = 256, τ = 64, and for different initial temperatures T0. The dashed-
dotted line indicates the exact solution for the Ising Model phase diagram.

From the analysis of the area loops of the magnetization (see as an example Figure 2(a) for τ = 64), it is
possible to calculate the value 〈Q〉 (eq. 7) averaged over the loops observed and the total number of independent
realizations. Figure 2(b) shows the obtained results as a function of system size L. It is possible to describe the
dependence with L as a power-law function of the form 〈Q〉 ≃ L−α, with α an exponent. The best fit of the data
gives α = 1.0(1) for all the range of τ studied (dashed line in Figure 2(b)).

Following the procedure described above, we have analyzed the dependence of 〈Q〉 with τ , for different system
sizes L. Data obtained is shown in Figure 2(c). As in the previous case, a power-law behavior is observed as
〈Q〉 ≃ τ−β , with β = 0.70(1) for all the range of L studied (dashed line in Figure 2(c)).

The effect of varying the amplitude A for fixed τ and L is shown in Figure 3. As expected, when the amplitude
grows 〈Q〉 decreases to a constant value L-dependent. The plateau observed for larger values of A seems to tend
to zero when L increases. This result is compatible with the L-dependence of 〈Q〉 shown in Figure 2(b).

Finally, we have studied the effect on 〈Q〉 when the initial temperature T0 is shifted. From the data analysis,
it is possible to define a τ -dependent critical temperature Tc(τ) which decreases with the growth of the oscillating
period. The data obtained suggest that Tc(τ) have a power-law dependency as Tc(τ) ≈ τ−γ , with γ = 0.03(1)
according to the best data fitting (see Inset of Figure 4). Based on this result it is possible to rescale 〈Q〉 as
a function of the time-oscillating temperature T (τ) as it is shown in Figure 4. The scaling behavior could be
summarized as:

〈Q(τ)〉 = f

(

T0 − Tc(τ)

Tc
, L−α, τ−β

)

(8)

where TC(τ) ≈ τ−γ , with γ = 0.03(1), α = 1.0(1), and β = 0.70(1) .

4 Conclusions

The dynamic effects on a magnetic system embedded into a time-oscillating external temperature are studied.
For this purpose, Monte Carlo simulations on the classic 2d-Ising Model have been performed, where the system
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Figure 2: (a) Magnetization vs. Temperature for τ = 64, A = 0.2, T0 = Tc and different L as indicated. (b) 〈Q〉
vs. τ . The dashed line has slope −1. (c) 〈Q〉 vs. L. The dashed line has slope −0.7 (more details in text).
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Figure 3: Magnetization vs. Temperature Amplitude A, for τ = 256, T0 = Tc and different L as indicated.

temperature has been defined as T (t) ≃ sin(2πt/τ). In order to characterize the out-of-equilibrium phenomena,
Magnetization M(t) and the period-averaged magnetization 〈Q〉 have been analyzed.

For M(t) hysteresis-like loops are observed as a function of T (t). The area of the magnetic loops is well defined
when the oscillations occur out of the critical Ising temperature value (Tc). On the contrary, when the bath
temperature oscillates around Tc the critical curve, the loop needs more time to close on itself. This area allows us
to study the period-averaged magnetization 〈Q〉, as a function of system size L, and the period τ and amplitude
A of oscillations. The results obtained indicate that 〈Q〉 has a power-law dependence with both L, and τ , with
exponents α = 1.0(1), and β = 0.70(1), respectively.

Finally, the effect on 〈Q〉 with the initial temperature T0 has been analyzed. The results seem to show that a
τ -dependent critical temperature Tc(τ) could be defined. Based on this, it is possible to construct a scaling law
for 〈Q〉.

In summary, the study reveals interesting dynamic effects on a magnetic system subjected to a time-oscillating
external temperature. Hysteresis-like loops, power-law dependencies of 〈Q〉 on L and τ , and the identification
of a τ -dependent critical temperature seem to appear as the consequence of this complex out-of-equilibrium
phenomenon.
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Figure 4: 〈Q〉 vs. the rescaled temperature T0−Tc(τ)
Tc

for L = 1024 and different τ as indicated. Inset: Tc(τ) ≈ τ−γ

vs τ . The dashed line has slope −0.03.
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de Cĺculo, IFLYSIB (Argentina).
The author wants to express her deepest gratitude to D.A.M., and to the ”Selección Argentina de Fútbol” for
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