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Classical fermion dynamics in presence of non abelian monopoles

Alejandro Morano ∗and Osvaldo P. Santillán †

Abstract

In the present letter, the dynamics of a spin one-half particle with non abelian charge, interacting
with a non abelian monopole like configuration, is studied. In the non spinning case, these equations
correspond to the Wong ones [1], and the associated dynamics has been extensively investigated
in [2]-[3]. The classical limit of a spinning particle in an abelian was considered in [4], where
an interpretation of the celebrated Callan-Rubakov effect [5]-[6] was obtained in purely classical
terms. The present work studies an interpolating situation, in which spin and non abelian charges
are turned on. The corresponding equations are obtaining by taking into account some earlier
works about spinning particles [7]-[9]. The conservation laws are studied in this context, and it is
found that energy and some generalization of angular momentum are conserved just in particular
limits. This is a reflection that the non abelian interaction contains gauge field quartic interaction,
which spoils the symmetries leading to these conservation laws. The precession of the particle is
analyzed and compared with its abelian counterpart in this limit.

1. Introduction

Non abelian gauge theories are one of the most important subjects in modern theoretical physics, as
they may explain phenomena such quark confinement and several aspects of hadron physics. One
of the aspects that makes them harder to understand is that quarks seemingly are not part of the
asymptotic states of the theory. It was suggested at some point that non abelian monopoles [10]-[11]
may play an important role for confinement, since they may help for realizing a dual Meissner effect
in which the quarks become the analog of confined magnets. In this scenario, the monopoles are
decoupled at low energy due to their large mass [12]-[14]. As far as the authors know, this idea has
not yet successfully implemented. However, the study of flux lines, confinement and dualities has
been proved to be fruitful in the supersymmetric context. Supersymmetry has not been discovered
yet, nevertheless, these studies are an interesting theoretical laboratory for understanding the possible
phases that a gauge theory may realize [15]-[30].

The present work is focused on the classical dynamics of a particle with one-half spin in presence
of non abelian fields, in particular monopole configurations. We underline that either the abelian limit
or the spinless case have been considered in the precedent investigations. In particular, the references
[2]-[3] have found several classical solutions for spinless particles in presence of non abelian monopoles
and the reference [4] provides a deduction of the famous Callan-Rubakov result in purely classical
terms. At first sight, one may wonder about the possible applications of such studies, as quarks are
not free and the quantum effects are believed to play a significant role in the dynamics. However,
some motivations may be given. An example is the study of a non abelian plasma [31]-[42] at very
high densities or temperatures. These studies may have applications in the very early universe, the
dynamics of neutron stars or supernova explosions. In addition, the study of a electroweak plasma

∗Departamento de F́ısica, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina a.g.morano@gmail.com and

osantil@dm.uba.ar.
†IMAS, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina firenzecita@hotmail.com and osan-

til@dm.uba.ar.

1

http://arxiv.org/abs/2205.10296v3


may have interesting applications for modelling baryon number violation at these cosmological stages.
Several topics about the dynamics of monopoles are covered in [43]-[45].

The present work is organized as follows. In section 2 the equations of motion are derived, and the
abelian limit and the spinless case are also discussed. In section 3 and 4 the energy and generalized
angular momentum are discussed, and it is shown that these quantities are conserved only in specific
situations. An example is presented in section 5, where the spin and isotopic charge precession are
studied in some detail. This section also contains a discussion of the presented results.

2. Derivation of the equations of motion

2.1 An abelian probe with spin in a monopole field

Before deriving the equations of motion of a spinning non abelian particle in the field of a non abelian
monopole, it may be advisable to study some simpler situations. In an abelian electromagnetic field,
and in the non relativistic limit, the equations of motion of a charged particle are given by

mr̈ = Qe(E + v ×B) +
Qeg̃

2m
∇(S · B), (2.1)

dS

dt
=

Qeg̃

2m
(S ×B), (2.2)

where Qe is the particle charge, m its mass and g̃ is the g-factor giving the connection between the
spin of the particle and the spin dependent magnetic moment. The back reaction of the particle on
the source is neglected, which means that the gauge fields are not affected by the dynamics. The
second term of (2.1) represents the interaction of the spin and the magnetic field and the equation
(2.2) represents Larmor spin precession. These equations are well known. It is also known that the
energy

E =
m

2
[ṙ2 + r2(θ̇2 + sin2 θφ̇2)]− Qeg̃

2m
B · S, (2.3)

is conserved for a magnetic field independent on time. Such is the case for the abelian monopole field

B =
gr

r3
, (2.4)

with g the monopole magnetic charge, which satisfies the Dirac quantization 2eg = n.
The issues related to angular momentum conservation are more tricky. Even taking into account

the rotational symmetry of the monopole magnetic field, the angular momentum is not conserved as
the spin-magnetic field coupling spoils this symmetry. However, the following quantity

J = mr2[θ̇φ̂− φ̇ sin θθ̂] + S − Qn

2
r̂. (2.5)

has dimensions of an angular momentum and is conserved. Here the standard spherical coordinates
were employed, in which the axis x̂ corresponds to 2θ = π and φ = 0. If a particle incident to the
monopole is considered, with impact parameter d and velocity v in the negative x̂ direction, then the
value of J is specified as

J = mdvẑ − Qn

2
x̂+ S0, (2.6)

with S0 the initial spin direction. On the other hand, (2.5) implies that

m2r4(θ̇2 + sin2 θφ̇2) = j2 + s2 − 2J · S − Q2n2

4
,
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where j and s indicates the modulus of their capital letter counterparts. By use of the value (2.6) it
follows that

m2r4(θ̇2 + sin2 θφ̇2) = m2d2v2 − 2S · [S0 − S] + 2mdv[(S0)z − Sz]−Qn[(S0)x − Sx]

By eliminating, by use of the last expression, the angular part in the energy E = mv2/2, it is arrived
to

ṙ = ±

√

v2 − 2m2d2v2 + 2(2mdvẑ −Qnx̂− 2S) · (S0 − S)−Qng̃S · r̂
2m2r2

, (2.7)

The spin equations are
dSx

dt
=

Qng̃

mr2
(Sy cos θ − Sz sin θ sinφ),

dSy

dt
=

Qng̃

mr2
(Sz sin θ cosφ− Sx cos θ),

dSz

dt
=

Qng̃

mr2
(Sx sin θ sinφ− Sy sin θ cosφ). (2.8)

The angular momentum in spherical coordinates reads

J = mr2[θ̇φ̂− φ̇ sin θθ̂] + S − Qn

2
r̂, (2.9)

From here and the initial value, it is found that

dφ

dt
=

2mdv +Qn cos θ + 2S0z − 2Sz

2mr2 sin2 θ
, (2.10)

dθ

dt
=

Qn sin θ sinφ+ 2S0y − 2Sy

2mr2 cosφ
+ cot θ tanφ

[
mdv +Qn cos θ + 2S0z − 2Sz

2mr2

]
(2.11)

From (2.7) it is seen that there is a spin dependent radius of return defined by

r2 =
2m2d2v2 + 2(2mdvẑ −Qnx̂− 2S) · (S0 − S)−Qng̃S · r̂

2m2v2
.

The intention is to estimate the minimum value of this quantity, that is, the closest radius the particle
approaches. The precise value of r̂ for the particle can be found only by solving the dynamics. For
the estimation, one may assume that S · r̂ = s, that is, that they are parallel. This gives the minimal
contribution of the last term. On the other hand, the extremal values of the remaining quantity of
the right hand side with respect to S leads to

r2e ∼ 2m2d2v2 + (2mdvẑ −Qnx̂) · S0 −Qng̃s

2m2v2
.

The term (mdvẑ −Qegx̂) · S0 takes the minimun when the vectors are anti parallel, the result is

r2e ∼ 2m2d2v2 − s
√
4m2d2v2 +Q2n2 −Qng̃

2m2v2
.

The particles will be expelled from the center when the quantity given above is positive, and this
implies that the impact parameter should be

d > dc =

√
s−Q2n2 +

√
s2 +Qng̃ −Q2n2

4m2v2

3



The equality defines an approximate critical value dc for which the particles will not be deflected. This
is of course a rough approximation, as there some uncertainty about the value of r̂ involved, which is
reflected that for large Qn the quantity in the square root may be negative. However, for moderate
values the corresponding scattering cross section goes roughly as

σ ∼ πd2c ∼
π

2

(
1

mv

)2

(s−Q2n2 +
√

s2 +Qng̃ −Q2n2),

which, for 3v ∼ 1 and a mass similar to some typical fermion of the standard model such as an electron,
is of the order of the Callan-Rubakov estimation [5]-[6]. These classical considerations were employed
in [4], although with slightly different methodology.

Another important fact about spinless monopole scattering is the existence of rainbow and glory
effects, as reviewed for instance in [47]. For an spinless particle, the conserved quantity (2.5) becomes

J = mr2[θ̇φ̂− φ̇ sin θθ̂]− Qn

2
r̂. (2.12)

From here it is seen that
2J · r̂ = Qn. (2.13)

This means that the trajectory of the particle is inside a cone with a tip angle

cosα =
J · r̂
|J |

.

Therefore if some new polar coordinates (r, α, β) are chosen such that J is taken as the polar axis,
then α̇ = 0 and the problem can be reduced to an effective central one [47]. The use of this description
allows for determining those effects.

When spin is turned on, this picture is more complicated. In this case

2(J − S) · r̂ = Qn. (2.14)

In this case the spin is precessing, thus the last equation does not implies that the particle moves
inside a cone. Thus, there is a third angle involved in the problem and the reduction to a central
effective problem, if possible, is not easy to be found.

2.2 A non abelian spinless charge in a non abelian field

On the other hand, the relativistic dynamics of an spinless particle in a non abelian gauge field is
described by the Wong equations [1]

mu̇µ = gF a
µνu

νIa, (2.15)

dIa

dt
= gfabcIb[Ac

0 + v ·Ac
]. (2.16)

Here the signature convention (1,−1,−1,−1) is employed and uµ is the relativistic four velocity
uµ = dxµ/dτ , with τ the proper time. The non abelian charge is characterized by the vector Ia, which
may depend on τ during the particle evolution. The external non abelian gauge field is denoted by
Aµ, and the non abelian stress tensor is calculated by means of the formula

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ].

By employing generators T a of the gauge group such that [T a, T b] = ifabcT
c with fabc real constants,

the stress tensor may be expressed as

Fµν = F a
µνT

a, F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν .

4



In particular, in the the SU(2) case considered below a = 1, 2, 3, fabc = ǫabc and 2T a = σa, with σa the
standard Pauli matrices. In general, the covariant derivative of given non abelian field ϕ is expressed
as

Dµϕ = ∂µϕ− ig[Aµ, ϕ].

In these terms, the equations of motion (2.15)-(2.16) can be shown to be equivalent to

d

dt

(
mv√
1− v2

)
= g(E

a
+ v ×B

a
)Ia, (2.17)

d

dt

(
m√
1− v2

)
= gv · Ea

Ia, (2.18)

dIa

dt
= gfabcIb[Ac

0 + v ·Ac
]. (2.19)

Here the external non abelian electric and magnetic fields E
a
and B

a
are given by

Ea
i = F a

0i = ∂0A
a
i − ∂iA

a
0 + gfabcA

b
0A

c
i , Ba

i =
ǫijk
2

F a
jk. (2.20)

The interpretation of these equations is clear. The first are the relativistic Newton equations in a non
abelian gauge field. The second is the kinetic energy variation, as a consequence of the work of the
electric force on the particle. The last ones represent the evolution of the charge vector Ia due to the
particle dynamics. Classical solutions of this equations were studied, for instance, in [2]-[3].

2.3 A non abelian charge with spin in a non abelian field

The equations of motion for an spinning probe particle in a general electromagnetic field will be taken,
following the references [7]-[9], as follows

d

dt

(
mv√
1− v2

)
= g(E

a
+ v ×B

a
)Ia +

g̃g

2m
IaSl[∇Ba

l − gfabcBb
lA

c
], (2.21)

dS

dt
=

g̃g

2m
Ia(S ×B

a
), (2.22)

dIa

dt
= gfabcIb[Ac

0 + v ·Ac
] +

g̃g

2m
ǫabcIbS ·Bc

. (2.23)

The last system interpolate between the two situations described above namely, the abelian case and
the non abelian Wong equations. Here the quantity g̃ generalizes the g-factor for the abelian case, and
no particular assumption is made about its value, except that it does not take very large values. The
abelian limit follows by choosing the structure constants fabc = 0 and the second by putting S = 0 in
the last equations. The only term that requires some comment, as it is not a type of term discussed in
the previous section, is the last one in (2.23). The proportionality coefficient is chosen as g̃g

2m
because,

if the effect of the gauge field Aa
µ is neglected locally, the resulting equations reduce to the formulas

(4.7) of reference [9].
The next issue is to understand in which situations there are conserved quantities for the given

system of equations (2.21)-(2.23). The non abelianity of the fields may alter the intuition about the
conserved quantities, as there are quartic gauge field interactions which are absent in the abelian case.
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3. The energy balance equation

By multiplying (2.21) by v = ṙ, the following expression for the time variation of the kinetic energy
of the particle is obtained

d

dt

(
m√
1− v2

)
= gv · Ea

Ia +
g̃g

2m
IaSl[v · ∇Ba

l − gfabcBb
l (v · A

c
)]. (3.24)

On the other hand, the generalization of the potential energy in an electric field for the non abelian
case will be IaAa

0
. Its variation is

d(IaAa
0
)

dt
=

dIa

dt
Aa

0 + Ia[∂0A
a
0 + v · ∇A

a

0].

By using (2.20) in order to eliminate the term ∇A
a

0 and also by taking into account (2.23) it is found
that

d(IaAa
0
)

dt
= gfabcAa

0I
b[Ac

0 + v ·Ac
] +

g̃g

2m
ǫabcIbS ·Bc

Aa
0

+Ia[∂0A
a
0 + v · (∂0Aa − E

a
+ gfabcA

b
0A

c
)].

In the last expression, the first term is zero due to the anti-symmetry of fabc with respect of its indices.
The second term cancels the last one. Thus

d(IaAa
0
)

dt
=

g̃g

2m
ǫabcIbS · Bc

Aa
0 + Ia[∂0A

a
0 + v · (∂0Aa − E

a
)].

The sum of the last expression multiplied with g, together with (3.24), allows to conclude that

d

dt

(
m√
1− v2

+ gIaAa
0

)
=

g̃g

2m
IaSl[v · ∇Ba

l − gfabcBb
l (v · A

c
)]

+
g̃g2

2m
ǫabcIbS · Bc

Aa
0 + gIa[∂0A

a
0 + v · (∂0Aa

)].

Note that the terms proportional to the non abelian electric field Ea
i cancelled each other. The last

formula may be expressed as

d

dt

(
m√
1− v2

+ gIaAa
0

)
= − g̃g2

2m
fabcI

aSlB
b
l (v ·A

c
)] +

g̃g2

2m
ǫabcI

bS · Bc
Aa

0

+
g̃g

2m
IaSl

dBa
l

dt
+ gIa[∂0A

a
0 + v · (∂0Aa

)].

On the other hand, (2.22) shows that Ṡ ·B = 0 and therefore

d

dt

(
m√
1− v2

+ gIaAa
0 −

g̃g

2m
IaBa

l Sl

)
= − g̃g2

2m
fabcI

aSlB
b
l (v · A

c
)] +

g̃g2

2m
ǫabcI

bS · Bc
Aa

0

− g̃g

2m
Ba

l Sl

dIa

dt
+ gIa[∂0A

a
0 + v · (∂0Aa

)].

By further taking into account (2.23) and the anti-symmetry of fabc the last expression becomes

d

dt

(
m√
1− v2

+ gIaAa
0 −

g̃g

2m
IaBa

l Sl

)
= − g̃g2

2m
fabcI

aSlB
b
l (v · A

c
)] +

g̃g2

2m
ǫabcI

bS · Bc
Aa

0

− g̃g2

2m
fabcB

a
l SlI

b[Ac
0 + v ·Ac

] + gIa[∂0A
a
0 + v · (∂0Aa

)].
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The first and the fourth term cancel out, and the second and the third are proportional. Thus

d

dt

(
m√
1− v2

+ gIaAa
0 −

g̃g

2m
IaBa

l Sl

)
=

g̃g2

m
ǫabcI

bS · Bc
Aa

0

+ gIa[∂0A
a
0 + v · (∂0Aa

)]. (3.25)

This formula has important consequences. One may define the full energy of the particle as

E =
m√
1− v2

+ gIaAa
0 −

g̃g

2m
S ·Ba

Ia, (3.26)

since it generalizes the abelian case. In fact, this is the sum of the kinetic energy, the generalization
of the electric potential, and the Larmor one. If there is a gauge for which Aa

µ is time independent,
the last two terms cancel. However, this energy is not conserved due to the first term in (3.25). This
may be interpreted as an effect due to the non linear interaction of the gauge field of the particle and
the external one.

The results given above show that energy is not conserved in general for non abelian probe particles
moving in an abelian field. However, as it will be shown below, it is conserved for a monopole field in
a SU(2) gauge theory, in certain limit.

4. The angular momentum balance equation

The angular momentum is not expected to be conserved either, even for a static field configuration.
In the present section, the attention will be restricted to the class of static SU(2) non abelian fields
given by

Aa
0 =

f

gr
na, Aa

i =
(1− a)

gr
ǫaijn

j. (4.27)

Here a = a(r) and f = f(r) are generic functions of the distance r between the observation point
and the non abelian source, whose explicit profile depends on the model of consideration. In the last
expression, the unit vector

na =
xa

r
, ṅa · na = 0,

has been introduced, with xa a system of cartesian coordinates in R3 describing the position of the
probe particle. In the present case, the structure constants fabc = ǫabc. For the calculation to be
performed below, it is convenient to write (2.21)-(2.23) in terms of (4.27), and the corresponding color
electromagnetic fields. From (4.27) and (2.20) it is found out that

Ea
i = −1

g

[(
f

r

)
′

nani +
af

r2
(δai − nani)

]
, (4.28)

Ba
i = −1

g

[
a2 − 1

r2
nani +

a′

r
(δai − nani)

]
. (4.29)

By use of the last expressions, (4.27) and (2.22) it is found the following equation describing spin
precession

dS

dt
=

g̃

2m

[
1− a2

r2
(I · n)S × n− a′

r
S × I +

a′

r
(I · n)S × n

]
. (4.30)

On the other hand, the formula (2.23) and the identity v = ṙn+ rṅ imply that

dI

dt
=

f

r
I × n+ (1− a)[(I · n)ṅ− (I · ṅ)n]

7



+
g̃

2m

[
1− a2

r2
(S · n)I × n− a′

r
S × I +

a′

r
(S · n)I × n

]
. (4.31)

This, in particular, leads to the following formula

dI · n
dt

= a(I · ṅ)− g̃

2m

a′

r
(S × I) · n, (4.32)

which will be employed below. Now, vector multiplication of (2.21) with respect to v leads to the
following equation for the angular momentum of the particle

dL

dt
= g(r × E

a
+ r × v ×B

a
)Ia +

g̃g

2m
IaSl[(r ×∇)Ba

l − gfabcBb
l (r ×A

c
)]. (4.33)

Here

L =
mr × v√
1− v2

,

is the relativistic angular momentum of the particle.
There are several terms to be calculated in (4.33). First, from (4.28)-(4.29) and by use of v =

ṙn+ rṅ, it is found that

g(r × E
a
+ r × v ×B

a
)Ia =

af

r
I × n+ (1− a2)(I · n)ṅ+

da

dt
(I − (I · n)n). (4.34)

On the other hand, expression for the term ∇Ba
l is a bit cumbersome, but the expression for (r ×

∇)Ba
l is significantly simpler. A direct calculation shows the validity of this identity for the present

configuration

g̃g

2m
IaSl(r ×∇)Ba

l =
g̃

2m

[
1− a2

r2
(S · n)(n × I) +

1− a2

r2
(I · n)(n × S)

+
a′

r
(S · n)(n× I) +

a′

r
(I · n)(n× S)

]
.

This expression describes the third term in (4.33). Comparison of the last terms of this formula with
(4.30) and (4.31) allows to find a simpler expression for the third term, namely

g̃g

2m
IaSl(r ×∇)Ba

l = −dS

dt
− dI

dt
+

f

r
I × n+ (1− a)[(I · n)ṅ+ (I · ṅ)n]− g̃

m

a′

r
S × I. (4.35)

Finally, the last term in (4.33) can be calculated to give

− g̃g2

2m
IaSlǫ

abcBb
l (r ×A

c
) =

g̃

2m

(1− a)a′

r
I · (S × n)n

+
g̃

2m
(1− a)

[
1− a2

r2
(S · n)I × n− a′

r
S × I +

a′

r
(S · n)I × n

]
.

The use of (4.30) and (4.31) again shows that the last formula is equivalent to the following one

− g̃g2

2m
IaSlǫ

abcBb
l (r ×A

c
) =

g̃

2m

(1− a)a′

r
I · (S × n)n+ (1− a)

dI

dt

− (1− a)
f

r
I × n− (1− a)2[(I · n)ṅ− (I · ṅ)n]. (4.36)

After these calculations, it is found that sum of the formulas (4.34)-(4.36) imply that

dL

dt
+

dS

dt
=

af

r
I × n+ (1− a2)(I · n)ṅ+

da

dt
(I − (I · n)n)

8



−a
dI

dt
+

af

r
I × n+ a(1− a)[(I · n)ṅ− (I · ṅ)n] + g̃

m

a′

r
S × I +

g̃

2m

(1− a)a′

r
I · (S × n)n.

It can not be concluded from this expression that the sum J = L+S is conserved. This is not peculiar
however, as this quantity is not conserved in the abelian case either. Nevertheless, the use of (4.32)
allows to put the last expression in the following form

d

dt
(L+S−aI−(1−a)(I·n)n) = 2af

r
I×n+(1−a2)(I ·n)ṅ−(1−a)(I·n)ṅ−(1−a)[a(I·ṅ)− g̃

2m

a′

r
(S×I)·n]n

−2a
dI

dt
+ a(1− a)[(I · n)ṅ− (I · ṅ)n] + g̃

m

a′

r
S × I +

g̃

2m

(1− a)a′

r
I · (S × n)n.

The use of (4.31) leads to

d

dt
(L+ S − aI − (1− a)(I · n)n) = (1− a2)(I · n)ṅ− (1− a)(I · n)ṅ− (1− a)a(I · ṅ)n

+a(1− a)[(I · n)ṅ− (I · ṅ)n]− 2a(1− a)[(I · n)ṅ− (I · ṅ)n]

+
g̃

m

a′

r
S × I +

g̃

2m

(1− a)a′

r
(I · (S × n))n+

g̃(1− a)

2m

a′

r
((S × I) · n)n− g̃a

2m

[
1− a2

r2
(S · n)I × n

−a′

r
S × I +

a′

r
(S · n)I × n

]
.

Several terms cancel each other out, and this formula simplify to

d

dt
(L+ S − aI − (1− a)(I · n)n) = g̃

m

a′(1− a)

r
S × I +

g̃

2m

(1− a)a′

r
((S × n) · I)n

+
g̃(1− a)

2m

a′

r
((S × I) · n)n− g̃a

2m

[
1− a2

r2
(S · n)I × n+

a′

r
(S · n)I × n

]
.

By use of algebra vector identities, this becomes

d

dt
(L+ S − aI − (1− a)(I · n)n) = g̃

m

a′(1− a)

r
S × I − g̃a

2m

[
1− a2

r2
+

a′

r

]
(S · n)I × n.

This means that
dM

dt
=

g̃

m

a′(1− a)

r
S × I − g̃a

2m

[
1− a2

r2
+

a′

r

]
(S · n)I × n, (4.37)

where
M = L+ S − aI − (1− a)(I · n)n. (4.38)

Therefore the quantity M is conserved in this case only if a = 0 or a = 1. The case a = 0 corresponds
approximately to the asymptotic region, while the case a = 1 describes the core of the object. As the
core is very small, the solution may be approximated with a = 0 in almost all the region of the space.
Note that, in the abelian limit I · n = Qe, the resulting conserved quantity coincides with (2.5).

5. Specific calculation

In the following, the approximation a = 0 will be employed, since describes approximately the field
except for a very tiny region around the origin r = 0, where the monopole is located. In this limit,
the formula (4.32) leads to

I · n = I0 · n0 (5.39)
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where the 0 represent the quantities at the beginning of the motion. The last formula implies that the
projection of the abelian charge on the direction joining the probe particle and the source is conserved.
In addition, in this case, the energy balance equation implies that (3.25) that

E =
m√
1− v2

+ gIaAa
0 −

g̃g

2m
S ·Ba

Ia. (5.40)

is conserved, as the term ǫabcI
bS · Bc

Aa
0
is zero in this limit. In fact, for a = 0 the gauge fields are

given by

Aa
0 =

f

gr
na, Aa

i =
1

gr
ǫaijn

j.

Ea
i = −1

g

(
f

r

)
′

nani, Ba
i =

1

gr2
nani.

These formulas imply that ǫabcI
bS · Bc

Aa
0
is proportional to ǫabcn

bnc, which clearly vanishes. In
addition, it follows that

∂jB
a
i =

1

gr3
(δajni + δainj)− 4ninanj

gr3
.

The equations of motion simplify to

d

dt

(
mv√
1− v2

)
= −

(
f

r

)
′

(I · n)n+
1

r2
(I · n)(v × n) +

g̃

2mr3
[(I · S)n− 3(I · n)(S · n)n],

dS

dt
=

g̃

2mr2
(I · n)(S × n),

dI

dt
=

f

r
I × n+

I × v × n

r
+

g̃

2mr2
(S · n)(I × n).

The conserved quantities are

E =
m√
1− v2

+
f

r
(I · n)− g̃

2mr2
(S · n)(I · n).

mv × n√
1− v2

=
S

r
− M

r
+

(I · n)n
r

.

This implies that
(S + I) · n = M · n.

Even taking into account (5.39), note that the last equation does not imply that S · n is conserved.
The point is that M is a constant of motion, but its multiplication with n is not. The conserved
quantities may be written as

E =
m√
1− v2

+

[
f

r
− g̃

2mr2
(S · n)

]
(I · n).

mv × n√
1− v2

=
S

r
− (S · n)n

r
− M

r
+

(M · n)n
r

.

Explicitly, for the non relativistic case, the energy is

E =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) +

[
f

r
− g̃

2mr2
(Sx sin θ cosφ+ Sy sin θ sinφ+ Sz cos θ)

]
(I · n).
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By taking this into account, the spin equations and the conservation of Mi it is obtained the following
linear system

dSx

dt
=

g̃(I · n)
2mr2

(Sz sin θ sinφ− Sy cos θ),

dSy

dt
=

g̃(I · n)
2mr2

(Sx cos θ − Sz sin θ cosφ),

dSz

dt
=

g̃(I · n)
2mr2

(Sy sin θ cosφ− Sx sin θ sinφ),

θ̇ =
1

mr2

[
(Mx − Sx) sinφ− (My − Sy) cosφ

]
, (5.41)

φ̇ =
1

mr2 sin θ

[
(Mx − Sx) cos θ cosφ+ (My − Sy) cos θ sinφ− (Mz − Sz) sin θ

]
,

ṙ = ±
√

2

m

{
E − m

2
(r2θ̇2 + r2 sin2 θφ̇2)−

[
f

r
− g̃

2mr2
(Sx sin θ cosφ+ Sy sin θ sinφ+ Sz cos θ)

]
(I · n)

}
,

where the fourth and the fifth equations have to be replaced in the last one for eliminating θ̇ and φ̇.
The last are a system of equation of first order for the quantities describing the dynamics namely, Si,
θ, φ and r. This is a closed system. It is clear that this system describes a particle which moves as an
abelian particle with charge I ·n, which is constant during the whole evolution. This does not implies
however, that non abelian and abelian particles can not be distinguished by the dynamics. This is
discussed below.

6. Discussion

In the present work, some results that generalize certain aspects of fermion dynamics in presence of
monopoles such as the ones discussed in [45]-[46] were presented. Some remarks are in order. As
pointed out in the book [46], there is a symmetry for an abelian hedgehog monopole which involves a
spatial rotation and non abelian charge rotation. Thus the action of J = L + T leaves invariant the
solution. However, when a non zero spin is present, at classical level this is not a symmetry of the
equations of motions, and instead the quantity (2.5), which is reproduced here by convenience

J = mr2[θ̇φ̂− φ̇ sin θθ̂] + S − Qn

2
r̂,

is the one that is conserved [4]. For non abelian charges, when the spin is taken S = 0 the conserved
quantity is given by [2]

M s=0 = L− aI − (1− a)(I · n)n,
which coincides with the quantity M defined in (4.38) in the case S = 0. In fact, this is consistent
with (4.37). This formula shows that the obstruction for M to be conserved is proportional to S, thus
conservation takes place for an spinless particle.

The results of the present paper show that the quantity M when spin is present, strictly speaking,
is not conserved for a non abelian monopole configuration. Neither does the energy (3.26) namely

E =
m√
1− v2

+ gIaAa
0 −

g̃g

2m
S ·Ba

Ia.

This non conservation may be interpreted as an effect of the non linear interaction of the field of
the particle and the monopole one, which is absent for the abelian case. This non conservations
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complicate the dynamics. However, as asymptotically the profile a(r) → 1 rapidly, and in this limit
M is conserved, to postulate conservation of this quantity is approximately correct. In the inner region
a(r) → 0 and conservation also takes place. Thus, if the profile is approximated by an step function
a(r) = Θ(r − r0) the problem can be divided in two regions r ≥ r0 and r < r0 where M and E are
conserved. The internal and external solutions have boundary conditions at the sphere r = r0 which
comes from the jump given in (4.37). If the inner part region has small volume, then a simplifying
assumption is to put a 6= 0 and employ conservation of these quantities. This leads to the system
(5.41) in which, in addition, the quantity I · n is a constant of motion.

It is seem by comparing the obtained system (5.41) with the equations (2.1)-(2.11) that the dy-
namics of a spin particle in in the field of a non abelian monopole is equivalent, by interpreting the
constant I · n as an effective charge, analogous to 2Qeg for the abelian case. However, the sign of the
charge depends on the initial conditions, and the force may be attractive or repulsive depending on
the initial choice. In addition, there exist a regime I · n = 0 for which the charge does not experience
the force of the monopole and just pass through with a straight line. This does not imply that the
charges do not evolve in time. In fact, in the limit a = 0 the equations (4.31) are given by

dI

dt
=

f

r
I × n+ [(I · n)ṅ − (I · ṅ)n] + g̃

2mr2
(S · n)I × n. (6.42)

It is seen that even if I · n = 0 and n describes a straight line, this time derivative is not zero. Thus,
there is charge precession even in this almost trivial case.

The fact that the charge is not invariant under reflections, that is, I ·n → −I ·n by a reflection by a
plane with normal n, has another possible consequence. For a scattering beam aligned in the negative
x̂ direction, the value of n ∼ −x̂, and this fixes the value of the charge of all the particles composing
the beam as −Ix. The dynamics of such beam is identical to one with abelian charge Qge = −Ix. On
the other hand, if the beam is aligned in the positive x̂ direction, and all the initial conditions are
copied, then it works as a particle with charge opposite Qeg = Ix. Therefore, if two beams coming
from two opposite directions are incident over the monopole, with the same charge I and the same S0y

and S0z and with opposite values of S0x, the dynamics will not be symmetric. This effect is different
than in the abelian case, and distinguish the non abelian nature of the beam.

An interesting topic may be the rainbow and glory effect, which is known to happen for the motion
of spinless particles in the field of an abelian monopole [47]. This effect also is found in an opposite
situation in which the monopole is not fixed, but it moves in the presence of a dyon [48]-[49]. As
pointed out in (2.14), if the spin is zero, then the particle moves in the surface of a cone with angle
dictated by the initial conditions. When spin is turned on, this is not the case, and the particle moves
in a volume. This complicates considerably the dynamics and the possibility of study these effects, as
the previous simplification is of great help when dealing with these matters.

There is a possible additional difference between an abelian and non abelian dynamics, although
the following argument is not completely rigorous. Consider a charge with spin in the middle of
two identical abelian monopoles. The formula (2.1) shows that the force will be zero. However, if a
direction dependent charge I · n is in the middle of two identical non abelian monopoles, there is no
cancellation, as this seems to act as a positive charge for one monopole and negative for the other.
This argument is dubious however, as the conservation of I · n was obtained only for the limit a = 0
in a single monopole configuration and may be violated for a two monopole field. In any case, we
suggest that the dynamics of a non abelian charge in the field of two or more monopoles may be of
academic interest. We leave this issue for a future publication.
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