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ABSTRACT
In this work we present an exhaustive analysis of the use of Quantized State Systems (QSS) 
algorithms for the discrete event simulation of Leaky Integrate and Fire models of spiking 
neurons. Making use of some properties of these algorithms, we first derive theoretical error 
bounds for the sub-threshold dynamics as well as estimates of the computational costs as 
a function of the accuracy settings. Then, we corroborate those results on different simulation 
experiments, where we also study how these algorithms scale with the size of the network and 
its connectivity. The results obtained show that the QSS algorithms, without any type of 
optimisation or specialisation, obtain accurate results with low computational costs even in 
large networks with a high level of connectivity.
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1. Introduction

The presence of discontinuities in systems of Ordinary 
Differential Equations (ODE) has been always a challenge 
for the numerical integration algorithms used for their 
simulation. Steps that integrate through discontinuities 
usually introduce unacceptable large errors and for this 
reason they must be avoided. For this purpose, it is 
necessary to detect the precise instant of time at which 
each discontinuity occurs in order to advance the simula
tion up to that time. Then, the integration can be restarted 
from the situation after the event occurrence (Cellier & 
Kofman, 2006). This process, known as zero crossing 
detection and handling, effectively avoids integrating 
through discontinuities at the price of large computa
tional costs: the detection of the discontinuity times 
usually requires iterations (Park & Barton, 1996) and 
then restarting the simulation implies using a small step 
size.

Models of spiking Integrate and Fire neurons are 
a particular case of discontinuous ODEs. There, when 
some variable (usually the membrane potential) reaches 
a threshold, the neuron fires producing a spike that not 
only resets some internal variables but that is also propa
gated through synaptic connections to other neurons in 
the network.

When the size of a spiking neural network 
(SNN) grows, the time between successive spikes 
on the whole network becomes smaller, and conse
quently the maximum step size that can be used by 
the numerical algorithms is reduced. In addition, 
the computational cost of each step grows with the 
number of neurons.

Thus, simulating large SNN with standard zero 
crossing detection and handling algorithms becomes 
impractical and different solutions have been pro
posed to overcome that problem (Brette et al., 2007; 
Hansel et al., 1998; Morrison & Diesmann, 2007; 
Shelley & Tao, 2001). Most of these solutions involve 
using a fixed small step size and whenever one or more 
spikes are detected within an integration step, instead 
of reducing the step size to the time instant of the first 
spike, some correction procedure is executed.

In the last two decades, a family of numerical ODE 
algorithms that replaces the classic time discretisation 
by the quantisation of the state variables was developed. 
These algorithms, called Quantized State Systems (QSS) 
methods (Cellier & Kofman, 2006; Kofman, 2002; 
Kofman & Junco, 2001; Migoni et al., 2013), approx
imate the ODEs in an event driven fashion where each 
step only involves local computations around a state 
variable that experiences a significant change. QSS 
methods, besides having strong theoretical properties 
regarding stability and error bounds, are particularly 
efficient to integrate discontinuous models (Kofman,  
2004a) since zero crossing detection is straightforward 
and the occurrence of a discontinuity only provokes 
local computations similar to those of a normal step.

In this work, we first analyse different theoretical 
properties of QSS methods applied to the simulation 
of Leaky Integrate and Fire (LIF) spiking neurons that 
establish upper bounds for different errors (synaptic 
current, membrane potential, and firing times) and 
also estimate the expected computational costs. We 
also perform an exhaustive comparison of 
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computational costs and errors for the different QSS 
algorithms in the simulation of a single neuron model. 
This analysis is then scaled up to a neural network 
level, studying the way the computational costs 
increase with the growth of the network and its 
connectivity.

We shall see that QSS methods offer a promising 
alternative for the simulation of SNNs, providing 
accurate results with low computational costs. 
Moreover, this is achieved without introducing any 
ad-hoc modification or specialisation to the algo
rithms for the particular problem, as it is usually 
done with classic methods.

The article is organised as follows. Section 2 pro
vides the background in which the rest of the work is 
based, including the description of LIF models and 
QSS algorithms. Then, Section 3 contains the main 
theoretical results and Section 4 reports and analyzes 
the simulation results. Finally, Section 5 presents the 
conclusions and the future work.

2. Background

In this section we introduce different ODE models of 
spiking neurons and the numerical methods used to 
simulate them. We then present the QSS family of 
methods and we continue by recalling the core con
cept of activity that allows analysing the computa
tional costs of QSS simulations. Finally, we introduce 
the software tool we have used to run the different 
experiments throughout this work and we discuss 
previous results where these methods were used to 
simulate spiking neurons.

2.1. Modeling and simulation of spiking neurons

Spiking neurons are usually described by systems of 
ODEs with discontinuities associated to the firing 
times. Among the different models that have been 
proposed, we can mention the following ones:

● Hodgkin – Huxley (HH) model (Hodgkin & 
Huxley, 1952): this detailed model, developed in 
the 1950s, describes the electrical action poten
tials of neurons accounting for ion channel 
potentials. The main drawback of this model is 
that its simulation is computationally expensive, 
since each neuron is represented by four differ
ential equations governed by 10 parameters. 
Thus, its usage is usually limited to networks 
formed by few neurons (Izhikevich, 2003b).

● Leaky Integrate and Fire (LIF) model (Lapicque,  
1907; Stein, 1967): this simplified model, intro
duced by Lapique in 1907, is also based on an 
electrical representation. The circuit consists of 
a resistor and a capacitor in parallel, representing 
the leakage and capacitance of the membrane 

(Burkitt, 2006), respectively. The membrane 
capacitor is charged until it reaches a certain 
threshold, after which it discharges producing 
an action potential (spike). This behaviour is 
modelled by the differential equation

_vðtÞ ¼ IðtÞ þ a � bvðtÞ; if vðtÞ � vu then v c;

where vðtÞ is the membrane potential, IðtÞ is the input 
current and a, b, c, and vu (the threshold) are the 
model parameters.

Several modifications have been proposed to improve 
the LIF model, such as the inclusion of a quadratic 
term on vðtÞ (quadratic integrate and fire 
(Ermentrout, 1996)), or the addition of a second 
state variable in order to represent more complex 
behaviours (integrate and fire or burst (Izhikevich,  
2003b)). Other variants are the exponential integrate- 
and-fire neuron (Fourcaud-Trocmé & Brunel, 2005; 
Fourcaud-Trocmé et al., 2003), the generalised inte
grate-and-fire neuron (Brunel et al., 2003; Richardson 
et al., 2003) and the noisy LIF (Gerstner et al., 2014). 
The so called Izhikevich model, described in 
(Izhikevich, 2003a) and (Izhikevich, 2007), that con
sists of a second order nonlinear system (with states 
representing the membrane potential and the mem
brane recovery), can also be regarded as an extension 
of the LIF model.

The above presented models can be simulated with 
classic numerical methods (Brette et al., 2007), 
although some problems often appear since every 
time a neuron emits or receives a spike 
a discontinuity occurs. This constitutes a difficulty 
for conventional (time discretisation-based) numeri
cal methods because they cannot integrate across dis
continuities since the polynomial approximations on 
which these numerical schemes are based are not valid 
on discontinuous functions. To overcome this pro
blem, the methods must detect each discontinuity, 
then advance the simulation time to that instant, and 
finally restart the simulation from the new situation 
(Cellier & Kofman, 2006).

This whole process, which usually involves itera
tions to find the precise instant of the discontinuity 
occurrence, is computationally expensive. Moreover, 
in a model like that of a spiking neural network, the 
rate of occurrence of discontinuities (i.e., spikes) 
grows with the number of neurons and then the max
imum step size is limited to a smaller value as the size 
of the system grows.

To overcome these problems, different strategies 
have been implemented. A simple solution is to use 
a small fixed step size that introduces a small error in 
the spiking times. A more precise and sophisticated 
approach is that of (Hanuschkin et al., 2010a) in which 
synapses communicate between neurons at discrete 
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time instants (usually larger than the integration step 
size) making use of a correction mechanism to take 
into account the late arrival of incoming spikes.

A different approach is followed in (Zheng et al.,  
2009), where the authors propose a numerical integra
tion method for generic simulations of nonlinear spik
ing neuron models called voltage-stepping. This 
approach is based on the discretisation of the voltage 
values in order to simulate with a local event-driven 
method and to take advantage of its properties. Then, 
in (Kaabi et al., 2011) this approach is scaled up to 
a neural network level using the Discrete Event System 
Specification (DEVS) (Zeigler et al., 2000).

Another approach also related to event-driven 
techniques is the one presented in (Mascart et al.,  
2022), where the authors modelled only the time of 
the spikes by a point processes and they developed 
a specific algorithm called Activity Tracking with 
Time Asynchrony (ATiTA).

2.2. Quantized state system methods

QSS methods are a family of numerical integration 
algorithms that replace the time discretisation of clas
sic numerical integration algorithms by the quantisa
tion of the state variables.

Given a time invariant ODE in its State Equation 
System (SES) representation: 

_x ¼ fðxðtÞ; tÞ (1) 

where _xðtÞ 2 R n is the state vector, the first order 
Quantized State System (QSS1) method (Kofman & 
Junco, 2001) solves an approximate ODE called 
Quantized State System: 

_x ¼ fðqðtÞ; tÞ: (2) 

Here, qðtÞ is the quantized state vector. Each com
ponent of the quantized state qiðtÞ follows a piecewise 
constant trajectory that only changes when its differ
ence with the corresponding state xiðtÞ reaches the 
quantum ΔQi.

The quantised state trajectory is related to the cor
responding state trajectory xiðtÞ as follows: 

qiðtÞ ¼
qiðtkÞ if jxiðtÞ � qiðtkÞj<ΔQi
xiðtÞ otherwise

�

for tk < t � tkþ1, where tkþ1 is the first time after tk at 
which jxiðtÞ � qiðtkÞj ¼ ΔQi. In addition, we consider 
that initially qðt0Þ ¼ xðt0Þ. This defines a hysteretic 
quantization function generating trajectories like 
those depicted in Figure 1.

Since the quantised state trajectories qiðtÞ are piece
wise constant, then, provided that the system is auton
omous (or that fð�; tÞ is piecewise constant with t), the 
state derivatives _xiðtÞ also follow piecewise constant 
trajectories and, consequently, the states xiðtÞ follow 

piecewise linear trajectories. In non autonomous sys
tems Equation (2) can be rewritten as 

_xðtÞ ¼ fðqðtÞ; tÞ ¼ ~fðqðtÞ;uðtÞÞ

for some input trajectories uðtÞ that are approximated 
by piecewise constant trajectories vðtÞ such that the 
difference viðtÞ � uiðtÞ remains bounded by a certain 
quantity (given by the input quantization). That way, 
the QSS1 approximation actually integrates the system 

_xðtÞ ¼ ~fðqðtÞ; vðtÞÞ

Due to the particular form of the trajectories, the 
numerical solution of Equation (2) is straightforward 
and can be easily translated into a simulation 
algorithm.

Since QSS1 is only first order accurate and a good 
accuracy cannot be obtained without significantly 
increasing the number of steps, a second order accu
rate method called QSS2 was proposed (Kofman,  
2002).

QSS2 has the same conceptual definition as QSS1, 
except that the components of qðtÞ are calculated to 
follow piecewise linear trajectories (rather than piece
wise constant, as in QSS1), as shown in Figure 2. Then, 
the state derivatives _xðtÞ are computed as piecewise 
linear trajectories so that the states xðtÞ follow piece
wise parabolic trajectories.

The idea was also extended in a similar way to 
obtain a third order accurate QSS method called 
QSS3, in which the quantised states qiðtÞ follow piece
wise parabolic trajectories while the states follow pie
cewise cubic trajectories.

An important advantage of the QSS methods is that 
they handle discontinuities in a straightforward and 
very efficient manner (Kofman, 2004b). According to 
the order of the method, the quantised state variables 
follow piecewise constant, linear or parabolic trajec
tories. Then, detecting zero crossings is straightfor
ward, as it involves solving a quadratic equation in 

Figure 1. Typical QSS1 state and quantized state trajectories.
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the worst case (QSS3). Once a discontinuity is 
detected, the algorithm handles it as an ordinary 
step, in which only the state derivatives that are 
affected by that discontinuity are recomputed.

The efficiency in the discontinuity handling and the 
fact that the computations at each step are confined to 
the states that experience changes imply that these 
algorithms are very efficient to simulate large systems 
with heterogeneous activity involving discontinuities. 
The family of QSS methods also includes a set of 
algorithms called Linearly Implicit QSS (LIQSS), 
which are appropriate to simulate some stiff systems 
(Migoni et al., 2013). LIQSS methods combine the 
principles of QSS methods with those of classic line
arly implicit solvers. There are LIQSS algorithms that 
perform first, second, and third order accurate 
approximations: LIQSS1, LIQSS2, and LIQSS3, 
respectively. The main idea behind LIQSS methods is 
inspired by classic implicit methods that evaluate the 
state derivatives at future instants of time.

2.3. Theoretical properties of QSS methods

The fact that the difference between the states xi and 
the corresponding quantized states qi is bounded by 
the quantum ΔQi allows to rewrite Eq. (2) as 

_x ¼ fðxðtÞ þ ΔxðtÞ; tÞ (3) 

where ΔxðtÞ ¼Δ qðtÞ � xðtÞ is a perturbation term 
bounded by the quantum.

In consequence, the use of a QSS algorithm is 
equivalent to the addition of a bounded perturbation 
to the original system and several properties regarding 
convergence, stability, and global error bounds can be 
easily derived (Cellier & Kofman, 2006; Kofman & 
Junco, 2001) for linear and non-linear systems. One 
of those properties establishes that the use of QSS in 
stable linear time invariant systems of the form 
_xðtÞ ¼ AxðtÞ þ BuðtÞ produces a global error that 
can be bounded by the formula1 

jxðtÞ � xaðtÞj � jVj � jRefΛg� 1
� Λj � jV� 1j � ΔQ (4) 

where x and xa are the QSS and the analytical solu
tions, and Λ ¼ V� 1AV is the Jordan decomposition of 
matrix A. That way, there is a linear dependence 
between the quantum and the global error bound.

For these reasons, the quantum plays an equivalent 
role to that of the tolerance in variable step size 
algorithms.

2.4. Activity and QSS methods

The concept of activity associated to continuous sig
nals was introduced in (Jammalamadaka, 2003; Muzy 
et al., 2011) in order to measure the rate of change of 
the signal. The formal definition of the activity metrics 
for a continuous signal xiðtÞ between an initial time t0 
and a final time tf is given by: 

Axiðt0;tf Þ ¼
Δ
ðtf

t0

dxiðτÞ
dτ

�
�
�
�

�
�
�
� � dτ (5) 

This definition measures the distance between suc
cessive maxima and minima of a signal and results 
proportional to the number of segments used by 
a piecewise constant approximation like that of 
Figure 1.

With the goal of considering higher order approx
imations like that of Figure 2, this notion was extended 
in (Castro & Kofman, 2015), defining the concept of 
n-th order activity that takes into account not only the 
values but also the derivatives of the trajectory. 
Formally, given a signal xiðtÞ, its n-th order activity 
in the interval ½t0; tf � is defined as 

AðnÞxiðt0;tf Þ
¼
Δ
ðtf

t0

dnxiðτÞ
dτn

n!

�
�
�
�
�

�
�
�
�
�

1=n

� dτ (6) 

Using this definition, it is possible to estimate the 
number of segments of polynomials up to order 
n � 1 that are needed to approximate the signal xiðtÞ
with an error less than ΔQi in the interval ½t0; tf � as 

kðnÞxiðt0;tf Þ
ðΔQiÞ �

1
ΔQi

� �1=nðtf

t0

dnxiðτÞ
dτn

n!

�
�
�
�
�

�
�
�
�
�

1=n

� dτ ¼
AðnÞxiðt0;tf Þ

ðΔQiÞ
1=n

(7) 

In QSS methods, using n equal to the order of the 
method (that uses polynomials of order up to n � 1 in 
the quantised states) this formula allows estimating 
the number of steps performed in the i-th state vari
able when a quantum size ΔQi is selected.

A simple consequence of Eq. (7) is that the number 
of steps grows linearly with the accuracy (i.e., with the 
inverse of the quantum size) in the first order accurate 
QSS1 and LIQSS1 methods. It also grows with the 
square root of the accuracy in QSS2 and LIQSS2 and 

Figure 2. Typical QSS2 state and quantized state trajectories.
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with the cubic root of the accuracy in the third order 
schemes.

2.5. The stand alone QSS solver

While some DEVS-based simulation tools have imple
mentations of different QSS algorithms (D’Abreu & 
Wainer, 2005; Quesnel et al., 2007; Zeigler et al., 2018), 
the most efficient and complete tool for the family of 
QSS solvers is the Stand-Alone QSS solver (Fernández 
& Kofman, 2014).

The models in this solver are described using 
a subset of the Modelica language (Mattsson et al.,  
1998) called μ-Modelica. The tool automatically 
translates the models into a C language piece of 
code, containing the set of ODEs with the corre
sponding zero crossing functions and event handlers 
for discontinuous cases. The tool also extracts struc
ture information (incidence matrices) and produces 
the code for the symbolic evaluation of the Jacobian 
matrix. The C code produced is then linked to the 
different QSS algorithms (QSS and LIQSS of order 
one to three) or to classic ODE solvers like DOPRI 
(Dormand & Prince, 1980), DASSL (Petzold, 1982), 
CVODE (Cohen et al., 1996) and IDA (Hindmarsh 
et al., 2005).

The fact that the tool provides all the information 
about the structure of the model and the code for the 
symbolic evaluation of the sparse Jacobian matrices 
implies that the results obtained by this tool using 
classic ODE solvers are noticeably faster than the 
results obtained by other interfaces (Kofman et al.,  
2021). In addition, the fact that the solver uses the 
same piece of code for computing the ODE right hand 
side functions in the different algorithms (QSS and 
classic ODE integrators), allows fair performance 
comparisons among them.

2.6. QSS and SNN simulation

There exist some previous works applying state dis
cretisation to simulate spiking neural network models. 
Among them, the already mentioned voltage-stepping 
methods of (Kaabi et al., 2011; Zheng et al., 2009) are 
not formally QSS methods but use similar ideas also 
leading to event-driven simulations.

In the voltage-stepping approach, the variable 
representing the membrane potential is limited to 
take values on a discrete set. Then, steps are only 
performed when there is a discrete change in the 
voltage value. For that goal, the analytical solution of 
a differential equation is obtained at each step and, 
from that solution, the time of the next crossing for 
a new voltage value is computed. The differential 
equation that is solved is obtained from a piecewise 
linear approximation of the expression that computes 
the voltage derivative.

The authors showed that the accuracy of the 
approximation is of the order of Δv2 where Δv is the 
voltage step, i.e., the difference between successive 
voltage values. Thus, in principle, the method would 
have the same accuracy order as both QSS2 and 
LIQSS2. However, the method lacks error bound for
mulas such as that of Eq.(4).

A problem of this approach is that it does not 
constitute a general numerical integration scheme 
like those of classic algorithms (Euler, Runge-Kutta) 
or QSS methods. Its definition requires analytical inte
gration and its usage beyond first order systems 
becomes very complex. In addition, the simulations 
reported are limited to networks of 100 neurons which 
does not allow to infer the behaviour of the algorithm 
in large networks, and comparisons are only done 
against a modified second order accurate Runge 
Kutta (RK) algorithm.

The first use of QSS algorithms for simulation of 
spiking neurons was presented in (Grinblat et al.,  
2012), where the authors explored the use of these 
algorithms in the simulation of spiking neuron net
works based on Izhikevich’s model (Izhikevich, 2003a,  
2007). The study included the simulation of a single 
isolated neuron, then a set of several disconnected 
neurons and finally a network of up to 4000 neurons 
with 80 input connections. The results showed that, as 
the size of the network grows, the QSS3 algorithm 
scaled better than variable step RK algorithms 
equipped with discontinuity handling routines.

However, the work did not include any type of 
theoretical analysis and the only errors analysed via 
simulation were those corresponding to the voltage 
variable for the model of a single isolated neuron. In 
addition, the results were obtained with the QSS3 
algorithm using the PowerDEVS toolkit, which is less 
efficient than the Stand-Alone QSS solver for this type 
of models. Consequently, the results were not signifi
cantly faster than those obtained using classic algo
rithms like Runge-Kutta-Fehlberg.

In a more recent work (Fernandez et al., 2017) QSS 
simulations of a SNN model adapted from (Vogels & 
Abbott, 2005) are presented showing that QSS algo
rithms are not only efficient but they can be also 
efficiently parallelised. In this work, the model repre
sents the effect of the incoming spikes in a neuron as 
a modification of the excitatory and inhibitory con
ductance, so that each neuron is modelled as 
a nonlinear system with three state variables (mem
brane potential and both conductances).

The simulations presented a model with 300; 000 
neurons and 300 synaptic connections per neuron 
with a particular structure (connections were only 
allowed between neurons that are relatively close to 
each other). It was shown that the parallel version of 
the Stand Alone QSS Solver was able to accelerate up 
to 25 times the simulation using 62 cores. However, 
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the work did not provide any type of theoretical ana
lysis or even any type of error analysis.

In the present work, we shall work with linear LIF 
models, performing a theoretical analysis that pro
vides upper bounds for the errors introduced by QSS 
methods in the different variables (membrane voltages 
and synaptic currents) and also upper bounds for the 
errors in the firing times and firing rates. In addition, 
the theoretical analysis will also establish estimates on 
the number of computations required by the different 
QSS methods as a function of the accuracy.

We shall also study the performance of QSS meth
ods in terms of CPU time and errors when the size of 
the network and/or its connectivity grows and we shall 
also compare it with the performance of the variable 
step DOPRI5 algorithm using the same pieces of code 
for computing the state derivatives and the zero cross
ing functions. To the best of our knowledge, this type 
of study, which includes theoretical results that are 
then verified by simulations that clearly exhibit the 
advantages of QSS algorithms over classic approaches, 
had been never carried out before.

3. Main theoretical results

In this section we describe first the Leaky Integrate 
and Fire (LIF) model used along this work, taken from 
(Schmidt et al., 2018). We use two equivalent descrip
tions of that model, with one and two state variables. 
Then we derive theoretical properties of their QSS 
approximations including error bounds and computa
tional complexity.

As expected, we will see that all the error bounds 
depend linearly on the quantum size and that the 
computational costs estimations depend on the 1=n- 
th power of the quantum where n is the order of the 
algorithm.

3.1. Model description

The LIF model used in this work corresponds to that 
of (Schmidt et al., 2018) representing the synapses 
with instantaneous jumps and exponential decay. In 
this case the state variable is the membrane potential 
VðtÞ and the corresponding sub-threshold dynamics is 
described by the following differential equation: 

dV
dt
¼ �

VðtÞ � EL

τm
þ

IsðtÞ
Cm

(8) 

where EL is the leak potential, τm is the membrane 
time constant, and Cm is the membrane capacity and 

IsðtÞ ¼ IsðtlÞ � e� ðt� tlÞ=τs (9) 

is the synaptic current which is represented as an 
exponentially decaying signal that was restarted after 
receiving a spike. Here, tl is the instant of time in 

which the neuron received the last incoming spike 
and τs is the postsynaptic current time constant.

When the neuron receives a spike, the synaptic 
current is updated according to the following law 

IsðtþÞ  IsðtÞ þ ΔI ¼Δ IsðtÞ þ J (10) 

where J is the excitatory synaptic strength.
Whenever the membrane potential reaches the fir

ing threshold θ, a spike is emitted by the neuron and 
the potential is reset to the resting potential Vr.

In addition, the neuron enters a refractory period of 
duration τr in which the membrane potential keeps 
the value VðtÞ ¼ Vr. After that period, the neuron 
comes back to the sub-threshold dynamics described 
by Eq. (8).

We shall consider two equivalent representations 
for the synaptic current. In the first one we directly use 
Eq. (9) to compute its evolution so that the entire 
neuron has a single state variable VðtÞ. We shall 
refer to this model as the single-state model.

In the second representation we shall compute IsðtÞ
from an additional differential equation given by 

dIs
dt ¼ �

IsðtÞ
τs

(11) 

such that the neuron model has now two states (VðtÞ
and IsðtÞ).

Although both representations are equivalent, their 
numerical solutions will differ. The single-state model 
is a time-varying ODE and the accuracy of the approx
imation given by the QSS methods will depend not 
only on the quantum, but also on the order of the 
method and on the rate at which incoming spikes are 
received. The subthreshold dynamics of the two-state 
model is linear time-invariant and we shall see that 
stronger properties and simpler error bounds can be 
established. For this reason, more accurate results can 
be expected.

We analyse next the different theoretical properties 
of the QSS approximation of each representation.

3.2. QSS sub-threshold error bounds

3.2.1. Two-state model
QSS algorithms have a global error bound formula for 
linear time invariant systems depending on the quan
tum size ΔQi used in each variable, given by Eq. (4).

If we apply this formula to a system where the 
evolution matrix has a triangular structure, 

dz1
dt ðtÞ ¼ � az1ðtÞ þ bz2ðtÞ þ u1ðtÞ

dz2
dt ðtÞ ¼ � cz2ðtÞ þ u2ðtÞ (12) 

with a> 0, b> 0, c> 0, as it is the case of the two-state 
LIF model used in this work, we obtain that the error 
is bounded as: 
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je1ðtÞj � ΔQ1 þ
2b

c� a

�
�
�
�ΔQ2

je2ðtÞj � ΔQ2
(13) 

A problem with this expression is that the error bound 
in the first state e1ðtÞ goes to infinite as c goes to a. In 
order to obtain a less conservative bound, we shall 
specialise that formula for this particular triangular 
case. In addition, we shall extend the existing results 
to take into account the presence of impulsive input 
dynamics. 

Theorem 1. Error Bound.

Consider an LTI system of the form of Eq.(12) with 
a> 0, b> 0, c> 0, and consider its QSS approximation  

dx1
dt ðtÞ ¼ � aq1ðtÞ þ bq2ðtÞ þ u1ðtÞ

dx2
dt ðtÞ ¼ � cq2ðtÞ þ u2ðtÞ (14) 

If a quantum ΔQi is used for variable xi, then the 
maximum difference between the solutions of both sys
tems is given by  

jx1ðtÞ � z1ðtÞj � Δ1 ¼
Δ ΔQ1 þ

2b
maxða; cÞ

ΔQ2 (15) 

jx2ðtÞ � z2ðtÞj � ΔQ2 (16) 

provided that the initial state verifies Eqs (A15)–(16).
This theorem, whose proof can be found in 

Appendix A.1, provides a bound for the error in 
both states of the model of Eq. (8) and Eq. (11) taking 
z1ðtÞ ¼ VðtÞ and z2ðtÞ ¼ IsðtÞ.

A problem with this theorem is that it does not take 
into account the eventual presence of the impulsive 
inputs corresponding to the arrival of input spikes that 
are represented by instantaneous changes in the 
synaptic current. However, the error bounds are still 
valid in that case taking into account the way in which 
QSS algorithms treat impulsive inputs during the 
simulation.

When a neuron receives an input spike, the QSS 
method instantaneously changes the value of the 
synaptic current adding the value ΔI that corresponds 
to the same quantity in which is modified the analy
tical solution. That way, if at the time of the spike 
arrival the numerical solution has certain error, imme
diately after the spike the error will remain unmodi
fied since both solutions (numerical and analytical) 
will experience an identical change.

More formally, consider a system of the form of Eq. 
(12) and its QSS approximation given by Eq.(14) and 
consider an instant of time t1 in which the system 
receives an input impulse. If from t0 to t1 it is verified 
that jxðtÞ � zðtÞjemax, when the input event arrives, 
both the analytical solution zðtÞ and the numerical 
solution xðtÞ are increased or decreased by the same 
quantity. Thus jxðtþ1 Þ � zðtþ1 Þj ¼ jxðtÞ � zðtÞjemax. 

This implies that the error bound holds beyond the 
arrival of an input impulse. Extending this reasoning 
to the time of the following spike arrival and then 
using induction, it results that the error bound 
obtained in the Theorem 1 is still valid in presence of 
arbitrary sequences of impulsive inputs.

This result ensures that the error in the QSS 
approximation of the synaptic current IsðtÞ ¼ z2ðtÞ
computed from Eq. (11) is bounded according to Eq. 
(16) even in presence of a sequence of input spikes. 
Taking into account that the firing of a neuron does 
not have any effect on its own synaptic current Is, this 
error bound is also valid beyond the sub-threshold 
dynamics provided that the sequence of input spikes 
received is not changed.

3.2.2. Single state model
The single state model of Eqs.(8) contains a term IsðtÞ
given by Eq.(9) that can be treated as an input signal or 
as a time-varying parameter (in most numerical simu
lation literature input signals are assumed to be known 
and are treated as time-varying parameters so that the 
ODEs are represented by Eq.(1) without the need of an 
input term). In either case, QSS algorithms will 
approximate the time-varying terms by piecewise 
polynomial signals up to one order less than the 
order of the method. For instance, given a linear sys
tem of the form 

dz1

dt
ðtÞ ¼ � az1ðtÞ þ uðtÞ (17) 

a QSSn method will approximate it by 

dx1

dt
ðtÞ ¼ � aq1ðtÞ þ vðtÞ (18) 

where q1ðtÞ is the quantised state trajectory (piecewise 
polynomial of order n � 1) and vðtÞ is a piecewise 
polynomial trajectory of order n � 1 that approxi
mates the signal uðtÞ. That way, the state derivative 
dx1
dt ðtÞ follows a piecewise polynomial trajectory of 
order n � 1 and the state trajectory x1ðtÞ follows 
a piecewise polynomial trajectory of order n.

The difference between a piecewise continuous sig
nal uðtÞ and its piecewise polynomial approximation 
of order n � 1, vðtÞ, can be upper bounded using the 
remainder of the Taylor expansion as follows: 

jvðtÞ � uðtÞj � γðt � tkÞ
n (19) 

for certain constant γ, where tk was the time of the last 
step at which the value and derivatives (up to order 
n � 1) of vðtÞ were made equal to those of uðtÞ. This 
property holds beyond QSS algorithms, assuming that 
uðtÞ is n times differentiable in between the time steps 
tk at which the piecewise polynomial approximation 
vðtÞ is updated.

Then, using this upper bound for the approxima
tion error of the input trajectory, the following result 
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can be derived to establish an upper bound on the 
numerical error introduced by a QSS algorithm in the 
simulation of a system like that of the single-state 
neuron: 

Theorem 2. Error bound in a non autonomous lin
ear system

Consider a first order ODE of Eq.(17) with a> 0 and 
uðtÞ being a piecewise continuous trajectory. Let Eq. 
(18) be a QSS approximation of order n of that system 
such that vðtÞ and uðtÞ verify Eq.(19) for certain con
stant γ. Then, assuming that x1ðt0Þ ¼ z1ðt0Þ, it results 
that  

jz1ðtÞ � x1ðtÞj � ΔQ1 þ
γ
a

Δtn
max (20) 

where ΔQ1 is the quantum and Δtmax is the maximum 
interval between successive steps.

This result, whose proof can be found in Appendix 
A.2, establishes that the error bound depends not only 
on the quantum but also in the order n of the approx
imation and in the maximum time Δtmax between 
successive steps.

In the context of the single-state model of the 
neuron given by Eqs.(8) and (9), the condition of Eq. 
(19) is verified since a QSS method of order n will 
approximate the synaptic current IsðtÞ using polyno
mial segments of order n � 1 and the error term will 
result proportional to Δtn where Δt is the time elapsed 
since the last update of the approximated signal.

In this case, we can expect the error to decrease not 
only with the quantum size and method order, but also 
as the input spike rate grows. Anyway, as the quantum 
becomes smaller, the time between successive changes 
in VðtÞ results smaller than the time between input 
spikes. In that case, Δtmax is inversely proportional to 
the total number of changes in the quantized state. 
From the activity formula of Eq. (7) the number of 
steps is inversely proportional to ΔQ1=n. Then, Δtmax is 
proportional to ΔQ1=n and ðΔtmaxÞ

n is proportional to 
ΔQ. This implies that the error in Eq. (20) becomes 
proportional to the quantum size.

3.3. QSS firing time and firing rate error bounds

The most important feature of a spiking neuron is the 
time at which the output spikes are produced. Thus, it 
is crucial to analyse the error that the QSS approxima
tions introduce in the firing times. The following 
theorem provides an upper bound for this error 

Theorem 3. Firing Time Error Bound.

Consider the LTI system of Eq. (12) and its QSS approx
imation of Eq. (14).

Let tθ be the instant of time at which the analytical 
solution z1ðtÞ crosses the threshold θ. Let ~tθ be the 
instant of time at which x1ðtÞ crosses θ.

Suppose also that x1ð0Þ ¼ z1ð0Þ ¼ Vr, u1ðtÞ ¼ �u1, and 
assume that z2ðtÞ is constant and it verifies

z2ðtÞ ¼ �z2 >
aðθþ Δ1Þ � u1

b
(21) 

for all t 2 ½0; tθ� with Δ1 defined in Eq. (15). Then, the 
maximum difference between the firing times of both 
systems is given by  

jtθ � ~tθj<
1
a

log 1þ
ΔQ1 þ

2b
maxða;cÞΔQ2

θ � b�z2þu1
a

 !�
�
�
�
�

�
�
�
�
�

(22) 

This theorem, whose proof can be found in Appendix 
A.3, establishes an upper bound on the output spike 
timing. While precise spike timing is crucial in several 
applications (where it encodes information), there are 
occasions in which the information is encoded by the 
firing rate. For those cases, a straightforward analysis 
concludes that the difference between the analytical 
firing period of a two-state neuron with constant 
synaptic current and that of its QSS approximation is 
bounded by the error bound in the firing time. This 
result is formalised by the following corollary: 

Corollary 1 Firing Period Error Bound

Consider an LTI system of equation (12) and its QSS 
approximation of Equation (14) with u1ðtÞ ¼ �u1, and 
assume that z2ðtÞ is constant and it verifies Equation 
(21). Suppose also that z1ðtÞ and x1ðtÞ are reset to the 
value Vr whenever they reach θ.

Let T be the time period between two consecutive 
resets of z1ðtÞ, and let ~T be the time period between two 
consecutive resets of x1ðtÞ.
Then, the difference between both periods is bounded by 

ΔTj j ¼ jT � ~Tj � ΔTmax

¼
Δ 1

a
log 1þ

ΔQ1 þ
2b

maxða;cÞΔQ2

θ � b�z2þu1
a

 !�
�
�
�
�

�
�
�
�
�

(23) 

The bound given by Eq. (23) can be simplified if we 
compute the relative error in the period assuming that 
the synaptic current z2ðtÞ is large. The following pro
position states this result: 

Proposition 1. Relative Error of the Firing Period

Consider an LTI system of Eq. (12) and its QSS approx
imation of Eq. (14) under the same assumptions of 
Corollary 1. Assume also that z2ðtÞ verifies  

jb�z2 þ u1j> > aðθ � VrÞ (24) 

Then, the relative error between the firing periods of 
both systems is bounded by
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ΔT
T

�
�
�
�

�
�
�
� �

ΔTmax

T
’

Δ1

θ � Vr

�
�
�
�

�
�
�
� (25) 

The proof of this proposition can be found in 
Appendix A.4.

This last result implies that when the synaptic cur
rent of the two-state neuron is sufficiently large, the 
relative error in the period is bounded by a magnitude 
that becomes independent on that current. Moreover, 
that error depends linearly on the quantum used in 
both variables.

Regarding the single-state neuron, very similar 
results can be easily derived based on the fact that 
the error in the membrane potential results propor
tional to the quantum size as analysed after 
Theorem 2.

3.4. Activity and computational complexity

As introduced in Section 2.4, the activity of order n of 
a signal allows estimating the number of steps per
formed by a QSS algorithm in order to approximate 
that signal. In the context of the QSS approximation of 
a two-state neuron model, we shall exploit this idea to 
have a theoretical estimation of the computational 
costs associated to the simulation with QSS algorithms 
of different orders and different quantum sizes. For 
that goal, we shall compute the n-order activity of the 
synaptic current on a synapse s, IsðtÞ, since this is the 
state that experiences more sudden changes. The rea
son is that a neuron usually receives many more spikes 
than it produces.

We consider then a neuron receiving a train of 
input spikes with a constant rate 1=Ts. In order to 
compute the activity of the signal Is between two 
consecutive input spikes, we can express the analytical 
solution of z2ðtÞ in Eq. (12) as 

z2ðtÞ ¼ ðI0 þ ΔIÞe� ct ¼ Ime� ct 

where 

Im ¼ I0 þ ΔI (26) 

is the synaptic current z2ðt ¼ 0Þ at the beginning of 
each period, ΔI ¼ J is the increment in the synaptic 
current after receiving a spike, and I0 is the synaptic 
current at the end of the period, i.e., 

z2ðTsÞ ¼ ðI0 þ ΔIÞe� cTs ¼ I0 (27) 

Thus, we can express I0 depending on ΔI and Ts as 

I0 ¼
ΔI � e� cTs

1 � e� cTs
(28) 

The activity of order n of z2ðtÞ in a period can be then 
expressed as 

AðnÞ0;Ts
¼

ðTs

0

dnðIm�e� ctÞ

dtn

n!

�
�
�
�
�

�
�
�
�
�

1
n

dt ¼
ðTs

0

Im � ð� cÞn � e� ct

n!

�
�
�
�

�
�
�
�

1
n

dt 

¼

ðTs

0

Im � cn � e� ct

n!

� �1
n

dt ¼
Im

n!

� �1
n

c �
ðTs

0
e�

c
n�tdt 

¼
Im

n!

� �1
n

c
e� c

n�t

� c
n
j
Ts
0

� �

¼
Im

n!

� �1
n

n 1 � e�
c
n�Ts

� �

From Eq. (27) we have 

e� cT ¼
I0

I0 þ ΔI
¼

I0

Im
(29) 

and then 

AðnÞ0;Ts
¼

Im

n!

� �1
n

n 1 � ð
I0

Im
Þ

1
n

 !

¼ n �
I1=n

m � I1=n
0

n!1=n (30) 

where Im and I0 can be computed from the system 
parameters using Eqs. (26) and (28).

Then, from Eq. (30) and using the estimate of the 
number of steps of Eq. (7), we can estimate the num
ber of steps required by a QSS method of order n to 
approximate one period of the synaptic current as: 

kðnÞxiðt0:tf Þ
ðΔQiÞ �

AðnÞ0;Ts

ðΔQiÞ
1=n ¼ n

I1=n
m � I1=n

0

ðn!ΔQiÞ
1=n (31) 

Equation (31) shows that the number of steps per 
period in Is is inversely proportional to the 1=n-th 
power of the quantum in the current ΔQi.

Regarding the number of steps in the membrane 
potential VðtÞ, we can take into account that its varia
tion is mainly driven by the synaptic current. During 
a QSS simulation, each step in the synaptic current will 
change the derivative of the membrane potential, which 
will possibly shorten the time of its next change. Thus, 
unless a very large or a very small quantum is used in V , 
we can expect that the number of steps in the mem
brane potential is similar to that on the synaptic current.

Regarding the single-state model of Eq. (8) and Eq. (9) 
it results more involved to compute the n-th order activ
ity since the analytical solution for VðtÞ has a more 
complex expression. Anyway, it is still valid that the 
number of steps will be inversely proportional to the 
1=n-th power of the quantum size as established by 
Eq. (7).

4. Simulation results and performance 
analysis

In this section we compare the performance of differ
ent numerical algorithms under different accuracy 
settings in the simulation of a single neuron. Then, 
we extend the analysis to populations of neurons with 
and without synaptic connections between them.
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In all the simulations we used the Stand Alone QSS 
Solver tool (Fernández & Kofman, 2014) running on 
an Intel Core i5–9400 CPU @ 2.90 GHz Intel i5 desk
top computer under Ubuntu 20.04 OS. We considered 
both, the single and the two-state representations of 
the neuron model as presented in Section 3.1 with the 
set of parameters described in Table 1.

The models used in this section can be downloaded 
f rom ht tps : / / fce ia .unr .edu.ar/kofman/f i les /  
SNNmodels.zip and the results reported can be repro
duced using the Stand Alone QSS Solver, available at 
https://github.com/CIFASIS/qss-solver.

4.1. Single neuron model

We simulated the models presented in Section 3.1 with 
different QSS methods (QSS, QSS2, QSS3)2 changing 
the quantum value for the state variables (VðtÞ, and 
IsðtÞ in the two-state model). The quantum values were 
chosen from around one order of magnitude below the 
variation of the corresponding signals up to four orders 
of magnitude below, that is, we changed ΔQIs from 
10� 1nA to 10� 4nA and ΔQV from 10� 1mV to 10� 4mV.

In order to measure the errors, we also computed 
a reference solution using the classic DASSL solver 
with a very low tolerance (five orders of magnitude 
below the minimum tolerance settings used for the 
QSS algorithms). In addition, we simulated the models 
using DOPRI5 algorithm under different accuracy 
settings in order to compare the performance of QSS 
methods with that of a classic ODE solver. Among the 
different classic solvers that can be selected in the 
Stand Alone QSS Solver (DOPRI5, DASSL, CVODE, 
and IDA), DOPRI5 was the one exhibiting the best 
performance.

Besides using the parameters of Table 1, we adopted 
the following initial conditions: Vð0Þ ¼ � 65 mV and 
Isð0Þ ¼ 0:4 nA in all the experiments. The input spike 
train of the neuron is a Poisson process with stationary 
rate νext ¼ kextνbg generated from a pseudo-random 
number generator3 with fixed seed such that the dif
ferent simulation runs can be compared under iden
tical conditions.

The final simulation time was set to 1 second, after 
which the neuron received a total of 7; 513 input 
spikes and emitted 10 output spikes.

Based on the results obtained, we analyse next the 
different errors and computational costs associated to 
each simulation.

4.1.1. Error analysis
We computed errors in two different ways associated 
to each simulation:

● Maximum absolute error emax: is the largest abso
lute value of the difference between the reference 
and the approximate solution.

● Mean absolute error emean: is the mean value of 
the absolute difference between the reference and 
the approximate solution.

For the membrane potential V we measured these errors 
up to the first emitted spike (sub-threshold dynamics) 
and only the mean absolute error for the whole simula
tion. We did not report the maximum membrane poten
tial error because it will be always equal to the voltage 
jump between the threshold and the reset potential (even 
if the difference in the firing times is infinitely small).

For the current Is we measured the maximum and 
the mean absolute errors during the whole simulation, 
only in the model with two state variables. In the single- 
state model, we also report the number of emitted 
spikes in each simulation (we do not report it in the 
two-state model because it was always correct).

Regarding the firing times, we measured the error 
between the time of the i-th firing in the reference 
solution and the time of the i-th firing of each numer
ical solution, reporting the mean firing time error 
(only for the simulations that give the correct number 
of emitted spikes). For the two-state model, we also 
reported the theoretical error bound given by Eq. (22).

All these errors are reported in Table 2 (two-state 
model) and Table 3 (single-state model). In all the 
tables, the column labelled as Tol. represents the quan
tum ΔQ used in QSS methods and the Relative and the 
Absolute Tolerance used in DOPRI5 algorithm.

The errors reported correspond to those obtained 
using a particular pseudo-random sequence for the 
Poisson input spike train. In Appendix B. we also report 
the mean and the standard deviation of these errors after 
using 30 different pseudo-random sequences. Those 
results show that the errors obtained using different 
sequences are very similar, a fact that can be explained 
from the high rate at which input spikes are received. 
Thus, in the rest of the work we shall analyse the results 
obtained using a single pseudo-random sequence.

A noticeable feature is that the errors in all the simula
tions with the two-state model, irrespective of the quan
tum size, are small enough to preserve the qualitative 
features of the reference solution (for instance, the 

Table 1. Model parameters taken from (Potjans & Diesmann,  
2014.).

Model parameters

Value Description

τm ¼ 10 ms membrane time constant
τr ¼ 2 ms absolute refractory period
τs ¼ 0:5 ms postsynaptic current time constant
Cm ¼ 250pF membrane capacity
Vr ¼ � 65mV reset potential
θ ¼ � 50 mV fixed firing threshold
EL ¼ � 65 mV leak potential
J ¼ 87:8 pA excitatory synaptic strength
νbg ¼ 8 spikes/s average external spike rate
kext ¼ 940 external inputs per population
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number of emitted spikes, the length of the period 
between spikes, or the signal shape). This fact was 
expected from the distinctive theoretical properties of 
QSS methods which are not shared by classic numerical 
integration schemes. In discrete time algorithms, for 
instance, increasing the step size may result in unstable 
solutions and/or unacceptable errors due to the missing 
of zero crossings (Cellier & Kofman, 2006).

In the single-state model the errors are significantly 
larger (particularly for lower order algorithms, which 
is consistent with Theorem 2). As a consequence, 
some features of the qualitative behaviour are not 
properly preserved, resulting, for instance, in 
a different number of emitted spikes.

An example of this is illustrated in Figure 3 where the 
evolution of the membrane potential is shown for QSS2 
varying the accuracy (ΔQ ¼ 1E-1 and ΔQ ¼ 1E-2) along 
with the reference solution (DASSL). Here we can 
observe an almost perfect trajectory for the smallest 
quantum, where the trajectories cannot be distinguished 
with the naked eye. However, for the largest quantum, 

a small sub-threshold error in the membrane potential 
causes a spike in an instant where the reference solution 
does not actually reach the threshold.

4.1.1.1. Synaptic Current. he maximum error in Is 
(in the two-state model) resulted very similar to the 
quantum size. According to Theorem 1, that error 
should be bounded by the quantum itself. However, 
due to numerical inaccuracies caused by round off 
errors these maximum errors resulted slightly larger. 
Measured mean absolute errors were about one order 
of magnitude less than the quantum size.

The classic algorithm DOPRI5, in turn, produces 
results in the current that are very similar irrespective of 
the tolerance, and the errors result larger than those 
obtained with QSS in all cases.

4.1.1.2. Sub-threshold membrane potential. In the 
two-state model, the maximum sub-threshold error was 
in all cases very similar to the quantum size. According to 
Eq. (15) in Theorem 1, the maximum sub-threshold error 

Table 2. Errors in the two-state model.

Tol Is [nA] Vsub [mV] V [mV] tθ [s]

Method [nA,mV] emean emax emean emax emean emean etheor

QSS 1E–1 2.38E–2 7.25E–2 3.95E–2 1.41E–1 5.15E–2 7.17E–5 2.99E–4
1E–2 2.51E–3 5.26E–3 4.36E–3 1.45E–2 5.12E–3 8.10E–6 2.95E–5
1E–3 2.49E–4 6.01E–4 4.90E–4 1.68E–3 5.44E–4 9.65E–7 2.94E–6
1E–4 2.51E–5 8.14E–5 4.58E–5 1.57E–4 4.85E–5 5.62E–8 2.94E–7

QSS2 1E–1 9.32E–3 8.53E–2 3.44E–2 1.18E–1 5.93E–2 9.41E–5 2.99E–4
1E–2 3.52E–3 1.34E–2 4.33E–3 1.49E–2 5.99E–3 6.32E–6 2.95E–5
1E–3 2.68E–4 1.27E–3 2.74E–4 1.46E–3 2.76E–4 3.24E–7 2.94E–6
1E–4 2.53E–5 1.30E–4 2.58E–5 7.15E–5 3.04E–5 5.99E–8 2.94E–7

QSS3 1E–1 1.28E–2 8.65E–2 2.82E–2 8.79E–2 4.01E–2 6.21E–5 2.99E–4
1E–2 3.67E–3 1.16E–2 3.73E–3 1.34E–2 5.57E–3 5.17E–6 2.95E–5
1E–3 2.78E–4 1.14E–3 2.84E–4 1.19E–3 2.98E–4 4.58E–7 2.94E–6
1E–4 2.47E–5 1.14E–4 2.24E–5 1.10E–4 2.68E–5 4.09E–8 2.94E–7

DOPRI5 1E–1 5.92E–2 4.56E–1 5.91E–2 8.67E–2 7.82E–2 1.17E–4 -
1E–2 5.86E–2 4.42E–1 6.95E–3 1.03E–2 3.55E–2 1.02E–4 -
1E–3 5.89E–2 4.39E–1 6.96E–4 1.16E–3 1.24E–2 4.60E–5 -
1E–4 5.89E–2 4.39E–1 6.68E–5 1.35E–4 3.29E–3 1.21E–5 -

Table 3. Errors in QSS simulation of the single-state model. Note that the number of output 
spikes in the reference solution is 10.

Tol Vsub [mV] V [mV] Output tθ [s]
Method [nA,mV] emean emax emean spikes emean

QSS 1E–1 2.02E+0 1.34E+1 4.06E+0 27 -
1E–2 4.32E–1 7.72E–1 2.23E+0 17 -
1E–3 9.76E–2 2.59E–1 7.24E–1 12 -
1E–4 6.85E–2 1.95E–1 7.80E–2 10 7.99E–5

QSS2 1E–1 3.17E–1 5.05E–1 1.22E+0 7 -
1E–2 6.20E–2 9.49E–2 1.25E–1 10 1.90E–4
1E–3 4.59E–3 7.22E–3 1.05E–2 10 1.39E–5
1E–4 4.80E–4 6.74E–4 7.49E–4 10 1.19E–6

QSS3 1E–1 5.50E–2 1.85E–1 7.96E–2 10 7.38E–5
1E–2 1.89E–2 3.17E–2 3.76E–2 10 3.68E–5
1E–3 3.92E–3 5.53E–3 7.32E–3 10 7.78E–6
1E–4 4.39E–4 6.10E–4 6.49E–4 10 9.40E–7

DOPRI5 1E–3 3.19E–1 4.46E–1 1.56E+0 13 -
1E–4 3.98E–2 5.78E–2 7.42E–2 10 1.20E–4
1E–5 2.71E–3 3.65E–3 2.59E–2 10 8.58E–5
1E–6 2.26E–4 2.97E–4 9.34E–3 10 3.07E–5
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is jeV j � ΔQV þ
2b

maxða;cÞΔQIs ¼ ΔQV þ 4 � 106ΔQIs 

¼ 5ΔQV since we are using in all cases4 

ΔQV¼ 106ΔQIs . This shows that the theoretical estimate 
was conservative for this state. Like in the previous case, 
the mean absolute errors were always below the quantum 
size. DOPRI5 produces similar errors to those of QSS 
methods in the membrane potential.

In the single-state model simulations, in all cases 
the errors were larger than those obtained in the 
other model with the same accuracy. As expected 
from Eq. (20) the lower order algorithms present 
larger errors. In the first order method (QSS) these 
errors can even affect some qualitative features (like 
the number of emitted spikes), except for the high
est accuracy settings. The second and third order 
schemes obtain errors that are in the order of the 
quantum size. The best results in terms of accuracy, 
as expected, are obtained with the third order 
schemes since they approximate better the time 
varying input signal IsðtÞ. QSS3, in particular, pre
serves the number of emitted spikes for all the 
considered quantum sizes.

Here, DOPRI5 produces significantly larger errors 
than QSS2 and QSS3 algorithms so the tolerances were 
reduced by two orders of magnitude to obtain similar 
results in terms of accuracy.

4.1.1.3. Complete membrane potential trajectory. In 
the two-state model, since the spikes are emitted with 
a very small time error, the resulting mean error of the 
membrane potential is in the order of the quantum size.

In the single-state model, there are several situa
tions in which the spikes are not correctly emitted 
producing a large mean absolute error in the mem
brane potential (notice the situation shown in 
Figure 3). As expected, third order schemes are the 
most accurate.

Regarding DOPRI5, the errors in the membrane 
potential resulted larger than those of QSS methods in 
all cases.

4.1.1.4. Firing times. The firing time errors observed 
in the two-state model were almost negligible. Taking 
into account that the firing period of the neuron is on 
the order of 1

10 ¼ 0:1 sec., the observed errors varied 
from 0:1% to 0:0001% of this period according to the 
quantum size.

The observed firing time errors were about one 
order of magnitude smaller than the theoretical error 
bound obtained from Eq. (22) that does not take into 
account the accumulation among different periods 
and considers a constant input. Thus, the behaviour 
of the QSS algorithms regarding the firing times, 
which is a crucial feature of a spiking neuron simula
tion, was even better than what could be expected.

In the single-state model the errors were larger, and in 
some cases they could not be measured because the 
number of emitted spikes did not coincide with that of 
the reference solution. Anyway, the higher order schemes 
still obtained small errors at least for high accuracy 
settings.

DOPRI5 firing time errors resulted larger than 
those produced by QSS algorithms, even when using 
smaller tolerance settings.

4.1.2. Computational costs
The results regarding computational costs are sum
marised in Table 4. A simple observation of these 
results shows that the number of steps performed by 
each algorithm grows with the accuracy settings. 
This is, the number of steps grows with the inverse 
of the quantum. This growth, as expected, is inver
sely proportional to the quantum in QSS, inversely 
proportional to the square root of the quantum in 

Figure 3. Membrane potential trajectories with QSS2 and the reference high accuracy solution (DASSL). Full simulation (left) and 
partial details (right).
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QSS2 and inversely proportional to the cubic root of 
the quantum in QSS3. Execution times change 
accordingly.

In all QSS simulations the CPU times using the 
single-state model are less than the ones using the two- 
state model for the same accuracy settings. However, 
under identical accuracy settings, the errors obtained 
using the single-state model are larger. This fact can be 
observed in Figure 4, that plots the CPU time against 
the mean error in the sub-threshold membrane poten
tial for both models and for all QSS methods. The plot 
also shows that QSS2 offers the best trade-off in the 
two-state model (unless a very small error is 
requested) while QSS3 obtains the best performance 
in the single-state model (unless a large errors are 
accepted). DOPRI simulations of a single neuron are 
faster on both models for high accuracy settings. 
However, even using lower tolerance settings, they 
have larger timing errors than QSS algorithms as it 
can be observed in Tables 2–3.

In order to check that the mean number of steps 
performed by each method between consecutive spikes 
is in agreement with the analysis of Section 3.4, we 
compute next the activity of orders one to three and the 
expected number of steps per period of the synaptic 

Table 4. Computational costs in the simulation of the two-state and the single-state models.

Method Two-state model Single-state model

Tol Simulation Steps CPU Time Simulation Steps CPU Time
[nA,mV] Is V [ms] V [ms]

QSS 1E–1 11,308 3,753 2.5 5,118 1.8
1E–2 70,536 42,140 12.6 44,874 6.8
1E–3 670,681 434,965 116.7 435,617 48.7
1E–4 6,672,923 4,373,657 1,115.3 4,328,986 463.7

QSS2 1E–1 8,150 1,982 2.0 2,036 1.6
1E–2 11,167 9,361 3.6 9,299 2.6
1E–3 35,176 37,937 10.7 37,224 6.4
1E–4 90,798 114,655 28.9 11,3969 17.3

QSS3 1E–1 7,841 2,970 4.4 3,164 3.3
1E–2 11,352 7,151 7.4 7,597 4.5
1E–3 18,683 14,403 12.0 12,555 6.2
1E–4 31,047 28,452 20.9 22,356 9.7

DOPRI5 1E–1 7,609 7,609 2.9 7,683 3.0
1E–2 7,651 7,651 2.9 7,648 3.3
1E–3 7,880 7,880 2.9 7,747 3.0
1E–4 8,554 8,554 3.1 8,241 3.1

Figure 4. CPU times vs. Mean error in the sub-threshold membrane potential (Vsub) using different QSS algorithms.

Table 5. Act. Of order n, estimated and measured number of 
steps per period in Is.

Order AðnÞ [nA] ΔQi [nA] kðnÞðΔQiÞ þ 1 QSSn

1 Im � I0 = 0.0878 1E–1 1.878 1.51
1E–2 9.78 9.39
1E–3 88.8 89.28
1E–4 879 888.3

2 2ð
ffiffiffi
Im
p
�
ffiffiffi
I0
p
Þffiffiffi

2!
p ¼ 0:083 1E–1 1.26 1.08

1E–2 1.83 1.49
1E–3 3.62 4.68
1E–4 9.28 12.09

3 3ð
ffiffiffi
Im

3p �
ffiffiffi
I0

3p Þffiffiffi
3!

3p ¼ 0:071 1E–1 1.15 1.04
1E–2 1.33 1.51
1E–3 1.71 2.49
1E–4 2.53 4.13
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current for the different accuracy settings in the two-state 
model.

The synaptic current variation is 
ΔI ¼ J ¼ 8:78 � 10� 2 nA. Then, from Eq. (28) with 
c ¼ 1

τs 
and T ¼ 1

νext 
it results I0 � 0:519nA and 

Im ¼ I0 þ ΔI � 0:607 nA. Thus, according to Eq. (30) 
and Eq. (31), the activity of orders 1 to 3 and the expected 
number of steps5 in each period of the synaptic current 
for the different quantum values are those reported in 
Table 5.

A very close agreement can be noticed for all meth
ods. A final remark is that it is impossible to simulate 
with less than one step per period without missing 
input spikes. Table 5 shows that the number of steps 
per period in second order methods (up to 
ΔQi ¼ 1E-2) and third order methods (up to 
ΔQi ¼ 1E-3) are close to that minimum.

4.2. Model of multiple neurons

We consider now a model formed by N unconnected 
instances of the neuron model in order to analyse the 
growth of the computational costs with the number of 
neurons when using QSS and classic numerical 
algorithms.

In these configurations (using the single-state and 
the two-state model), each neuron has an independent 
input spike train following, as before, a Poisson dis
tribution with a constant rate vext generated from 
a pseudo-random sequence with a fixed seed.

For all neurons, the parameters were those of Table 1. 
The initial states were randomly chosen with uniform 

distribution 
Vðt ¼ 0Þ,U½� 65; � 64�mV, Isðt ¼ 0Þ,U½0:4; 0:5�nA.

We simulated both, the single-state and the two- 
state models varying the number of neurons from 10 
to 10; 000 until a a final simulation time of tf ¼ 0:1 
sec. We used QSS2 for the two-state model and QSS3 
for the single-state model, as these methods offered 
the best performance in terms of CPU-time vs. accu
racy in Figure 4. We selected different quantum values 
in order to measure the growth of the computational 
costs with the accuracy settings and to check for con
vergence in the number of emitted spikes. We also 
simulated the models using DOPRI5.

The results are reported in Table 6 and the growth 
of the simulation time (CPU time) with respect to the 
number of neurons (N) is plotted in Figure 5.

We can observe that:

● The number of steps grows linearly with the 
number of neurons N in QSS methods for all 
accuracy settings. This is an almost obvious result 
since each step is local to a state variable.

● In DOPRI5, the number of steps also grows linearly 
with N. This is due to the fact that the rate of 
occurrence of discontinuities grows with N and 
thus the maximum step size becomes proportional 
to 1=N.

● The CPU time grows with N logðNÞ in QSS 
methods. This is due to the fact that the number 
of steps grows linearly with N and the simulation 
engine uses a binary-tree scheduler to find the 
time of the next change, which adds a log N extra 
cost per step.

Table 6. Computational costs of the both models with N disconnected neurons.

Tol N Steps
CPU Time 

[ms]
Out 

Spikes Steps
CPU Time 

[ms]
Out 

Spikes

Two-state model - QSS2 Single-state model - QSS3
1E–1 10 9,589 2.0 10 10,738 3.6 10

100 95,622 23.8 59 106,990 36.6 61
1,000 955,748 329.4 660 1,069,560 460.1 666

10,000 9,532,780 5,538.3 6,280 10,676,992 6,649.7 6,389
1E–2 10 21,798 3.7 9 15,225 5.1 9

100 218,267 44.1 53 151,505 51.8 54
1,000 2,179,150 631.4 628 1,514,438 643.6 637

10,000 21,776,481 10,622.2 5,901 15,122,208 9,324.5 6,015
1E–3 10 73,694 10.0 9 20,216 6.4 9

100 736,682 116.6 52 201,980 67.8 52
1,000 7,360,380 1,778.2 623 2,016,058 860.7 625

10,000 73,541,327 29,225.3 5,839 20,136,964 12,423.9 5,874
1E–4 10 206,240 25.9 9 30,033 9.2 9

100 2,062,500 305.7 52 300,646 99.7 52
1,000 20,601,643 4,649.8 623 3,001,045 1,234.7 623

10,000 205,876,468 77,555.3 5,837 29,987,701 18,209.9 5,840
Two-state model - DOPRI Single-state model - DOPRI

1E–4 10 7,607 12.7 9 7,599 14.3 9
100 75,450 1,081.4 52 75,410 1,211.1 52

1,000 754,199 108,660.0 624 753,749 120,215.0 624
10,000 7,523,758 1.104E+7 5852 7,520,462 1.20E+7 5,852
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● The CPU time in DOPRI5 grows quadratically. The 
reason is that the number of steps grows with N and 
the cost of each step is also proportional to N since 
DOPRI5 steps are computed on the whole system.

● When the number of neurons is large, the number 
of emitted spikes in QSS methods differs depending 
on the quantum, but it eventually converges as the 
quantum becomes smaller. The reason is that 
a situation like that of Figure 3, where a very small 
error in the membrane potential can cause 
a spurious or a missing spike, becomes more likely 
as the number of neurons grows.

● DOPRI5 errors become negligible as the number of 
neurons grows. The reason is that the step size 
becomes smaller (limited by the time elapsed 
between discontinuities) and the numerical errors 
fall far below the accuracy settings.

4.3. Model of a network of neurons

We consider now a model of N ¼ 10; 000 intercon
nected neurons, with 8; 000 of excitatory type and 
2; 000 of inhibitory type.

The structure of the network was formed such that 
each neuron has m randomly chosen input synaptic 
connections, where 80% of these incoming connec
tions come from excitatory neurons and the remaining 
20% come from inhibitory neurons following the 
parameters found in (Schmidt et al., 2018).

Taking m ¼ 100, for instance, every neuron 
receives spikes from 80 excitatory neurons and 
from 20 inhibitory neurons. Those 80 excitatory 
neurons are randomly chosen (for that specific 
neuron) out of the 8000 excitatory neurons with 
equal probability. Similarly, the 20 inhibitory neu
rons are also randomly chosen out of the 2000 
inhibitory neurons (also with equal probability).

That way, each neuron has both, its own input spike 
train with the same Poisson distribution as before, and 
the spikes received from their incoming synaptic 
connections.

The synaptic strength of the excitatory connections 
were randomly chosen with values uniformly distributed 
in the interval J � 0:1J. Inhibitory synaptic strengths 
were chosen with values gJ � 0:1gJ with the scaling para
meter g ¼ 5. This scaling parameter was selected such 
that the rate of the emitted spikes does not change sig
nificantly with the number m of incoming connections. 
A synaptic delay τd ¼ 1E-3 sec. was used.

We simulated the system varying the number of 
connections of each neuron m from 10 to 1; 000 in 
order to measure the growth in the computational 
costs as the network increases its connectivity. We 
used QSS2 method for the two-state model and QSS3 
for the single-state model. In both cases, we also chan
ged the quantum size until observing convergence in 
the number of emitted spikes. Like in the previous case, 
the final simulation time was tf ¼ 0:1 sec.

The simulation results for both models are reported 
in Table 7.

Analysing the results, we can make the following 
remarks:

● The number of steps performed by each method 
(and the CPU-time) is similar to that of the dis
connected network of N ¼ 10; 000 neurons in 
Section 4.2. It only grows by a small percentage 
for m ¼ 1; 000. This can be explained by the fact 
that the number of spikes that a neuron receives 
from the network (except for m ¼ 1; 000) is sig
nificantly smaller than the number of spikes it 
receives from its Poisson-distributed input train.

● The number of emitted spikes converges only for 
a small quantum, particularly when m is large. The 
reason is that now the error introduced by a missing 

Figure 5. CPU time vs number of neurons using different tolerance settings.
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or a spurious spike is propagated through the net
work, and this propagation becomes faster and 
wider as the connectivity grows.

In this case, the chaotic nature of the system makes 
impossible that two simulations under different accuracy 
settings provide identical results in the long term. Thus, 
the best quantum size selection would depend on the 
goals according to the application. A network with 
N ¼ 10; 000 neurons and m ¼ 1; 000 incoming connec
tions per neuron can be simulated in about 9–10 seconds 
using a quantum size ΔQ ¼ 0:1 and QSS2 or QSS3 
method or in about 40 seconds using QSS3 and 
a quantum size that produces much less spurious or 
missed spikes.

While the number of spurious or missed spikes seems 
too large for large quantum sizes, the number of emitted 
spikes also changes significantly when some model para
meters or initial states are slightly changed. This reveals 
that the problem is the chaotic nature of the system rather 
than the errors introduced by the numerical approxima
tion itself. Having said that, further research is needed to 
check if systematic long-term errors are introduced by 
the QSS approximation, which could, for example, 
increase or decrease the mean firing rates.

5. Conclusions

We presented an exhaustive analysis of the perfor
mance of QSS algorithms in the simulation of Leaky 
Integrate and Fire spiking neurons. We first derived 
theoretical properties that established error bounds 
and computational cost estimates for the QSS simula
tion of a single neuron. Such properties cannot be in 
general obtained for classic numerical algorithms in 
these type of models.

Then, we performed comprehensive simulation 
experiments using different QSS methods under different 
accuracy settings. The results of these experiments corro
borated the theoretical analysis, exhibiting promising 
advantages of the QSS algorithms with respect to classic 
numerical integration schemes. It is remarkable that 
the second and third order QSS methods integrate the 
model with very small errors performing about one step 
per input spike period. It is also remarkable that the errors 
in the firing times were almost negligible.

We then simulated networks with a growing number 
of neurons and with a growing level of connectivity. As 
the number of neurons N grows, the computational costs 
grow with N logðNÞ due to the logarithmic cost asso
ciated to the binary tree scheduler while classic discrete- 
time algorithms grow with N2 due to the reduction of the 
time between discontinuities.

When the level of connectivity grows, CPU times are 
not significantly affected but the model becomes more 
chaotic and the effect of a missing or a spurious spike 
(caused by a small error in the membrane potential) is 
rapidly and widely propagated throughout the network.

A general conclusion of the analysis is that QSS meth
ods (particularly QSS2 for the two-state model and QSS3 
for the single-state model) allow to simulate large spiking 
neural networks with high accuracy and very low com
putational costs. This is achieved without any modifica
tion or specialisation of the algorithms, as it is a natural 
consequence of the way the QSS methods work in the 
Stand-Alone QSS Solver.

We are currently working on specialising the simula
tion algorithm for the features of this model. In particular, 
the presence of the synaptic delay implies that there is no 
direct interaction between the different neuron during 
this period. This fact can be exploited, as it was done in 
(Hanuschkin et al., 2010b), to perform a sequential simu
lation of the N neurons for that period of time without 

Table 7. Computational costs in a network of interconnected neurons (two-state and single-state models).

Two-state model - QSS2 Single-state model - QSS3

Tol m Steps
CPU Time 

[ms]
Out 

Spikes Steps
CPU Time 

[ms]
Out 

Spikes

1E–1 10 10,038,883 6,265.6 6,367 10,700,559 7,307.3 6,472
100 10,203,316 6,934.8 7,599 10,798,311 7,290.1 7,342

1,000 11,081,929 10,263.8 7,163 11,365,275 9,106.4 7,449
1E–2 10 20,579,013 11,262.5 5,950 15,164,106 9,678.8 6,096

100 20,892,009 12,528.5 6,967 15,483,527 10,317.5 7,234
1,000 24,148,242 17,226.2 6,481 18,869,024 14,067.2 8,087

1E–3 10 73,279,806 40,832.9 5,923 20,181,053 13,537.3 5,952
100 73,318,426 39,057.1 6,963 20,523,676 13,167.6 6,733

1,000 80,969,462 43,008.3 8,520 23,996,908 16,744.9 5,642
1E–4 10 205,737,401 88,732.6 5,923 30,017,686 21,058.2 5,923

100 204,734,130 93,031.9 6,956 30,245,928 23,277.5 6,917
1,000 214,334,158 100,814.0 7,112 34,979,710 23,924.3 7,610

1E–5 10 620,024,618 272,732.0 5,923 51,816,833 32,689.3 5,923
100 615,513,913 274,602.0 6,956 51,796,598 34,278.3 6,956

1,000 632,190,653 283,982.0 7,071 56,367,979 39,815.5 7,023
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taking care about the ordering in which the steps are 
performed. With this, we can avoid the factor logðNÞ
and reduce the computational cost to scale linearly with 
the number of neurons N. We are also working on 
exploiting this idea in the context of parallel simulation.

Future work can also be done to further specialise 
the QSS methods themselves. For instance, in the two- 
state model we could enforce a step in the membrane 
potential V whenever a step in the synaptic current Is 
is performed. That will synchronise the steps in both 
states improving in this case the computational costs 
and the accuracy.

It is also worth exploring the possibility of using 
a smaller quantum size as the membrane potential 
approaches the firing threshold to prevent spurious 
or missing spikes. This can be easily done by using 
a membrane potential relative to the threshold such 
that it is close to zero near the firing condition. That 
way, using logarithmic quantisation will reduce the 
quantum near the threshold.

Notes

1. The expression jMj denotes the component-wise 
absolute value of a vector or matrix M. Also, ab 
expresses a set of component-wise inequalities 
ai � bi on all the components of a 2 R n and b 2 R n.

2. We did not include Linearly Implicit QSS Methods 
because the models are not stiff.

3. The QSS Solvers uses the standard stdlib C library for 
generating pseudo-random sequences.

4. The quantum was expressed in mV and nA in the 
different tables, but the model considers that the 
membrane potential and the synaptic current are 
measured in SI units (V and A, respectively).

5. The expected number of steps is the result obtained 
from Eq. (31) plus one step corresponding to the 
arrival of the input spike.
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Appendix A. Proof of Theorems and Propositions

The following lemma, from (Kofman, 2005), will be used as an auxiliary result:

Lemma 1. Consider the first order equation with complex coefficient  

_x ¼ λðx þ ΔxÞ þ BΔu (A1) 

where λ, x, Δx 2 C , Δu 2 C
k and B 2 C

1�k. Assume also that ReðλÞ< 0, jΔxj � Δxmax and jΔuj � Δumax.
Let xðtÞ be a solution of (A1) from the initial condition xðt0Þ ¼ 0. Then, for all t � t0 it results that  

jxðtÞj �
λ

ReðλÞ

�
�
�
�

�
�
�
� Δxmax þ

B
ReðλÞ

�
�
�
�

�
�
�
� Δumax 

Theorem 1

Proof. Defining Δxi ¼
Δ qi � xi, Eq. (14) can be rewritten as a perturbed equation 

dx1
dt ðtÞ ¼ � aðx1ðtÞ þ Δx1ðtÞÞ þ bðx2ðtÞ þ Δx2ðtÞÞ þ u1ðtÞ

dx2
dt ðtÞ ¼ � cðx2ðtÞ þ Δx2ðtÞÞ þ u2ðtÞ (A2) 

Defining also the error as ei ¼
Δ xi � zi, and subtracting Eq. (12) from Eq. (A2), the error dynamics results 

de1

dt
ðtÞ ¼ � aðe1ðtÞ þ Δx1ðtÞÞ þ bðe2ðtÞ þ Δx2ðtÞÞ (A3a) 

de2

dt
ðtÞ ¼ � cðe2ðtÞ þ Δx2ðtÞÞ (A3b) 

Notice that e1;2ðt ¼ t0Þ ¼ 0 since we assume that the initial state is known and the initial error results equal to zero.
Then, we can apply Lemma 1 to the system of Eq (A3b) taking λ ¼ � c< 0 and B ¼ 0. e2ðt0Þ ¼ x2ðt0Þ � z2ðt0Þ ¼ 0. Thus, 

je2ðtÞj � ΔQ2; (A4) 

since jΔx2ðtÞj ¼ jq2ðtÞ � x2ðtÞj � ΔQ2 from the relationship between the state, the quantised state and the quantum.
Then, defining ~e1 ¼

Δ e1 þm � e2, with 

m ¼ 0 if a � c
b
c if a< c

�

(A5) 

and differentiating w.r.t. the time, we obtain: 

d~e1

dt
ðtÞ ¼ � aðe1ðtÞ þ Δx1ðtÞÞ þ bðe2ðtÞ þ Δx2ðtÞÞ þmð� cÞðe2ðtÞ þ Δx2ðtÞÞ

¼ � aðe1ðtÞ þ Δx1ðtÞÞ þ ðb � cmÞðe2ðtÞ þ Δx2ðtÞÞ

¼ � að~e1ðtÞ � me2ðtÞ þ Δx1ðtÞÞ þ ðb � cmÞðe2ðtÞ þ Δx2ðtÞÞ

¼ � að~e1ðtÞ þ Δx1ðtÞÞ þ ame2ðtÞ þ ðb � cmÞðe2ðtÞ þ Δx2ðtÞÞ

If a � c ¼ 0) ~e1ðtÞ ¼ e1ðtÞ ) _~e1ðtÞ ¼ _e1ðtÞ, then 

de1

dt
ðtÞ ¼

d~e1

dt
ðtÞ ¼ � að~e1ðtÞ þ Δx1ðtÞÞ þ bðe2ðtÞ þ Δx2ðtÞÞ (A6) 
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Then, applying Lemma 1 to this system with λ ¼ � a, B ¼ b, ΔuðtÞ ¼ e2ðtÞ þ Δx2ðtÞ, and taking into account that 
jΔxiðtÞj ¼ jqiðtÞ � xiðtÞj � ΔQi and considering also Eq. (A4), we obtain 

je1ðtÞj � ΔQ1 þ
b
� a

�
�
�
�

�
�
�
�2ΔQ2 ¼ ΔQ1 þ

2b
a

ΔQ2 (A7) 

On the other hand, if a< c ¼ b
c ) ~e1ðtÞ ¼ e1ðtÞ þ b

c � e2ðtÞ and 

d~e1

dt
ðtÞ ¼ � aðe1ðtÞ þ Δx1ðtÞÞ þ

ab
c
� e2ðtÞ þ ðb � c

b
c
Þðe2ðtÞ þ Δx2ðtÞÞ

¼ � að~e1ðtÞ þ Δx1ðtÞÞ þ
ab
c
� e2ðtÞ

Thus, proceeding as before we obtain 

j~e1ðtÞj � ΔQ1 þ
ab
ð� aÞc

�
�
�
�

�
�
�
�ΔQ2 ¼ ΔQ1 þ

b
c

ΔQ2 (A8) 

And then, 

je1ðtÞj ¼ ~e1ðtÞ �
b
c
� e2ðtÞ

�
�
�
�

�
�
�
� � j~e1ðtÞj þ

b
c
� e2ðtÞ

�
�
�
�

�
�
�
� � ΔQ1 þ

2b
c

ΔQ2 (A9) 

Eqs. (A7) and (A9) show that Eq. (15) holds, completing the proof.

Theorem 2

Proof. Defining Δx1 ¼
Δ q1 � x1, Eq. (18) can be rewritten as a perturbed equation 

dx1

dt
ðtÞ ¼ � aðx1ðtÞ þ Δx1ðtÞÞ þ vðtÞ (A10) 

Defining also the error as e ¼Δ x1 � z1, and subtracting Eq. (17) from Eq. (A10), the error dynamics results 

de
dt
ðtÞ ¼ � aðeðtÞ þ Δx1ðtÞÞ þ vðtÞ � uðtÞ (A11) 

Then, considering e ¼ e1 þ e2, we can split the derivative of the error as: 

de1

dt
ðtÞ ¼ � aðe1ðtÞ þ Δx1ðtÞÞ (A12) 

de2

dt
ðtÞ ¼ � ae2ðtÞ þ vðtÞ � uðtÞ (A13) 

Applying Lemma 1 to the system of Equation (A12), with λ ¼ � a and B ¼ 0, we obtain je1ðtÞj � ΔQ1
Then, defining Δt ¼ ðt � tkÞ and Δtmax the largest Δt, we can assure from the hypothesis that jvðtÞ � uðtÞj< γΔtn.
Applying Lemma 1 to the system of Equation (A13), with λ ¼ � a, Δx ¼ 0, B ¼ 1, and Δu ¼ vðtÞ � uðtÞ we obtain 

je2ðtÞj � 1
� a

�
�
�
�γΔtn

max ¼
γ
a Δtn

max 

Then, jeðtÞj � je1ðtÞj þ je2ðtÞj � ΔQ1 þ
γ
a � Δtn

max completing the proof.

Theorem 3

Proof. The analytical solution of z1 is given by z1ðtÞ ¼ e� atv1 þ v2 with 

v1 ¼ Vr �
b�z2 þ u1

a 
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and 

v2 ¼
b�z2 þ u1

a
(A14) 

Since at time tθ the state z1 reaches the threshold, we have z1ðtθÞ ¼ e� atθ v1 þ v2 ¼ θ, and then 

tθ ¼
1
a

logð
v1

θ � v2
Þ

In order to verify that the argument of the logarithm is positive, notice that, from Eqs.(21) and (A14) it results 

v2 ¼
b�z2 þ u1

a
>

b aθ� u1
b þ u1

a
¼ θ 

and v1 ¼ Vr � v2 <Vr � θ< 0.
Then, recalling that error bound between z1ðtÞ and x1ðtÞ according to Eq. (15) in Theorem 1 is given by Δ1, we can assure 

that the numerical solution x1ðtÞ will be able to reach the threshold only after the analytical solution satisfies z1ðtÞ � θ � Δ1, 
so the minimum time at which x1ðtÞ can reach the threshold is given by: 

~tmin
θ ¼

1
a

logð
v1

ðθ � Δ1Þ � v2
Þ

So, the difference between the firing time of the analytical solution and the minimum possible firing time of the numerical 
solution can be computed as 

tθ � ~tmin
θ ¼1

a logð v1
θ� v2
Þ � logð v1

ðθ� Δ1Þ� v2
Þ

� �

¼ 1
a log v1

θ� v2
�
ðθ� Δ1Þ� v2

v1

� �

¼ 1
a log 1 � Δ1

θ� v2

� �

¼ 1
a log 1 �

ΔQ1þ
2b

maxða;cÞΔQ2

θ� b�x2þu1
a

� �

An identical analysis shows that the numerical solution x1ðtÞ will not be able to reach the threshold after the 
analytical solution satisfies z1ðtÞ � θþ Δ1. Thus, the maximum time in which x1ðtÞ could reach the threshold is 
given by 

~tmax
θ ¼

1
a

logð
v1

ðθþ Δ1Þ � v2
Þ:

Then, the difference between the firing time of the analytical solution and the maximum firing time of the numerical solution is 

j~tmax
θ � tθj ¼

1
a

log 1þ
Δ1

θ � v2

� ��
�
�
�

�
�
�
�: (A15) 

Notice that, since Δ1
θ� v2

< 0 it results 

jtθ � ~tmin
θ j ¼

1
a

log 1 �
Δ1

θ � v2

� ��
�
�
�

�
�
�
�<

1
a

log 1þ
Δ1

θ � v2

� ��
�
�
�

�
�
�
� ¼ jtθ � ~tmax

θ j

Then, jtθ � ~tθj< j~tmax
θ � tθj, completing the proof after replacing in Equation (A15) with the corresponding expressions for Δ1 

and v2.

Proposition 1

Proof. Since Vr � z1ðtÞ � θ, then, from Eq. (12) 
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� aVr þ b�z2 þ u1 � _z1ðtÞ � � aθþ b�z2 þ u1 ¼ � aVr þ b�z2 þ u1 þ aVr � aθ 
Notice that jb�z2 þ u1j> > aðθ � VrÞ implies b�z2 þ u1 þ aðVr � θÞ � b�z2 þ u1, and, 

� aVr þ b�z2 þ u1 � _z1ðtÞ � � aVr þ b�z2 þ u1 þ aðVr � θÞ � � aVr þ b�z2 þ u1 

implying that _z1ðtÞ is almost constant, i.e., _z1 � d1 ¼
Δ
� aVr þ b�z2 þ u1.

That way, the firing period of z1 is approximately 

T �
θ � Vr

d1
(A16) 

and taking into account that the error between x1 and z1 is bounded by Δ1, the maximum error in the period is given by 

jΔTj � ΔTmax �
Δ1

d1
(A17) 

and dividing Equation (A17) with Equation (A16) we obtain the bound of Eq. (25) completing the proof.

Appendix B. Statistical Error Analysis

In order to verify that the errors reported in Tables 2– 3 do not change significantly with the pseudo-random 
sequence that generates the input spike train, we repeated all the simulations using 30 different seeds and we 
measured the different errors in each case. Then, we computed the mean value and the standard deviation of each 
reported error.

Table B1 shows the results corresponding to the synaptic current Is in the two-state model, corroborating that the errors on 
that state are very similar for all the simulations (the standard deviation is from one to two orders of magnitude below the 
mean error value).

Table B2 reports the results regarding the membrane potential, also for the two-state model. There, all the sub-threshold 
errors have also a very small deviation. In the case of the full trajectory of the membrane potential, the mean errors are still 
similar to the quantum, but there is more variation due to some errors in the number of emitted spikes for the largest 
quantum.

Table B3 repeats the results of Table B2 for the single-state model. The conclusions are also very similar, except that this 
time the errors in the number of emitted spikes are more frequent.

Table B1. Mean value and standard deviation of the measured errors in the 
synaptic current Is (two-state model) over 30 simulations using different 
pseudo-random sequences.

Tol Is [nA]

Method [nA,mV] μ emean σ emean μ emax σ emax

QSS 1E–1 2.15E–2 1.10E–4 5.00E–2 2.24E–5
1E–2 2.50E–3 1.37E–5 5.90E–3 6.27E–4
1E–3 2.50E–4 1.33E–6 6.00E–4 7.28E–5
1E–4 2.51E–5 1.55E–7 6.77E–5 6.42E–6

QSS2 1E–1 7.63E–3 1.34E–4 4.99E–2 7.14E–5
1E–2 3.54E–3 2.87E–5 1.38E–2 3.66E–4
1E–3 2.66E–4 2.54E–6 1.27E–3 8.45E–6
1E–4 2.53E–5 1.68E–7 1.27E–4 3.25E–6

QSS3 1E–1 1.18E–2 1.55E–4 4.99E–2 7.81E–5
1E–2 3.68E–3 1.92E–5 1.21E–2 5.02E–4
1E–3 2.79E–4 3.04E–6 1.11E–3 2.51E–5
1E–4 2.47E–5 1.89E–7 1.14E–4 1.18E–6

Table B2. Mean value and standard deviation of the measured errors in the membrane potential V (two-state model) over 
30 simulations using different pseudo-random sequences.

Tol Vsub [nA] V [nA] Out Spikes
Method [nA,mV] μ emean σ emean μ emax σ emax μ emean σ emean μ emean

QSS 1E–1 3.44E–2 3.54E–3 1.41E–1 1.86E–2 1.49E–1 1.46E–1 0.26667
1E–2 4.00E–3 2.96E–4 1.54E–2 1.14E–3 4.02E–2 9.99E–2 0.066667
1E–3 4.16E–4 3.84E–5 1.57E–3 9.84E–5 6.30E–3 3.10E–2 0.033333
1E–4 4.24E–5 2.55E–6 1.59E–4 1.17E–5 5.05E–5 6.05E–6 0

QSS2 1E–1 3.54E–2 2.36E–3 1.11E–1 9.68E–3 2.51E–1 2.46E–1 0.53333
1E–2 4.65E–3 3.22E–4 1.54E–2 1.15E–3 2.07E–2 5.81E–2 0
1E–3 2.89E–4 1.23E–5 1.19E–3 2.02E–4 3.49E–4 3.49E–4 0
1E–4 2.91E–5 1.12E–6 6.86E–5 1.90E–5 2.80E–5 2.38E–6 0

QSS3 1E–1 2.85E–2 1.63E–3 1.10E–1 2.07E–2 6.86E–2 9.21E–2 0.033333
1E–2 3.67E–3 2.07E–4 1.29E–2 1.44E–3 8.24E–3 1.44E–2 0
1E–3 2.81E–4 2.03E–5 1.10E–3 7.81E–5 3.59E–4 2.90E–4 0
1E–4 2.52E–5 1.57E–6 1.13E–4 5.89E–6 2.69E–5 2.32E–6 0
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Table B3. Mean value and standard deviation of the measured errors in the membrane potential V (single-state model) 
over 30 simulations using different pseudo-random sequences.

Tol Vsub [nA] V [nA] Out Spikes
Method [nA,mV] μ emean σ emean μ emax σ emax μ emean σ emean μ emean

QSS 1E–1 8.18E–1 1.47E–1 2.07E+0 2.38E+0 4.19E+0 2.52E–1 20.7333
1E–2 1.89E–1 3.71E–2 9.61E–1 2.59E+0 2.53E+0 2.59E–1 7.5333
1E–3 4.01E–2 1.59E–2 1.25E–1 6.15E–2 8.15E–1 2.97E–1 2.1
1E–4 1.01E–2 1.20E–2 3.58E–2 3.67E–2 2.40E–1 2.40E–1 0.4

QSS2 1E–1 2.38E–1 3.66E–2 4.51E–1 5.67E–2 1.09E+0 3.09E–1 2.5
1E–2 4.51E–2 4.83E–3 7.90E–2 8.24E–3 2.72E–1 2.10E–1 0.5
1E–3 3.40E–3 3.54E–5 5.89E–3 2.89E–4 2.66E–2 5.23E–2 0.1
1E–4 3.52E–4 2.40E–6 5.88E–4 1.42E–5 8.96E–4 5.73E–4 0

QSS3 1E–1 4.38E–2 2.05E–2 1.23E–1 4.53E–2 3.51E–1 2.89E–1 0.7
1E–2 1.48E–2 2.16E–3 2.95E–2 5.48E–3 1.03E–1 1.27E–1 0.1
1E–3 2.94E–3 2.13E–4 4.94E–3 3.92E–4 1.16E–2 2.20E–2 0
1E–4 3.31E–4 7.61E–6 5.23E–4 1.35E–5 6.96E–4 3.66E–4 0
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