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The Maslov index and some applications to dispersion relations in

curved space times

Juliana Osorio Morales ∗and Osvaldo P. Santillán †

Abstract

The aim of the present work is to generalize the results given in [1] to a generic situation for
causal geodesics. It is argued that these results may be of interest for causality issues. Recall that
the presence of superluminal signals in a generic space time (M, gµν) does not necessarily imply
violations of the principle of causality [2]-[13]. In flat spaces, global Lorenz invariance leads to the
conclusion that closed time like curves appear if these signals are present. In a curved space instead,
there is only local Poincare invariance, and the presence of closed causal curves may be avoided
even in presence of a superluminal mode, specially when terms violating the strong equivalence
principle appear in the action. This implies that the standard analytic properties of the spectral
components of these functions are therefore modified and, in particular, the refraction index n(ω) is
not analytic in the upper complex ω plane. The emergence of this singularities may also take place
for non superluminal signals, due to the breaking of global Lorenz invariance in a generic space
time. In the present work, it is argued that the homotopy properties of the Maslov index [14] are
useful for studying how the singularities of n(ω) vary when moving along a geodesic congruence.
In addition, several conclusions obtained in [2]-[13] are based on the Penrose limit along a null
geodesic, and they are restricted to GR with matter satisfying strong energy conditions. The use of
the Maslov index may allow a more intrinsic description of singularities, not relying on that limit,
and a generalization of these results about non analiticity to generic gravity models with general
matter content.

1. Introduction

The Maslov index is related to sympletic techniques and was originated by studying some quantum
mechanical problems in the sixties [14]. In the present work it will be argued that it may have several
applications related to light propagation in curved space and, in particular, in studying causality
issues.

The problem of causality violations is a subtle one. At first sight, the Einstein or some modified
gravity equations may be solved by assuming that there are closed time like curves in the space time,
and by restricting then the matter fields to allow this behavior. The resulting solution will violate
causality by construction. However, it is not clear that the resulting matter content will be physically
reasonable. Loosely speaking, one of the faces of the problem is to understand if causality violation
takes place when reasonable matter fields are present, or if it necessarily involves the presence of exotic
matter fields. In addition, it may be even difficult to distinguish a reasonable matter field content
from an exotic one on simple grounds.

In special relativity, the presence of superluminal particles induce causality violations. If there is
a signal with velocity w > c connecting two points at positions x1 and x2, the time required for this
travel is t2− t1 = (x2−x1)/w. By a Lorentz transformation to a reference system with velocity V the
resulting time difference is t′2 − t′1 = γ(t2 − t1)(1 − V w). This implies that, if V = 1/w, the interval

∗Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina juli.osorio@gmail.com.
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is zero, which means that this observes sees a signal with infinite velocity. For larger velocities, the
observer sees an inversion of the time arrow. Thus, the resulting curve moves to the past. If this curve
is combined with one going to the future and arriving at x2 at some time before t2, and furthermore
the observer stays at this point x2, then a closed time like curve has been constructed. This clearly
contradicts causality.

The above contradiction between superluminality and causality does not necessarily apply for
curved space times. There are two main ingredients in this construction namely, the presence of a
superluminal mode and the existence of a global Lorentz transformation. For a curved space, global
Lorentz invariance is lost and only local Poincare invariance remains. This may invalidate the reasoning
of the previous paragraph [10]-[12].

An attempt to insist in that superluminality should induce causality violations is to invoke the
strong equivalence principle, which would play an analogous role of global Lorentz invariance. This
is the statement that the laws of physics have the same form regardless the choice of the reference
frame. However, this principle is not necessarily valid. In fact, there are suggestions that QED in
curved space times involve corrections that apparently do violate this statement [15]. For instance,
a coupling between the curvature and the Maxwell field of the form FµνR

µν induce a curvature
dependence on the equations of motion, and thus the strong principle is not respected. It may be the
case that superluminality is possible without violation of causality in a curved space time, specially
when only the weak equivalence principle applies.

An important tool for studying causality are the characteristic surfaces of a generic wave solution,
that is, the boundary between a perturbed and unperturbed zone for a propagating wave. These
regions move with a velocity equals to the high frequency limit of the phase velocity. This was
illustrated for a one dimensional space dimension in generality already in 1937 [16], and it is of
interest to review this short discussion here. Given a wave in one dimension, the phase and group
velocities are given by

vph =
ω(k)

k
, vg =

dω

dk
.

The wavefront velocity is defined as the velocity of the boundary between the perturbed and the
unperturbed zones. In one dimension, any wave equation may be written in a first order formalism as

aij
dφi

dt
+ bij

dφi

dx
+ cijφj = 0, φi = {u,

∂u

∂x
,
∂u

∂t
}.

A wave packet solution
φi = Aie

iωt−ikx,

satisfies this equation if

[iωaij − ikbij + cij ]Aj = 0, → Det[aijvph − bij −
i

k
cij ] = 0. (1.1)

On the other hand, the wave front is a curve (t, x(t)) which separates the regions of φi = 0 and φi 6= 0.
At these points, the wave equation does not determine the solutions uniquely. Clearly vwf = x′(t) and
a simple exercise of chain rule shows that the wave equation at a point (t0, x0) in this front reduces to

[−aijvwf + bij ]
∂φi

∂x

∣∣∣∣
0

+ aij
∂φi

∂t

∣∣∣∣
0

+ cijφj

∣∣∣∣
0

= 0.

From here, it is seen that if
Det[aijvph − bij] 6= 0,

the last equation will determine (φi)x at the point (t0, x0). This condition therefore does not represent
a characteristic surface, since this region is composed by the points where the solution does not exist
or it is not unique. Thus, the characteristic surface is defined by

Det[aijvph − bij] = 0.
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By comparing this formula with (1.1) it is clear that

vwf = lim
k→∞

ω

k
.

Thus, the wave front corresponds to the high frequency or the small wavelength limit of the phase
velocity. These rays with very short wavelength are described by geometric optics.

It is interesting to view causality from the perspective of response functions. In simple quantum
systems, once a Hamiltonian H is perturbed by turning a source s(x) the expectation value of a given
operator O at first order is perturbed as

< δO >=

∫
χ(t, t′)s(t′)dt′,

with χ(t, t′) being the so called linear response function. It is customary to assume that χ(t, t′) = 0
when t′ < t, as the perturbation cannot affect the past. In a flat space time, for time independent
hamiltonians the effect of the perturbation is covariant under a time displacement, thus χ(t, t′) =
χ(t− t′). At the level of its Fourier components χ(ω) these conditions lead to the well known property
of analiticity in the upper complex plane ω. In addition, it leads to the celebrated Kramers-Konig
relations. In addition, in a QFT in flat space, the analiticity property follows form the fact that the
commutator of two operators < 0|[A(x)A(y)]|0 > has to vanish outside the light cone. Usually, this
commutator is also a function of x−y, due to global Lorenz transformations. This also leads to Lorenz
invariance of the S matrix.

The considerations given above are not necessarily true in general gravity models with arbitrary
matter content. In particular, if there are superluminal modes, then all the reasoning given above does
not hold, as there is an argument between two different observers A and B about if the source was
turned on before or after the perturbation. Thus, the analiticity property of χ(ω) may be violated.
In addition, the quantity < 0|[A(x)A(y)]|0 > need not to vanish outside the light cone. But even
when there are no superluminal signals, the standard logic leading to the usual dispersion relations
has to be modified due to the fact that there is no global Lorenz invariance but only local Poincare
invariance. In particular, there are quantities such as the vacuum refractive index n(ω, u) which do
not necessarily satisfy the standard Kramers-Konig relations, even if vwf ≤ 1. In fact, it is strongly
suggested in [2]-[13], that the standard dispersion relation at infinite frequency

n(∞) = n(0)−
2

π

∫
∞

0

Imn(ω)dω

ω
,

is not true generically for a curved space time. If the medium is dispersive, that is, Imn(ω) ≥ 0,
then n(∞) ≤ n(0) which, together with this dispersion relation, implies that vwf = vf (∞) ≥ vf (0).
Thus, even if vf (0) is superluminal, this simply acts as a lower bound of light velocity. But all these
considerations are based on a Kramers-Konig type of relation which is doubtful in the curved context.
The refraction index n(ω) needs not to be analytic at the upper half complex plane either. In fact,
one of the interesting facts that the references [2]-[13] present is that the refraction index possess
singularities in the upper half plane ω in QED in curved space times, even without superluminality,
in some plane wave background.

The appearance of singularities for n(ω) is related to the presence of conjugate points in null
geodesics. These statements were obtained in some particular limit, which is known as a Penrose limit
[64]-[65], which is adapted to the geodesic under study. The purpose of this paper is to make a more
intrinsic description of these matters, and to study the behaviour of the singularities when moving
along a congruence of geodesics.

There is second motivation studying the Maslov index in this context. The present authors already
have worked out in [1] some results related the behavior of singularities in geodesics congruences with
several applications in gravity theories, in particular, in the study of time delay or possible time
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advance. The advantage of the description in [1] in comparison with the present paper is that it is less
technical. However, we would like to take the chance to rediscover these results in a new formalism.
Although more technical, the advantage is that the interpretation of these results is more obvious
and there are some rich aspects related to the discretness of the set of conjugate points which are
missing in [1]. In addition, the results of that reference are based on the use of the Raychaudhuri
equation, and since this equation differ for time like and null geodesics, it can only compare both
situations separately. The homotopy arguments given below does not have this limitation, and allows
a comparison between causal curves in general. This generalization will be emphasized below, after
the results are presented.

The present work is organized as follows. In section 2 we give a brief review about the role of
conjugate points in the description of singularities of the refraction indices. The reader acquainted
with this subject may skip this section. In section 3 the definitions of the focal and multiplicity index
for a given causal geodesic is defined in certain detail, and a sympletic structure behind the Jacobi
equation is clarified. This sympletic structure is compared with the results of the classical reference
[49] in section 5, and some homotopy properties related to the Jacobi problem are pointed out. By
use of the results of that reference, the behavior of the singularities of the refraction index n(ω) when
moving along a congruence of causal geodesics is clarified. It is shown that the appearence of caustic
is generic, regardless of the matter content or the gravity theory under consideration. The physical
significance of these results is analyzed in section 5.

2. The role of conjugate points in the singularities of n(ω)

It may be convenient at this point to illustrate the main points which describe the relation between
conjugate points and singularities of the refractive index. This description will be brief and schematic,
the reader acquainted with all these ideas can skip directly to the following sections, and the reader
searching for full details may consult the original references [2]-[13].

Polarization tensor in flat spaces

Before describing the refractive index in curved space times, it is convenient first to characterize
it in a flat space.

Consider the propagator of a massive scalar particle with wave function φ(x), without electromag-
netic fields turned on. This quantity can be expressed in the Schwinger representation as

G(x, x′) =< 0|T̂ φ(x)φ(x′)|0 >=< x|
1

m2 −�
|x′ >=< x|

∫
∞

0
e−T (m2−�)|x′ > .

The contribution of the term with the D’Alambertian � is known from elementary path integral
theory. By use of this formula the propagator can be expressed as

G(x, x′) =

∫
∞

0
e−Tm2

dT

∫ x(T )=x′

x(0)=x
Dx(t)e−

∫ T
0

ẋ2

4
dt. (2.2)

This is the world line representation of the propagator [57]-[58], [59]-[60]. By decomposing the trajec-
tory as the sum of the classical one plus a fluctuation x(t) = xcl(t) + q(t), with q(0) = q(T ) = 0, the
Green function becomes

G(x, x′) =

∫
∞

0
e−Tm2

dTe−
(x−x′)2

4T

∫

q(0)=q(T )=0
Dq(t)e−

∫ T

0
q̇2

4
dt.

The integral related to the fluctuations q is given by (4πT )−D/2, with D the space time dimensions. In
a curved space however, this quantity presents a more complicated behaviour and will be responsible
for the singularities of the refractive index, as it will be shown below.
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When background electromagnetic fields are turned on and the scalar field has charge e, the
quantity given above is generalized to [60]

G(x, x′, A) =< x|
1

m2 − (∂ + ieA)2
|x′ >=

∫
∞

0
e−Tm2

dT

∫ x(T )=x′

x(0)=x
Dx(t)e−

∫ T
0 [ ẋ

2

4
+ieA·x]dt,

with Aµ the corresponding gauge potential. If the exponentials containing Aµ are expanded in Taylor
series, then this quantity leads to the standard Feynmann diagrams for bosons interacting with the
external background field Aµ, .

For studying the corrections to the Maxwell equation in vacuum due to virtual pair creation and
annihilation, a crucial role is played by the so called effective action. Recall that the partition function
for scalar QED is given by

Z(j) =

∫
DADφ e

∫
[− i

4
FµνFµν+iDµφDµφ+V (φ)+Aµjµ]d4x, Dµφ = ∂µφ+ ieAµφ,

where φ is the scalar field, e it charge, V (φ) its energy density and jµ is a source turned on. The
effective action Γeff (A) is defined by integrating out the scalar degrees of freedom

eiΓeff (A) =

∫
Dφ ei

∫
[DµφDµφ+V (φ)+Aµjµ]d4x.

In these terms the partition becomes a function of the gauge potentials only

Z(j) =

∫
DA e

∫
[− i

4
FµνFµν+Aµjµ]d4x+iΓeff (A),

and consequently the Maxwell equations are modified by the addition of this effective terms. The
expansion of the effective action around a given classical field A0 is given by

Γeff (A) = Γ0
eff (A0) +

∫
d4xΓ2

eff,µν(A0)δA
µδAν + higher orders.

The discussion given above shows that, at low order, there will be corrections to the Maxwell equations
of the form

δSqc =

∫
d4xd4x′Aµ(x)Πµν(x, x

′)Aν(x′).

The so called polarization tensor Πµν introduced in the last formula contains the loop Feynmann
diagrams related to vacuum pair creation and annihilation.

In the world line formalism, the effective action giving rise to the diagrams contributing to
Πµν(x, x

′) is given in terms of a path integral [60]

Γ(A) =

∫
∞

0
e−Tm2 dT

T

∫

x(0)=x(T )
Dx(t)e−

∫ T
0 [ ẋ

2

4
+ieA·x]dt,

where, unlike for G(A, x, x′), the initial and final points are identified, x(0) = x(T ). The initial point
of the trajectory along the corresponding circle is unspecified. The additional factor 1/T , which is not
present in the definition of G(A, x, x′) takes care about this ambiguity, as is proportional to the circle
length. In addition, the absence of initial and final points suggest that the diagrams that this object
generate are 1-particle loop irreducible for photons. In fact, it does. The polarization tensor Πµν is
calculated in terms of Γ(A) by making the expansion of the gauge potential

Aµ
i = A(x)ǫµi (x)e

ikix,
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with A(x) an amplitude, and by Taylor expanding the corresponding exponential in Γ(A). At second
order, the result is identified with the 1-loop polarization, namely

Π1-loop
µν (x, x′) =

α

4π

∫
∞

0

dT

T 3
e−Tm2

∫ T

0
dτ

∫

x(0)=x(T )
Dx(t)e−

∫ T
0

ẋ2

4
dtVω,ǫi [x(τ)]Vω,ǫj [x(0)],

where the additional factor T−2 comes from the integration of the zero mode xµ0 . Note that the result
does not depend on xµ0 on a flat space due to translational symmetry, but it may depend on it in a
curved space. The vertex operators in the last expression come from the expanded gauge potential,
and are given by

Vω,ǫ[x] = A(x)ẋ · ǫi(x)e
ikix.

As discussed above, the limit of geometric optics ω >> 1, is the one which describe the velocity of the
wavefronts. In this limit the gauge potential takes the form

Aµ ∼

(
A(x)ǫµ(x) +

Bµ(x)

ω
+ ..

)
eiωΘ(x),

where Θ(x) is a rapidly oscillating phase and A(x)ǫµ(x) a slowly changing function. Then the polar-
ization tensor may be expressed as

Π1-loop
µν =

α

4π

∫
∞

0

dT

T 3

∫ T

0
dτ < A(x(τ))ǫi(x(τ)) · x(τ) A(x(0))ǫi(x(0)) · x(0) >m

where the modified average <>m is now given in terms of the modified action

Sm =

∫ T

0

[
ẋ

4

2

−m2

]
dτ − ωΘ[x(τ)] + ωΘ[x(0)].

The insertion of the phase dependent terms modify the action, and the average <>m can be studied
by considering the trajectories corresponding to this action, which will differ from classical trajectories
due to the insertion terms proportional to Θ.

Refraction index in curved space time

For curved spaces, the contribution of the fluctuations q(T ) considered above is more involved,
and is directly related to the presence of conjugated points. For simplicity, consider first the Green
function for a massless scalar field. The generalization of (2.2) in a curved setting is

G(x, x′) =

∫ x(T )=x′

x(0)=x
D[xµ(t)]e−S[xµ(t)], S[xµ(t)] =

1

4

∫ T

0
gαβ(x

µ(t))
dxα

dt

dxβ

dt
dt. (2.3)

The classical trajectory corresponding to this action, if there are no conjugate points, are geodesics
connecting x and x′, which will be denoted as zµ(t). A non classical trajectory xµ(t) will be decomposed
as xµ = zµ+yµ , with the fluctuation yµ(λ, t) represented as a geodesic segment connecting the points
at equal t of these trajectories. Here λ is an affine parameter, not to be confused with the evolution
one. The derivative

q(t) = −
dyµ

dλ

∣∣∣∣
λ=0

,

is such that qµ(0) = qµ(T ) = 0. The expansion of the geodesic action up to second order in q is

S[xµ(t)] =
σ(x, x′)

2T
+

1

4

∫ T

0
[q̇αq̇α −Rµναβ q̇

µq̇αuνuβ]dt.

6



Here σ(x, x′) is the action S in (2.3) evaluated along the geodesic, and represents the geodesic distance
between the initial and final points. This quantity is known as the Synge bitensor. On the other hand
uν is the unit vector along zµ(t). By going to an integration in D[qµ(t)] the propagator becomes in
this WKB approximation

G(x, x′) = e
−σ(x,x′)

2s

∫
D[qµ(t)]e−

1
4

∫ s
0 [q̇

αq̇α−Rµναβ q̇
µq̇αuνuβ ]dt,

with qµ(0) = qµ(s) = 0. The last is the generalization of the flat space fluctuation factor
∫
Dq(t)e−

∫ T
0

q̇2

4
dt

with periodic conditions, to a curved space. By use of Fermi coordinates, it is found that [61]-[62]

G(x, x′) =
1√

DetJα
β

e
−σ(x,x′)

2T . (2.4)

Here the quantity Jα
β is the solution of the system of equations

DJα
β

dt2
= −Rα

βγδu
βuδJγ

β , Jα
β (0) = 0,

DJα
β (0)

dt
= δαβ ,

with D/dt denoting the derivative along the geodesic zµ. The quantity Jα
β is crucial for describing

conjugate points. This is seen by the fact that the vector vα(τ) = Jα
β v̇

β(0) is a solution of the Jacobi
equation

D2vα

dt2
= −Rα

βγδu
βuδvγ , vα(0) = 0,

dvα(0)

dt
= Iα.

It is known that conjugate points correspond to solutions for which vα(t) = 0 for some t value. Such
points will appear if and only if the determinant of Jα

β vanish. In other words, this matrix will have
a zero eigenvalue. When conjugate points appear, the Green function becomes singular due to the
corresponding zero of the denominator in (2.4).

By completeness, it should be mentioned [61] that this quantity is related to Van Vleck De Witt
determinant ∆(x, x′), in such a way that the propagator may be written as

G(x, x′) =
1

(4πT )
D
2

e
−σ(x,x′)

2T

√
∆(x, x′).

Here the Van Vleck De Witt determinant is given by

∆(x, x′) =
1√

g(x)g(x′)
Det

(
−

∂2σ

∂xµ∂x′ν

)
.

For a massive particle it may be correct to write the full expression as

G(x, x′) =
√

∆(x, x′)

∫
∞

0
Ω(T, x, x′)e

−im2s−σ(x,x′)
2T

dT

(4πT )
D
2

.

In all these formulas Ω(T, x, x′) encode higher order curvature terms [2]. The Van Vleck De Witt
determinant is singular at the conjugate points.

Analogous considerations follow for the effective action Γ(A) in curved spaces. In fact, the reason
for which conjugate points give rise to singularities can be visualized by studying the polarization
tensor

Π1-loop
µν =

α

4π

∫
∞

0

dT

T 3

∫ T

0
dτ < A(x(τ))ǫi(x(τ)) · x(τ) A(x(0))ǫi(x(0)) · x(0) >m,

7



where the modified average <>m is is given in terms of the modified action [2]-[13]

Sm =

∫ T

0

[
gµν ẋ

µẋν

2
−m2

]
dτ − ωΘ[x(τ)] + ωΘ[x(0)].

The equation of motion corresponding to this action are given by geodesics except at some delta
singularities induced by the phase terms Θ(x). As is well known, the solution is unique if there are no
conjugate points in between. Instead, if conjugate points appear in the middle of the two singularities,
then a continuous set of classical solutions may appear, resulting in zero modes for some τ values.
These modes induce singularities in the polarization tensor.

The propagation of photons, at quantum level, is determined by the vacuum polarization term
given by

∇µF
µ
ν =

∫
Aν(x′)Πµν(x, x

′)
√

g(x′)dx′. (2.5)

On the other hand, the eikonal level the field is given by

Aµ
i (x) = A(x)ǫµi (x)e

iΘ(x),

with Θ(x) a rapidly varying phase, must be corrected in this approximation. The quantum one loop
corrections induce a polarization dependent deviation of the phase, and the field becomes

Aµ
i (x) = A(x)ǫµi (x)e

i(Θ(x)−θij ),

for which the field equations get corrected as

∇νF
ν
(i)µ = 2ω2 ∂θij

du
ǫνj e

−iωv, (2.6)

where the coordinate v(x) is defined by the relation Θ(x) = ωv. The refraction index is then given by

nij(u, ω) = 1 + 2
∂θij
du

.

Comparison between (2.5) and (2.6) allows to find an expression for the refraction index in terms of
the described Green functions. The result is

nij(x, ω) = δij −
2

ω2A(x)
ǫνi (x)e

−iωv

∫ √
g(x′)Πµν(x, x

′)A(x′)ǫµj (x
′)eiωv

′

dx′.

These formulas were heavily employed in references [2]-[13]. This discussion shows that the presence
of conjugate points give rise to singularities on the polarization tensors.

3. An intuitive but formal picture about the Maslov index and its

uses

As discussed above, the presence of conjugate points implies that the polarization tensor Πµν(x, x
′)

becomes singular. It is likely that such singularities translate to ones for nij(x, ω). However, there
exist primitives with singular integrands which are perfectly regular, so a more careful analysis should
be performed. The authors [2]-[13] study these singularities, in the Penrose limit for a given geodesic.
The Penrose limit assigns to every space time (M , gµν) and to a given null geodesic γ a limiting
plane wave metric. First, given the null geodesic γ, a possible choice of coordinates may be v and the
geodesic parameter u. The metric in these adapted to γ coordinates reads

g = 2dudv + a(u, v, yk)dv2 + 2bi(u, v, y
k)dvdyi + gij(u, v, y

k)dyidyj.
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These coordinates always exist locally, see for example [64]-[65]. The only special feature about this
choice is that the term proportional to dudv is a simple constant. This metric corresponds on taking
a null geodesic γ parameterized by the affine parameter u, and embedding it into a congruence of
geodesics parameterized by v. The choice of the spatial coordinates yk is not relevant in the following.
By performing the scaling of coordinates

(U, V, Y k) = (u, λ2v, λyk),

and taking the limit λ → 0 in the expression gp = λ−2g the resulting metric becomes

gp = dUdV + gij(U)dY idY j ,

with gij(U) = gij(U, 0, 0). There exists a change of coordinates which brings the last expression to the
form of a gravitational wave

gp = dudη + hij(u)x
ixjdη2 + δijdx

idxj .

Here the profile hij(u) = Ruiuj|γ is related to the curvature tensor of the original space time evaluated
at the null geodesic γ [56]. By assuming that there are conjugate points for the given geodesic, for
some particular profiles, these authors are able to show that singularities on nij do appear at the
upper ω complex plane. These singularities do not necessarily appear only for superluminal modes.

The arguments of those references are, in the authors opinion, pretty solid. But there are some
issues that we would like to improve. The results are only related to plane wave profiles, which are
designed to specially admit caustics, that is, points where the geodesics of the congruence intersect.
The presence of such caustics generate a full region composed of conjugate points. This motivates the
use of the Brinkman coordinates, which are regular at this region. However, it may be argued that
these caustics are just an artifact of the Penrose limit, which not necessarily lift to the exact metric
before this limit was taken. The aim of the present work is to show that, regardless the gravity model
or the matter content, these caustics are for real, if the geodesic under study does admit a conjugate
point. In other words, the results obtained in those references, even approximated, capture the real
physics of what happens around the chosen geodesic. To show such result requires some technical
tools. It will be shown that the Maslov index techniques introduced in [14] and further developed in
references [32]-[50] may be helpful for showing the presence of such caustics.

For further applications related to quantum mechanics, variational problems or to spectral theory
of operators the reader may consult the classical works [32]-[50].

3.1 Some indices associated to conjugate points in causal geodesics

The case for timelike geodesics

Even at cost of reviewing some elementary topics, it is convenient to discuss some details that may
be confusing when reading correct mathematical and physical literature about geodesic deviation. In
some excellent physics textbooks such as [70]-[71] there is an approach about the topic that relies on
a congruence of geodesics. In this approach, one considers a time like geodesic γ in an n-dimensional
space-time (M , g) with n − 1 spatial dimensions. This space time is assumed to be time orientable,
in the sense that there exists a nowhere vanishing future directed time vector tµ in M . A system
of local coordinates xα may be chosen, for which the geodesic γ under study may be embedded into
a particular congruence of geodesics xα(t, s), with s a one dimensional parameter distinguishing the
different curves in the congruence. In particular, γ is identified with xα(t, 0). The tangent vector to
these curves

uα =
∂xα

∂t
,
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satisfies the geodesic equation uβ∇βu
α = 0.

On the other hand, for fixed t the vector xα(t, s) describe another set of curves, not necessarily
geodesics. The tangent to these curves is given by the so called deviation vector

vα =
∂xα

∂s
.

The property in flat spaces that ∂t∂sx
α = ∂s∂tx

α or, what is the same, ∂tv
α = ∂su

α, is translated to
a curved space into the identity Luv = [u, v] = 0 with LX denoting the standard Lie derivative along
the vector field X. This is equivalent to the condition

uα∇αv
β = vα∇αu

α. (3.7)

This identity, together with the geodesic equation, implies that the quantity vαuα is constant along
the geodesic [71]-[70]. In fact, a simple calculation shows that

d

dt
(vαuα) = uαuβ∇βv

α = uαvβ∇βu
α = 0,

where in the last step (3.7) was employed. It is concluded that, if vαuα = 0 is imposed at the initial
time t0 then the deviation vector vα may be chosen orthogonal to the tangent uα of the geodesic. The
acceleration

aα =
D2vα

dt2
D

dt
= uα∇α,

can be worked out by curvature identities, by (3.7), and by the fact that the length of uα is conserved
along γ. The calculation throws

D2vα

dt2
= uγ∇γu

β∇βv
α = uγ∇γv

β∇βu
α = uγvβ∇γ∇βu

α + (uγ∇γv
β)∇βu

α

= uγvβ(∇β∇γu
α −Rα

αδβu
δ) + (vβ∇βu

γ)∇γu
α

The sum of the first and the last term are proportional to the geodesic term uα∇αu
β, which clearly

vanishes. In this manner, the well known Jacobi equation [71]-[70]

D2vα

dt2
= −Rα

βσδu
βvσuδ,

D

dt
= uα∇α, (3.8)

is obtained. The fields vα are denominated Jacobi fields.
Take the geodesic under study γ at some time t = t0, corresponding to a point p in M . Solve

equation (3.28) together with the initial conditions

vα(t0) = 0, v̇α(t0) = Iα, (3.9)

where Iα is an arbitrary vector field. If, for some choice of Iα, there is a point q corresponding to a
time parameter t1 such vα(t1) = 0, then q is known as a conjugated point to p.

The approach given above is transparent and intuitive. It suggest that conjugate point arises when
gravity is such that geodesics pointing to different directions are focused at a given point. However,
there is a subtle detail in all this derivation. In this deduction, the property (3.7) has been employed.
As remarked above, this imply that vαuα is constant along γ. This fact, together with the initial
conditions (3.9) would imply that

vαuα = 0,

along the geodesic. As this constancy was heavily employed in finding the Jacobi equation it is then
attractive to state that every solution vα of (3.8) with the conditions (3.9) should be orthogonal to
uα. However, this affirmation is false, even taking into account the last formula. In fact, the vector

10



vα = (t− t0)u
α is a solution of (3.8) with these initial conditions, and clearly vαuα is not constant for

this solution.
The subtlety described above does not indicate that the approach of [71]-[70] is wrong. In fact, one

may use a series of hypothesis for finding an equation and then realize that the spectra of solutions is
wider than expected. For the purposes of the present work however, this point is to be remarked. The
reason is that some mathematical indices will be defined below, which are based on the spectrum of
solutions of the Jacobi equation, regardless this is applied for studying geodesic congruences or not.
More mathematical oriented references such as [72]-[75] or even the cited textbooks [71]-[70] in other
chapters deduce the Jacobi equation in terms of the second variation of the geodesic length functional,
and show that the presence of conjugate point spoil extremal properties of time like geodesics. In this
approach, the orthogonality property uαv

α = 0 does not play any significant role.
Note that the solution vα = (t− t0)u

α does not correspond to a conjugate point since it will never
vanish for t 6= t0, thus it makes sense to restrict the attention to the solutions orthogonal to uα, as
the authors of [71]-[70] do. However this restriction should be done explicitly, the equation (3.8) with
(3.9) alone does not warrant orthogonality with uα.

Some simple versions of the equation (3.8) are in order. At the initial point p corresponding to the
time parameter t0, an orthonormal basis ea(t0, s) of TMp(s), that is, a basis such that at p the metric
becomes diagonal

g = ηabe
a ⊗ eb, (3.10)

may be constructed, which in addition satisfy e0(t0, s) = uα(t0, s)∂α. If this basis is parallel transported
along the geodesic γ, that is, uα∇αea = 0 then

g = ηabe
a ⊗ eb, e0(t, s) = uα(t, s)∂α, (3.11)

with ea the dual basis to ea. This formula is valid for any t in a neighborhood of t0. Note that the
transverse n− 1 dimensional metric

h = δabe
a ⊗ eb, a, b = 1, .., n − 1, (3.12)

is spatial. The Jacobi equation (3.8) in this basis is simplified as

d2va

dt2
= −Ra

0c0v
c. (3.13)

This expression will make some of the calculations below easier.
An important concept is the multiplicity of a conjugate point q to p, defined as follows. By varying

over the possible choices of Iα in (3.29) the space of non trivial Jacobi fields J [γ] on the geodesic is
found. At some point q with parameter t1, there is a set of k Jacobi fields vl with l = 1, .., k that
vanish, i.e, vαl (t1) = 0 with α = 1, .., n. The multiplicity of the conjugate point q is defined as

mult(q) = k. (3.14)

As the solution vα = (t− t0)u
α never represents a conjugate point, it is clear that mult(q) ≤ n− 1.

Given the characterization above of the time like geodesics γ : [a, b] → M in a generic space time
(M , g) and its conjugate points, two useful indices may be introduced. One of them is the geometric
index of γ, which is given in terms of the multiplicity (3.14) as

igeom(γ) =
∑

q∈[a,b]

mult(q). (3.15)

This quantity is naturally related to properties of conjugate points along geodesics. But there is
another index defined in the literature, known as the focal index ifocal(γ), which will be useful in the
present exposition as well.
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The definition of the focal index ifocal(γ) is a bit more involved than (3.15). In order to define it,
consider the Jacobi problem with initial conditioins:

d2va

dt2
= −Ra

0c0v
c

vα(t0) = 0, v̇α(t0) = Iα,

Given the initial point p corresponding to t0, then at a time t1 a conjugate point q of multiplicity
k appears if there are k choices of linearly independent Jacobi fields vi(t) with i = 1, .., k such that
vi(t1) = 0. Consequently, in this situation, there are n − k choices of Jacobi fields vl(t) with l =
k + 1, .., n for which vi(t1) 6= 0. In particular, the solution vα = (t − t0)u

α. These non vanishing
vectors vi(t1) generate the space of non trivial Jacobi vectors at t1, denoted as J[t1]. Denote orthogonal
complement of J[t1] in TqM as J[t1]

⊥. Note that this complement never contains the direction defined
by uα, as the corresponding fields never vanish. An arbitrary basis ba at TqM can be chosen for
this complement, with a = 1, .., k. Construct then the matrix g̃ab = g(ba, bb), which is the restriction
of g on the space J[t1]

⊥ with respect the basis ba. Denote by n±(g̃) the maximal dimension of a
subspace V ∈ J[t1]

⊥ such that the matrix g̃ab is positive or negative definite respectively, and n0(g̃)
the dimension of its kernel. It is clear that

n+(g̃) + n−(g̃) + n0(g̃) = k,

in the present case. The signature of g̃ab is defined as

signature(g|J[t1 ]⊥) = n+(g̃)− n−(g̃).

The signature defined above is of course independent on the choice of the basis ba. In these terms, the
focal index of γ is given by

ifocal(γ) =
∑

t∈[a,b]

signature(g|J[t]⊥). (3.16)

At first sight, there is no reason for the two indices (3.15) and (3.16) to be identified. If the multiplicity
of a point q is k, then the dimension of g|J[t1]⊥ is also k. However, its signature can differ from k. This
means that in a generic problem of semi-riemannian geometry with arbitrary signature, both indices
may have different values. In addition, for a semi-riemannian geometry, it may be possible to reach
a region of which g|J[t1]⊥ is degenerate at a conjugate point, even if the full metric is regular there.
For example, when studying a space like geodesic in Lorenzian space time (which corresponds to a
tachyonic mode), the spatial and time like directions orthogonal to the tangent to the geodesic may
conspire to give such degeneration.

The problems pointed out in the previous paragraph however, do not take place for time like
geodesics in a Lorenzian space time. The solution vα = (t − t0)u

α is in J[t1]. Therefore, the space
J[t1]

⊥ never contains the time like direction. This means that g|J[t1]⊥ is becomes spatial, and

g|J[t1]⊥ = h|J[t1]⊥ , (3.17)

with hab the transverse metric defined in (3.12). The focal index then may be rewritten as

ifocal(γ) =
∑

t∈[a,b]

signature(h|J[t]⊥). (3.18)

If it is assumed that the full metric is non degenerate, then this restriction will also be non degenerate
and n−(g̃) = 0 due to the spatial property. Thus, for time like geodesics

ifocal(γ) = igeom(γ). (3.19)
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Although the definition igeom(γ) seems more natural for studying geodesics, the index ifocal(γ) is more
adequate for studying geodesic perturbations. Thus, this identification will be helpful for understand-
ing the behaviour of conjugate points under small perturbations of γ. These type of indices were
extensively studied in [17]-[31].

The case for null geodesics

For null geodesics, the analysis of conjugate points is slightly different as for the time like case
described above. One difference is that, given a null geodesic with tangent vector kα and a deviation
vector vα, the naive orthogonal condition vαkα = 0 may be satisfied by fixing va = cka with c a
constant, as ka has zero norm. This orthogonality condition does not remove the unwanted solutions
parallel to the geodesic, as kα is parallel and perpendicular to itself.

Consider as before a congruence of null geodesics xα(τ, s) with τ the evolution parameter. The
notation τ is employed here in order to distinguish from the parameter t employed in the time like
case. Given an initial point p corresponding to the initial parameter τ0, an initial orthonormal basis
e+, e− and ea with a = 1, 2, .., n − 2 may be constructed for which the metric at p becomes

g = −2e+ ⊗ e− + δabe
a ⊗ eb. (3.20)

These coordinates are inspired in the null coordinates for special relativity. Clearly both e± are
null vectors. The tangent vector kα to γ satisfies the geodesic equation ∇kk = 0, thus it is parallel
translated along the curve. The choice e+(τ0, s) = kα(τ0, s)∂α may be employed, with the other
components e−(τ0, s) and ea(τ0, s) only constrained by (3.20). If this initial basis is parallel transported
along the geodesic γs, that is, if k

α∇αea = kα∇αe− = kα∇αe+ = 0 then

g = 2e+ ⊗ e− + δabe
a ⊗ eb, e+(τ, s) = kα(τ, s)∂α, (3.21)

for all values of τ in a neighburhood of τ0. In this case e+ represents the tangent (and orthogonal)
vector to the null geodesic at every value of τ . The n− 2 spatial dimensional metric

hab = δabe
a ⊗ eb, (3.22)

is transverse to both the directions spanned by e+ and e−. The deviation vector va satisfies the Lie
condition Le+v = [v, e+] = 0, which is equivalent to

∇e+v = ∇ve+.

By expanding v into the parallel transported basis as v = v+e+ + v−e− + vaea, and by defining the
indices A = +,−, a the last formula becomes

kαeA∂αv
A = vα∇αe+. (3.23)

On the other hand, from the fact that g(e+, e+) = 0 it is seen that g(e+,∇αe+) = 0. By expanding
∇αe+ as

∇αe+ = (∇αe+)
+e+ + (∇αe+)

−e− + (∇αe+)
aea,

and by inserting this into the identity g(e+,∇αe+) = 0, it is found that

(∇αe+)
− = 0.

In these terms, it is calculated from (3.23) that

∂τv
− = 0. (3.24)
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Thus v− is constant along the geodesic and if initial conditions of the form (3.29) are employed,
then v− = 0 during all the evolution. Given the deviation vector v in arbitrary coordinates, with
components vα, its transversal components vt can be found by use of the projection

vαt = hαβv
β, (3.25)

with hab the spatial n−2 dimensional metric defined in (3.22). These components satisfy the transversal
Jacobi equation

d2vat
dτ2

= −Ra
+c+v

c
t ,

where the sign + means the projection along kµ. This derivation is given in [64].
Based on the analysis given above, the space of solutions of the Jacobi equation

d2va

dτ2
= −Ra

+c+v
c, (3.26)

becomes of interest. However, the subtleties described for the time like case also arise here. In
finding this equation, at the step (3.24) above, the condition v− = 0 was employed. However the
formula (3.26) with the initial conditions (3.9) alone does not imply that v− = 0 for a generic solution.
Nevertheless, the solutions with a component v− do not give rise a conjugate point. Neither does
the solution vα = (τ − τ0)k

α. Thus, the multiplicity of a conjugate point for a null geodesic is at
most n − 2 and the space of non trivial Jacobi fields J[τ ] contains the directions e+ and e−. The
natural spatial metric hab for null geodesics is (3.22), which has n− 2 dimensions. There is a further
subtlety however, and it is that both e+ and e− are null, thus they are parallel and perpendicular to
themselves simultaneously. This may raise a question about wether they belong to J[τ ] or J[τ ]⊥ or to
both. However as the directions e+ and e− do not give rise to conjugate points, they surely belong to
J[τ ]. At one hand, g(e+, e+) = g(e−, e−) = 0. On the other hand g(e−, e+) = 1. Thus, these directions
can not be included additionally in J[τ ]⊥ as they can be perpendicular to all the remaining spatial
directions ea and to themselves, but the condition g(e−, e+) = 1 states that these two directions are
not orthogonal.

The focal and geometrical indices ifocal and igeom may be defined by use of (3.15) and (3.16) in
the present case. The focal index is

ifocal(γ) =
∑

t∈[a,b]

signature(g|J[t]⊥), (3.27)

and the restriction is clearly spatial, as the null components e+ and e− are not in J[t]⊥. The identifica-
tion (3.19) also remains valid for null geodesics. The only difference is that the maximum multiplicity
for a conjugate point is n− 2 in the null case, while it is n− 1 in the time like case.

It should be emphasized that the Jacobi equation may be interpreted in terms of a second variation
of a length functional. This is an involved task, details can be found in [72]-[73] but this line will be
not pursued further here.

3.2 A conserved two form for the Jacobi problem

The Jacobi problem admits a conserved two form ω, which will be described and employed below.
This form already appear in the works [33], [51]-[52]. These references are related, in particular, to
Morse theory. This theory was in fact applied to riemannian geodesics in the seminal mathematical
works [78]-[76] and further employed for geodesics in semi-riemannian geometry in [79]-[81], a subject
which is complicated due to non positivity of the space time metric.

In order to describe the conserved form ω, note that the Jacobi equations for time like and null
geodesics were reduced in the previous subsection to the form

d2va

du2
= rab(u)v

b, (3.28)
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with rab a term constructed in terms of the curvature Ra
bcd and in terms of the tangent vector ua or ka

of the geodesic under study. In addition, the parameter u employed in (3.28) is an unified notation
denoting either the t parameter for time like geodesics or the parameter τ for null geodesics employed
above. Since the curvature Rabcd = ηaeR

e
bcd constructed in terms of the Levi-Civita connection of

gµν satisfies the identity Rabcd = Rcdab, it follows that the curvature term rab = ηacr
c
b is symmetric

with respect to the interchange of its indices. As discussed in the previous subsection, for studying
conjugate points to a given point p in M , it is customary to impose the initial conditions

vα(u0) = 0, v̇a(u0) = Ia, (3.29)

where the initial velocities Ia are real arbitrary parameters. Given the differential problem (3.28) the
conserved form is given by

ω((v, v̇), (w, ẇ)) = g(v, ẇ)− g(w, v̇). (3.30)

where g = ηabe
a ⊗ eb with ea being the chosen parallel propagated orthogonal basis along γ, ea the

corresponding dual basis, and ηab the standard Minkowski metric in n dimensions. Both v and w are
vector fields in TrM , the dot denotes the derivative with respect to u. This definition shows that

ω : Pr × Pr → R,

where the following phase space

Pr = TrMr ⊕ TrM = {(v, v̇)|v ∈ TrM and v̇ ∈ TrM}, (3.31)

has been introduced. Here r is any point of the geodesic γ under study.
The expression (3.30) for ω is not the most common in the literature and so, it may be useful to

find another equivalent definitions. Note that the phase space Pr defined in (3.31) is composed by the
direct sum of two copies of TrM . For this reason, it is convenient to introduce a copy fa of the n-bein
basis ea of TrM described above. Despite being a copy, the new vectors fa live in a complementary
space to the one spanned by ea in the sense that

ea(e
b) = fa(f

b) = δba,

but
ea(f

b) = fa(e
b) = 0.

In the formalism of phase space, instead of expanding a deviation vector v of γ and its velocity v̇ as

v = vaea, v̇ = v̇aea,

one assigns to them a 2n-dimensional vector V ∈ P given by

V = vaea + v̇afa. (3.32)

In these terms, the form (3.30) becomes

ω = ηabe
a ∧ f b, (3.33)

and in fact, given two vectors V and W in Pp expanded as in (3.32), it is concluded directly from
(3.33) that

ω(V,W ) = ηabv
aẇb − ηabv̇

awb.

This proves that (3.33) and (3.30) are two expressions of the same object.
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The expression of the form ω may take even a more familiar form by making the redefinition
e0 → −e0 while leaving all the spatial components of ea and all the components fa unchanged. In
this new basis, the most familiar expression

ω = δabe
a ∧ f b, (3.34)

it is obtained, which is typical in the literature.
For any two solutions v and w of the Jacobi equation (3.28) it can be deduced that

dω

du
((v, v̇), (w, ẇ)) = 0. (3.35)

This follows directly from (3.28) and (3.30) and from the fact that rab = rba. If in addition, the initial
conditions (3.29) are employed, then it follows that

ω((v, v̇), (w, ẇ)) = 0, (3.36)

for every value of u. This is valid on any causal geodesic xµ(u, s).
The formula (3.36) has some important consequences. First, by use of the definition (3.30) it may

be written as
g(v, ẇ) = g(w, v̇), (3.37)

with v and w two solutions of (3.28) corresponding to the conditions (3.29). If, at a parameter u1, a
conjugate point is of multiplicity k appears, there are k linearly independent Jacobi vectors vi which
vanish at u1. Their corresponding velocities v̇i should be linearly independent. If this were not the
case, then there is a combination ċ = αiv̇i with i = 1, .., k which vanish at u1. The linear combination
c = αivi also vanish at u1. As this is a solution of the Jacobi equation, which is linear and of second
order, it is clear that c = 0. But this contradicts the linear independence of vi. Thus the velocities v̇i
are linearly independent. The last formula implies that

g(w(u1), v̇i(u1)) = 0, i = 1, .., k, (3.38)

with w(u1) any vector belonging to J[u1], that is, the space of non trivial Jacobi fields at u1.
It is not difficult to convince oneself that (3.38) implies that the velocities v̇i(u1) belong to J[u1]

⊥.
But this should be analysed with care, due to the fact that g is not riemannian. For time like geodesics,
the solution wα(t1) = (t1−t0)u

α described in the previous section may be employed to show that v̇i(u1)
is spatial due to (3.38). For spatial w(u1), the metric gab in (3.38) becomes riemannian, and it is clear
that v̇i(u1) belong to J[u1]

⊥. For null geodesics, a vector w(u1) proportional to e+ may be employed
in order to show that v̇i(u1) does not contain a component proportional to e−, since g(e−, e+) = 1.
The same type of argument can be used to show that v̇i(u1) does not have a component proportional
to e+. For spatial w(u1), the metric gab in (3.38) becomes riemannian. This means that the velocities
are in J[u1]

⊥ in the null case. Together with the linear independence, these facts imply the following
lemma [17].

Lemma 1: Given a conjugate point q to p with multiplicity k corresponding to the evolution pa-
rameter u1 on a causal geodesic γ, there are k linearly independent Jacobi fields vl with l = 1, 2, .., k
which vanish at u1. Their velocities v̇l(u1) at this point constitute a basis for J[u1]

⊥.

The presence of the conserved form ω have several other consequences. The phase space P is 2n
dimensional. A n-dimensional subspace L of P is called lagrangian if the restriction of ω|L to this
space is zero, namely

ω(ei, ej) = 0, ∀ ei, ej ∈ L. (3.39)
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For the Jacobi problem, the subspaces L1 = span{ei} corresponding to the Jacobi vectors or L2 =
span{fi} corresponding to their velocities are of course lagrangian. In addition, two lagrangian sub-
spaces L1 and L2 are said to be complementary if L1 ⊕ L2 = P . For any pair of such complementary
lagrangians, there exist a basis ei ∈ L1 and fi ∈ L2 such that

ω(ei, fj) = δij .

And any other complementary space Lc to L1 if of the form Lc = span{gi} with

gi = fi + Cijej. (3.40)

The matrix Cij has to be constrained by the lagrangian condition ω(gi, gj) = 0. This condition,
together with ω(ei, ej) = ω(fi, fj) = 0 and ω(ei, fj) = δij implies that Cij = Cji. In other words,
the space of lagrangians complementary to any specific L1 is described by the space of symmetric Cij

matrices.
The space of all the lagrangian subspaces of P will be denoted as G(n, P ) and is called Grassmanian

lagrangian. Several of its properties are studied in the literature, see for instance [26]. Some very basic
properties are collected in the appendix at the end of the text.

3.3 Lagrangian planes determined by the solutions of the Jacobi equation

Equipped with phase space formalism, consider again the Jacobi equation (3.28). Instead of studying
particular initial conditions (3.29), the attention will be focused now on the space of all possible initial
conditions of this type. Any solution va of (3.28) can be parametrized in terms of these conditions
(3.29) as follows

v = Aa
b (u)v̇

b(u0)ea(u), (3.41)

with ea the n-bein basis parallel transported along γ introduced above, v̇b(u0) arbitrary initial veloc-
ities, and with the matrix Aa

b (u) defined through the second order differential equation

d2Aa
b

du2
= −racA

c
b, Aa

b (u0) = 0,
dAa

b (u0)

du
= δab . (3.42)

This characterization of Aa
b (u) follows directly from the Jacobi equation and the aforementioned initial

conditions. Once the matrix Aa
b (u) has been found, the space of all solutions corresponding to the

initial conditions (3.29) is obtained as

V = Aa
b (u)v̇

b(u0)ea(u) + Ȧa
b (u)v̇

b(u0)fa(u). (3.43)

The formula (3.36) shows that ω(V,W ) = 0 for every pair of such vectors V and W , if they correspond
to the initial conditions (3.29). Thus, the definition (3.39) shows that the space of all the vectors of
the form (3.43) constitute a lagrangian subspace L1(u) of P for every value of u. From the initial
conditions (3.29) it is seen that L1(u0) = 0⊕ TpM .

Given L1(u) as above, a complementary lagrangian space L2(u) may be constructed for every value
of u, by searching the solutions of the Jacobi equations (3.28) with the initial conditions

va(u0) ∈ R
n, v̇a(u0) = 0. (3.44)

Clearly, this initial set is complementary to the one defined in (3.29), since it corresponds to non zero
initial vectors with zero velocities. The corresponding solutions are characterized by the following
formula

v = Ba
b (u)v

b(u0)ea(u),
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with a matrix Ba
b (u) satisfying the differential system

d2Ba
b

du2
= −racK

c
b , Ba

b (u0) = δab ,
dBa

b (u0)

du
= 0. (3.45)

All the solutions of the complementary Jacobi problem

v(u) = Ba
b (u)v

b(u0)fa(u), (3.46)

are obtained by varying the initial displacements vb(u0) over R
n. Corresponding to these solutions, a

phase space vector
Vc = Ba

b (u)v
b(u0)ea(u) + Ḃa

b (u)v
b(u0)fa(u), (3.47)

is assigned. As before, the space of all these solutions is a lagrangian subspace of P , denoted as L2(u).
The conditions (3.44) imply that L2(u0) = TpM ⊕ 0.

Clearly, the initial lagrangian subspaces L1(u0) = 0 ⊕ TpM and L2(u0) = TpM ⊕ 0 are comple-
mentary, since obviously L1(u0)⊕ L2(u0) = Pp.

Note that the vector field V in (3.43) and the complementary vector Vc in (3.47) can be expressed
as

V = v̇a(u0)Fa(u), Vc = va(u0)Ea(u),

where the following u dependent n-bein basis

Fa(u) = Ab
a(u)eb(u) + Ȧb

a(u)fb(u), Ea(u) = Bb
a(u)eb(u) + Ḃb

a(u)fb(u), (3.48)

has been introduced. In this basis the simple description

L1(u) = span{Fa(u)}, L2(u) = span{Ea(u)}, (3.49)

is achieved. It can be easily seen that Ea(u0) = ea(u0) and Fa(u0) = fa(u0). At u0 by construction
ω(ea(u0), fb(u0)) = δab and since this value is conserved during the u evolution by (3.35) it follows
that ω(Ea, Fb) = δab for every value of u. Thus, Ea(u) and Fa(u) are complementary basis for any
choice of u and therefore the lagrangians L1(u) and L2(u) are complementary for every value of u.

Having introduced the basis (3.48) for P , the next step is to obtain some formulas that will be useful
for reproducing the geometrical index igeom(γ) and the focal index ifocal(γ) defined in (3.15)-(3.16) in
the phase space formalism. For achieving this, consider a fixed arbitrary value of the evolution uf not
corresponding necessarily to a conjugate point. The value of Fa(u) defined in (3.48) can be related on
general grounds to the ones at uf by some combination of the form

Fa(u) = Fa(uf ) + Lab(uf , u)Eb(uf ). (3.50)

By inserting the last expression into ω(Ea(u), Eb(uf )) and by taking into account the complementary
property of Ea(u) and Fb(u) namely, that ω(Ea, Fb) = δab, the unknown quantity Lab may be calculated
explicitly as

Lab(uf , u) = ω(Fa(u), Fb(uf )). (3.51)

The point of introducing the quantity Lab is that the intersection of L1(u) with the initial lagrangian
plane L1(u0) defined by the initial conditions of the form (3.29) can be characterized by the zero
eigenvalues of the matrix Lab(u0, u). This can be explained as follows. The initial lagrangian is
L0 = span{fa(u0)}, while the evolved one is

L1(u) = span{Fa(u)} = span{fa(u0) + Lab(u0, u)eb(u0)}.

This means that a vector V ∈ L1(u) given by

V = v̇a(u0)Fa(u), (3.52)
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with v̇a(u0) the initial velocities, will also belong to L1(u0) and therefore to the intersection L1(u) ∩
L1(u0) if and only if

v̇a(u0)Lab(u0, u) = 0. (3.53)

The last condition implies that v̇a(u0) must be an eigenvector of Lab(u0, u) corresponding to the
eigenvalue λ = 0. Therefore

dim(L1(u) ∩ L1(u0)) = multiplicity of the eigenvalue λ = 0 of Lab(u0, u).

This last conclusion may be paraphrased as follows. For a given value of u, the matrix Lab(u) has n
eigenvalues λi(u), possibly repeated, and not necessarily vanishing. If there is a value u1 such that
one these values is zero with multiplicity k, then this corresponds to a conjugate point q to p on γ
with the same multiplicity.

Another important quantity is the derivative of Lij with respect to u, which will be denoted here by
Qij in order to facilitate comparison with the literature. This derivative is found choosing u = uf + δu
with δu infinitesimal, and by realizing that the definition (3.51) implies that Lij(uf , uf ) = 0. The
result is

Qij =
dLij(uf , u)

du
= ω(Ḟi(uf ), Fj(uf )). (3.54)

On the other hand, the first equation in (3.48) shows that

Ḟi = uα∇αFi = Ȧk
i (u)ek + Äl

i(u)fl = Ȧk
i (u)ek + rlcA

c
ifl, (3.55)

as the basis ea and fa are parallel translated along γ. Note that in the last equality the equation
(3.42) has been employed. By inserting the last expression and the first (3.48) into (3.54) and by
taking the definition of ω given in (3.33) into account, it is concluded that

Qij(u) = ηabȦ
a
i Ȧ

b
j − rabA

a
iA

b
j . (3.56)

It may be more illuminating to write the last formula as

Qij(u) = [Aa
i (u) Ȧa

i (u)]

[
−rab 0
0 ηab

] [
Ab

i (u)

Ȧb
i (u)

]
. (3.57)

Since va(u) = Aa
b (u)v̇

b(u0) and v̇a(u) = Ȧa
b (u)v̇

b(u0), it is seen that the quantities Qij define a
symmetric tensor Q acting on P × P given by

Q = r ⊕ g, r = rabe
a ⊗ eb, g = ηabf

a ⊗ f b. (3.58)

This is the desired expression for the derivative Qij in an arbitrary basis [51].

3.4 Definition of the Maslov index

After this characterization of Lij and its derivative Qij, a new expression for the focal and geometrical
indices ifocal(γ) and igeom(γ) may be found. The importance of this expression, to be derived below, is
that its properties under geodesic deformations can be understood in terms of classical mathematical
literature. For obtaining it, consider again the Jacobi problem (3.28), with initial conditions (3.29)
at a point p corresponding to the parameter u0. Assume that there is a point q corresponding to a
parameter u1 such that there are k non trivial initial velocities v̇l(u0) with l = 1, .., k for which the zero
eigenvalue condition (3.53) is satisfied. These formulas show that, for fixed l, the quantities v̇il(u0)
with i = 1, .., n constitute a zero eigenvector of Lij(u0, u). Associated to this eigenvector, a phase
space vector (3.59) may be constructed, which can be explicitly worked out from (3.48) as

Vl = v̇al (u0)J
b
a(u)eb + v̇al (u0)J̇

b
a(u)fb. (3.59)
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This corresponds to a deviation vector val (u) = v̇bl (u0)J
a
b (u) with velocity v̇al (u) = v̇bl (u0)J̇

a
b (u). At

the conjugate point q
val (u1) = v̇bl (u0)J

a
b (u1) = 0,

and therefore Vl(u1) ∈ L1(u1) ∩ L1(u0), as discussed below (3.59). In this situation, the space of
non trivial Jacobi fields J [u1] ∈ TqM becomes n − k dimensional, since there are k Jacobi fields are
vanishing at q. The orthogonal complement J [u1]

⊥ ∈ TqM is then k dimensional. On the other hand,
the vectors (3.59) at u1 become

Vl(ul) ≃ v̇l(u1) = v̇al (u0)J̇
b
a(u)fb. (3.60)

Here ≃ denotes that these quantities are isomorphic, as fa are copies of ea. The lemma proved below
formula (3.38) shows that the vectors (3.60) conform a basis of J [u1]

⊥. The restriction of Q = L̇ on
the space spanned by the vectors (3.60) can be obtained from (3.58), the result is simply

Q|L1(u)∩L1(u0) = g|J [u1]⊥ ,

with g the full space time metric. By comparing this with the definitions (3.15) and (3.16) of igeom
and ifocal it follows, for causal geodesic curves in the space time (M , g), that

ifocal(γ) = igeom(γ) =
∑

u∈[a,b]

signature(Q|L1(u)∩L1(u0)). (3.61)

The quantity

µ(γ, L1(u0)) =
∑

u∈[a,b]

signature(Q|L1(u)∩L1(u0)), (3.62)

is known as the Maslov index for γ at the interval [a, b] [14], [32]. Here it is assumed that a < u0 < b
and that a and b do not represent a conjugate point to the initial point p corresponding to u0. The
possibility of the borders containing conjugate points will be described in the next section. Then
(3.61) is equivalent to

ifocal(γ) = igeom(γ) = µ(γ, L1(u0)). (3.63)

This formula identify the quantities of interest for geodesics in terms of the Maslov index. This
identification will be employed in the next sections in order to prove some homotopy properties about
the focal and geometrical indices for causal geodesics in lorenzian geometry.

4. The behavior of conjugate points by moving geodesics

4.1 The properties of the Maslov index under homotopy

At first sight, the identification (3.63) may look a bit convoluted. The first two quantities are easy to
define, but the last one is more involved. The advantage of this identification is that the homotopy
properties of the Maslov index are well studied [32]. This may be helpful for studying the behaviour
of the conjugate points when moving alone the congruence of geodesics γs containing a given one γ.
Before going about this topic, it is mandatory to show the link between the formula (3.58) with the
ones described in the classical literature of the subject. As this identification is lengthy, this is done
in the appendix. In particular, the formulas for Qij and the Maslov index expressions obtained in [49]
are reproduced exactly.

Several conclusions may be drawn by use of that reference. These authors define the Maslov index
of the lagrangian path L1(u) with respect to any chosen lagrangian plane V as

µ(L1(u), V ) =
1

2
signature(Q(a)|L1(u)∩V ) +

1

2
signature(Q(b)|L1(u)∩V ) +

∑

u∈(a,b)

signature(Q(u)|L1(u)∩V ).
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This definition is not restricted to a problem of geodesics, and in fact the Maslov index has several
applications in other context such as Quantum Mechanics. The only subtle difference with our def-
inition is the contribution of the endpoints a and b. But this can be understood, as the authors of
[49] deals with a more general context, not limited to lagrangian paths L1(u) arising by a problem of
geodesics. In addition, the endpoint b will be chosen such that it is not a conjugate point to a, thus
it will give no contribution to the index. irst, the values of u where L1(u)∩ V is non trivial are called
crossings. A crossing is called regular if the quadratic form Q|L1(u)∩V is non singular. The first two
homotopy properties are the following.

Homotopy property: Given two homotopic lagrangian curves L1(u) and L̃1(u) with the same end-
points and with regular crossings only have the same Maslov index. Furthermore any lagrangian path
L1(u) is homotopic to one with only regular crossings.

Another important property is related to path catenation.

Catenation property: Given a generic Grassmanian G(n) and a curve γ : [a, b] → G(n), then the
following additivity property is valid

µ(γ, γ(a)) = µ(γ|[a,c], γ(a)) + µ(γ[c,b], γ(c)),

with c ∈ (a, b).

The last fundamental property for our purposes is the following one.

Homotopy property 2: Given two lagrangian curves L1(u) and L̃1(u) with the same endpoints are
homotopic if and only if they have the same Maslov index.
The properties described above define the Maslov index in full generality for lagrangian paths, by
assigning to a path with singular crossings with L1(u0) the Maslov index of an homotopic deformed
path with regular crossings, which always exists due to Proposition 1.

These homotopy properties will be fundamental for the proof of the proposition given in the
following section.

5. The continuity property of conjugate points along γs

All the statements given so far are related to the conjugate points of a given geodesic γ. However,
nothing has been said about the behavior of these conjugate points when moving along the geodesics
γs of a congruence in which γ is embedded in. The homotopy property presented in the previous
subsection may be useful for doing so, and we turn the attention over this subject below.

Consider a geodesic γ embedded in a congruence γs in such a way that γ0 = γ. Take a point p
corresponding to the parameter value u0 and assume that there is conjugate point q to p along γ at
a parameter value u1. Without loss of generality q may be assumed to be the first conjugate point
to p. Then, for causal curves, it may be shown that there are no conjugate points to p in an interval
[u0, u0 + ǫ] or [u1, u1 + ǫ], for ǫ small enough. In other words, the set of conjugate points qi to p is
discrete. This is the statement of the following lemma [74].

Lemma 2: Given a point p in a causal geodesic corresponding to a parameter u0 there is an ǫ such
that there is no conjugate points to p for u < u0 + ǫ. If a conjugate points q appears at a parameter
u1 then there is an ǫ such that there is no other conjugate point for u < u1 + ǫ.
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Proof. This can be seen as follows. At a conjugate point q of multiplicity k there are k vanishing
Jacobi fields vl with l = 1, .., k and n− k non vanishing vectors one vl with l = k + 1, .., n. Construct
the new vector fields

ηl(u) = vl, l = k + 1, .., n

ηl(u1) = v̇l(u1), ηl(u) =
vl(u)

u− u0
, l = 1, .., k.

At the parameter u1 the first vectors are a basis of J[u1] and the second are a basis of J[u1]
⊥. As the

metric g is non degenerate on J[u1] for causal geodesics, it follows that J[u1] ⊕ J[u1]
⊥ = Rn. These

vectors are continuous around u1 and constitute a basis of Rn for u close to u1. Thus, for u close to
u1 there is no conjugated point, as this would require ηl to be a basis of Rm with m < n which by
continuity of the determinant det((ηl)

n
l=1) is impossible.

The lemma given above, combined with the definition of the Maslov index given in the previous
sections, is crucial for the present purpose, which is the proof of the proposition given below.

Proposition: Given a space time (M,gµν) consider a causal geodesic γ with tangent vector uα with
two conjugate points p and q, with q in the causal future of p (usually denoted by q ∈ J+(p)). If this
geodesic is embedded in a causal congruence γs with tangent vector uαs where s is a multidimensional
parameter, in such a way that uαs → uα and γs → γ when s → 0. Then, the following holds.

a) There is an open neighbourhood O around p composed by points p(s) belonging to γs such that
p(s) → p when s → 0, in such a way that any of these points posses a conjugate point q(s) in J+(p(s))
along γs.

b) The map h : O → M defined by h(p(s)) = q(s), with q(s) the first conjugate point to p(s), is
continuous around p.

Proof: It is convenient to parametrize the causal geodesics γs composing the congruence in local
coordinates as xµ(u, s) in such a way that xµ(u, 0) corresponds to γ. For all the geodesics in the
congruence, with s small enough, find the general solution of the Jacobi equation the initial conditions
(3.29) at the parameter value u0. There is no loss of generality with the particular choice of the initial
parameter u = u0. Then, all the possible Jacobi fields vν(u, s) are given by

v(u, s) = Aa
b (u, s)v̇

b(u0, s)ea(u, s),

where the quantity Aa
b (u, s) is defined in (3.42), and is clearly s dependent since the curvature term

rab(s) is function of this parameter. The initial velocities v̇b(u0, s) are varied over the possible real
values.

The initial conditions v̇b(u0, s) may be chosen as continuous functions of s. The reason is that
the last formula implies that if a conjugate point is reached for a given value of the initial condition
v̇b(u0, s), then the same holds for the scaling v̇b(u0, s) → λv̇b(u0, s), with λ any real parameter, as the
vanishing property will not be spoiled by this rescaling. By considering the space of all continuous
initial conditions v̇b(u0, s) the space of all the possible initial conditions for the curves xµ(u, s) at u0
is covered.

Now, for a given geodesic γs, the Lemma 1 described above implies that, for some small neigh-
bourhood [u0− ǫ(s), u0+ ǫ(s)], there are no points conjugate to the initial point p(s) corresponding to
the parameter u0, that is, p is the point located at xµ(u0, s). For s taking values in a small compact
interval [−s1, s1], denote the smallest value of ǫ(s) as ǫs. Once this smallest value is defined, construct
a continuous curve Γ non necessarily geodesic, which starts at the point p0 located at xµ(u0, 0) and
ends at some point r located at some coordinates xµ(sf , u1) with u1 in the interval (u0−ǫs, u0+ǫs) and
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sf inside the compact interval [−s1, s1] defined above. This curve is required to intersect all the curves
γs of the congruence for s ≤ s1, at least in the compact interval [u0 − ǫs, u0 + ǫs]. The intersection
between Γ with the curve γs with coordinates xµ(s, u) will happen at some point which is a function
of s, and which will be denoted subsequently as ui(s). The curve Γ is then parametrized by s, as it is
composed by the points with coordinates xµ(s, ui(s)).

In the same manner, construct another curve ∆ joining a point t with coordinates xµ(sf , u
′) in γsf

with a point q in γ with coordinates xµ(0, u′′) with both parameters u′ > u0+ǫs and u′′ > u0+ǫs. The
curve ∆ is assumed to intersect all the curves γs in the congruence for 0 ≤ s ≤ sf with intersection
points vi(s). In this manner, the points p and q, both belonging to γ become joined by the causal
geodesic γ or by the union curves Γs ∪ γs ∪∆s with s ≤ s1. In particular, Γsf ∪ γsf ∪∆sf last ones
connects p with r, then r with t and finally t with q. Note that this composed curve is not necessarily
geodesic, as the components ∆ and Γ are not restricted to be so.

The curves Γs∪γs∪∆s can be constructed in such a way that they are presented as a one parameter
deformation of γ. To see this, assume without loosing generality that the intersection point function
ui(s) is monotone and can be inverted locally as s = s(ui) along Γs or ∆s. Then Γs ∪ γs ∪∆s becomes
a function of u0 < u < u1. It depends on the final value of s = sf , as this parameter define the
endpoints of Γs or ∆s. In addition Γs ∪ γs ∪ ∆s → γ when sf → 0, and both curves have the same
endpoints p and r.

Once the curves Γ and ∆ have been constructed, the next task is to assign to every point of them
the Jacobi vector field vΓ(u, s) = v(u, s) corresponding to the initial velocity v̇a(u0, s) at the point of
intersection ui(s) between Γ and γs. The analogous procedure is made for the intersection points vi(s)
in ∆. On the other hand, at γs, the vector field is identified with the Jacobi field va(u, s) at this curve.
By properties of linear differential equations, the vectors vΓ(u, s) and v∆(u, s) are continuous functions
of the arguments since the initial conditions are of this type. These functions are Jacobi vectors, and
formula (3.35) shows that the two form ω is conserved when evaluated on these vectors. Furthermore,
the initial condition (3.29) implies that its value is not only constant, but identically zero. Thus, along
the curve Γs ∪ γs ∪ ∆s these fields constitute a continuous lagrangian path LΓ(u) ∪ Lγs ∪ L∆(u) in
G(n, P ). The curve LΓ(u)∪L1(u, s1)∪L∆(u) and L1(u, 0) in the grassmanian G(n, P ) have the same
endpoints. For s1 small enough, both curves are homotopic and the results presented in the previous
section show that they have the same Maslov index.

The equality between the Maslov indices between LΓ(u) ∪ Lγs ∪ L∆(u) and L1(u, 0) shown above
has an important consequence. If there are no conjugate points between p and r in γ, the Maslov
index is given only by the contribution of the initial point. On the other hand, the curves Γs and
∆s have been constructed intentionally for non containing conjugate points. Thus, the equality of
Maslov indices between γ and the curve Γs ∪ γs ∪∆s implies that there is no conjugate point for γs
between the point p(s) corresponding to the parameter u0 and the intersection point between γs and
∆s. If instead the point r is allowed to move along γ and happens to cross a conjugate point q to p
with multiplicity k, then the equality of the Maslov index implies that a conjugate point q(s) to p(s)
with the same multiplicity or j conjugate points qi(s) of multiplicities ki with i = 1, .., j such that
k1 + .. + kj = k appear at the curve γs. The fact that Γs ∪ γs ∪ ∆s → γ when s → 0 implies that
qi(s) → q when s → 0 in continuous fashion. This argument may be generalized without problems to
a several parameter ǫi congruences, if they describe a ball with radius small enough. The proposition
has then been proved (Q. E. D).

It should be mentioned that a result of this type was given in [63], but restricted to GR and to
matter content satisfying the strong energy condition. A more general result was found in [1]. However,
this work compare null geodesics with themselves, while the result presented here is not restricted to
this case alone, and allows comparison between causal geodesics in general. The application of the
Maslov index generalize these statements to any matter content and any underlying gravitational
model, for causal geodesics. This is an important feature. Its physical significance is that, given a null

23



geodesic which achieves two conjugate points, then time like geodesics which similar initial directions
and with velocities close to light will also acquire a pair of conjugate points with the continuity property
stated in the proposition.

6. Discussion of the results

The result presented in the previous section can be rephrased in less technical terms as follows. Given
a causal geodesic γ with two conjugate points p and q, then there is an open neighbourhood around
p such that all the causal geodesics starting from points ps in these neighbourhoods with directions
”similar” to the one defining γ will have also conjugate points qs. These conjugate points are ”close”
to q. These connecting geodesics conform a congruence containing γ the set of conjugate points q(s)
becomes a caustic hypersurface. This result is independent on the underlying gravity model or the
matter content.

The results presented may have applications related to the refractive index n(u, ω). In obtaining
its upper plane singularity structure the authors [2]-[13] employ the Penrose limit of the space time
metric g around the geodesic γ under study. The resulting geometry is a gravitational wave. The
profiles these references consider posses caustics, but the authors wonder if the existence of caustics is a
generic situation or if they may disappear when lifting the geodesics to full geometry. In fact, geodesics
curves in the approximated geometry may not correspond to genuine geodesics in the full geometry and
therefore, the caustics may be an artificial effect of the Penrose limit. The proposition presented here
shows that these caustics are a generic feature, and the proof is given by formal homotopy arguments.
Thus, given a full geometry and a geodesic with two conjugate points, as there are caustics around
these points, the Penrose approximation employed in those references describe correctly from the
qualitative point of view the physics corresponding to the full geometry. The approximated geodesics
do indeed lift to a full geodesic and the approximated caustics do lift to a full caustic. The results
about the singularities based on this approximation would not be spoiled by going to the full geometry.

In addition, the results of the proposition presented here implies that if the refractive index is
interpreted as a function n(u, ω,Λ) with Λ an appropriate parameter space denoting a congruence of
geodesics, then the location of the singularities in the complex upper plane will be a function ω(Λ),
which is continuous at least for an open containing Λ0, being Λ0 the parameter corresponding to the
geodesic γ under study.

A further interesting feature is that, for superluminal geodesics, which is a possibility that the
authors [2]-[13] consider, the set of points conjugate to p may be continuous. The discreteness of the
conjugate points qn to p for causal curves follows from the non degeneracy of the space time metric
gµν when evaluated at the space J[u] of non trivial Jacobi fields at the parameter value u. This is
exemplified in the lemma 2 of the previous section. The discreteness follows from the fact that this
non degeneracy implies that J[u]⊕ J[u]⊥ = Rn. However, for a congruence of spatial geodesics γs the
Jacobi fields parallel to its tangent vector uα are never vanishing, which means that the space J[u]
contains this spatial direction deleted. The resulting metric g⊥ to perpendicular to this direction is
still semi-riemannian and contains space like and time like directions. This implies that there may
exist Jacobi fields vα in J[u] for which g(v, v) = 0. These vectors are parallel and perpendicular to
themselves, and thus in this situation it is not warranted that J[u] ⊕ J[u]⊥ = Rn. This relation was
crucial for the proof of Lemma 2 about discreteness and, if it is spoiled, discreteness is not assured.

The possibility of a non discrete set of conjugate points to p along may result in the presence of
a continuum of images of a given object, and was pointed out already in [17]. This continuous set of
images are only possible in the non causal setting and may be employed as a tool for distinguishing
superluminal effects. In addition, evaporation of conjugate points may be possible when varying along
spatial geodesics in a given congruence as well since, as shown along the text, the identification between
the Maslov index, the focal index and the geometrical one may fail if the metric g⊥ is degenerate.
Thus, in this situation, the Maslov index may not properly be counting the number of conjugate
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points along a geodesic, and the homotopy arguments just presented do not prevent the caustics to
evaporate.

It should be mentioned that the consequences of superluminality are not necessarily restricted to
geodesics. In fact, the birrefrigent curves considered in [10]-[12] are not geodesics from the strict point
of view, as they are geodesic with respect to a deformed metric Gµν not equal to gµν . It may be
interesting to construct a congruence of such curves and to understand if they intersect, thus giving
to an adapted definition of the notion of a conjugate point. This may be achieved by finding the
analogous of the Jacobi equation in this context. Furthermore, it may be interesting to see if the
presence of caustic surface is generic in this context or not. We have played with these birrefrigent
curves and possible Jacobi field analogous, but at the moment we were unable to find a conclusive
result. The problem we faced is that we were unable to find a suitable conserved symplectic form ω
such as the one employed in the text for constructing lagrangian planes. When this obstacle appeared,
we lost the analogy with the methods presented here. However, we hope to overcome these difficulties
in a future.

Not less important, it should be mentioned that superluminality is not restricted to ”light”, and
there are several works that study the velocity of the graviton, and there is no conclusive evidence
yet that it is given by c. Several consequences of a superluminal graviton are discussed in detail in
[53]-[55], where causality bounds are presented. These references however are considering low energy
effects coming from integrating massive modes in gravitational theories, and their discussion is mainly
restricted to low frequencies. Nevertheless the studies of generic conjugate points in non geodesic
spatial curves may be relevant in this context as well. We leave this for a future publication.
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A A brief mathematical interpretation of the quantities Qij

The following discussion is very succinct, and the reader is referred to more mathematical references
for further details.

As discussed along the text, the solutions of the Jacobi equation give rise to a lagrangian subspace
L1(u) of P . At a conjugate point with parameter u1 there exists a Jacobi field such that va(u1) = 0,
and this means that L1(u0) ∩ L1(u1) 6= {0}. Thus, it is of interest to study intersection theory in
the space of lagrangian subspaces of the phase space P . This space is known as the Lagrangian
Grassmanian G(n, P ).

Every point in the Grassmanian G(n, P ) represent a lagrangian subspace L, and it follows that
L1(u) represents a path in G(n, P ). By taking into account that the real quantities Cij in (3.40) are
symmetric, it is deduced that the Dim G(n, P ) = n(n+1)/2. It should be emphasized that this space
is not oriented, this feature may depend on the dimensions [39]. In any case, the intersection of a
given lagrangian space L with other lagrangians in P induce a hierarchy of points in G(n, P ) given by

Λk(L) = {l ∈ G(n, P )| Dim(l ∩ L) = k}.

By the definition of Λk(L) given above, it is obvious that

G(n, P ) = ∪n
i=0Λ

k(L).

On the other hand, the set Λ0(L) represents the lagrangian subspaces complementary to L and it is of
no interest in the study of conjugate points. Thus, given the initial set L1(u0), which will be denoted
below as simply L0, the interest is focused on the Maslov set

M(L0) = G(n, P )− Λ0(L0) = ∪n
i=1Λ

k(L0), (1.64)
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as this set represent the lagrangian subspaces l whose intersection with L0 is non trivial. These non
trivial intersections are the ones that signals the presence of conjugate points.

The set Λk(L) corresponds to matrices Cij in (3.40) which k zero eigenvalues. This space has
codimension k(k + 1)/2 in G(n, P ). The regular set Λ1(L) has codimension one and Λ2(L) has
codimension three in G(n, P ). The set M(L0) itself is a cycle of codimension one.

Pretend for some moment that orientability for G(n, P ) holds. As the sympletic form ω defined
in section 2 is non degenerate, if a lagrangian plane decomposition P = L1 ⊕L2 has been found then,
given a vector v ∈ L2, the dual vector

v∗ = ω(v, ·),

may be constructed. Thus the conserved form ω induces the identification L∗
1 ≃ L2 of the dual space

of L1. In addition, given any vector v2 in L2, one has that

ω(v2 + v1, ·)|L1 = ω(v2, ·)|L1 ,

if v1 belongs to L1. This induces the following identification L∗
1 ∼ P/L1. The space of lagrangian

subspaces complementary to a given one L1 is described in (3.40) in terms of the symmetric n × n
matrices Cij. By identifying Cij with C = Cijei ⊗ ej it is seen that this space can be identified with
the quadratic forms L1 ⊗ L1. As L1 ≃ L∗

2 it is seen that the L1 ⊗ L1 can be identified further with
L∗
2 ⊗ L∗

2.
On the other hand, the tangent space TA(G(n, P )), which is fundamental in the definition of the

Maslov index, can be characterized as follows. Note that the formula (3.50) given by

Fi(u) = Fi(uf ) + Lij(uf , u)Ej(uf ),

shows that for u = uf + δu the quantities Lij(uf , u) are approximately describing the directions in the
grassmanian G(n, P ) emanating from the ”point” L2(uf ) = span{Fi(uf )}. A tangent vector in the
tangent space TLG(n, P ) is parameterized by Qij = L̇ij. In other words, Qij represent the directions
along a given point in the tangent space of the Grassmanian.

The cycle Λ1(L0) in the definition (1.64) can be interpreted as an element of H1(Λ, Z), and
represents the lagrangian paths with regular intersection with L0. It is known as the Arnold-Maslov
cycle [40]-[41]. The fact that is a codimension one cycle implies that, if it had an orientation, this
will be defined by elements A of Λ1(L) by taking Ȧ of TA(G(n, P )) which are transverse to A. In this
context, transversality means the following. The results of the previous paragraphs shows that there
is an identification between Ȧ and a quadratic form in A∗⊗A∗, which does not restrict to zero in A. If
it was possible to give an orientation, then this will be defined by the transverse vectors on which the
quadratic form is positive definite, together with those on which is negative definite. In these terms,
given a curve γ : [a, b] → Λ with endpoints not in Λ1(L0), the intersection number with the Maslov
cycle γ ·Λ1(L0) may be defined, and enlarged to singular intersections by use of intersection theory. It
is tempting to identify this intersection number it with the Maslov index. This picture however is not
so straightforward. The problem is that, in general, the mentioned orientability is not warranted, and
is dimension dependent. Thus, these definition have to be properly modified to include these more
complicated situations. The reader is referred to the mathematical works [52], [38] for a large amount
of details about this features. The tangent space parametrized by Qij plays a fundamental role in the
full definition of the Maslov index.

Despite these problems, the homotopy properties of the Maslov index may be characterized in
terms of a formalism known as lagrangian planes [32], [48], which is helpful for our purposes. This
formalism will be described below in certain detail, as is the one employed along the text.

B A more formal definition of the Maslov index

As remarked in the previous sections, the quantity of real interest in the study of causal geodesics is
the geometrical index igeom defined in (3.15). This quantity was identified the focal index ifocal defined
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in (3.16) and, after some work, with the Maslov index (3.62). Af first sight, this may be a convoluted
path for dealing with the problem, as the quantities are equivalent but their definition becomes more
involved. The point for doing that is that the Maslov index is well studied in the literature [32]-[50].
In particular, some of its properties under path deformation are well understood [32]. The intention
of the present work is to understand the behavior of conjugate points under geodesic perturbations,
and for this reason this identification may be useful.

Still, in order to make a better comparison with literature, the formalism of lagrangian frames will
be introduced. By expressing the Maslov index in this formalism, and by showing the equivalence
with (3.62), some conclusions about homotopic deformations will be drawn immediately.

2.1 The formalism of lagrangian frames

Consider again some decomposition P = L1 ⊕ L2 of some even dimensional space P , equipped with
a sympletic 2-form ω, which is expressed as the sum of two complementary lagrangian planes L1

and L2 with basis ea and fa respectively, see (3.39). For studying geodesics, P may be identified
with the phase space described in the previous sections. However, the following discussion is more
general, not restricted solely to the geodesics case. In the basis ea for L1 and fa for L2 the following
expression ω = δabe

a ∧ f b is obtained. Assign to the vector field e1 a the n-components row vector
uT1 = (1, 0, .., 0), to e2 the vector uT2 = (0, 1, 0, ..., 0), and so on until en is identified with the
vector uTn = (0, .., 1). Then the space of lagrangian planes may be then characterized by the linear
transformations Z : Rn → R2n of the form

Z =

[
A
B

]
,

with A and B being n × n matrices, as follows. Given any of such transformations Z, the following
n-dimensional subspace L of P

L = span{Zu1, ..., Zun},

may be constructed. Explicitly, this space corresponds to the generators L = span{g1, ..., gn} given by

gi = Ajiej +Bjifj. (2.65)

The matrices A and B are at the moment arbitrary. But if L is requested to be a lagrangian plane,
that is, ω(gi, gj) = 0 for every choice of the indices i and j, then the relations ω(ei, ej) = ω(fi, fj) = 0
and ω(ei, fj) = δij imply that

ATB = BTA. (2.66)

A matrix Z with components A and B satisfying the relation (2.66) is known as a lagrangian frame
for L. By varying along all the possible matrices Z satisfying this condition the space of lagrangian
planes is covered.

2.2 The Maslov index in the formalism of lagrangian frames

Equipped with the formalism of lagrangian frames, a new definition of the Maslov index may be
found. Consider, as usual, the Jacobi problem (3.28) with the initial conditions (3.29). As explained
in the previous sections, this give rise to a lagrangian path L1(u) in G(n, P ). The phase space of the
problem may be decomposed as P = L1(u0)⊕L2(u), the space L2(u) is any complementary lagrangian
to L1(u). A fundamental quantity for defining the Maslov index is the tensor Q = L̇ found in (??).
This quantity, as seen from (3.54), can be expressed as

Q(v) =
dω(v, v + w(u))

du

∣∣∣∣
u=0

. (2.67)
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with v ∈ L1(0) and w ∈ W (u) such that v+w(u) ∈ L1(u). Here W is any lagrangian complementary
to L1(u), not necessarily L2(u). This definition in fact should be independent on the choice of W .

Note that the initial parameter in the definition of Q(v) has been set u0 = 0, there is no real loss
of generality with this choice.

At the point u = 0, fix a basis fi for L1(0) and a basis ei(0) for some complementary lagragian W ,
not necessarily equal to L2(0). Then the frame Z(u) for L1(u) generically given by

Z1(u) =

[
A(u)
D(u)

]
,

is constrained by the initial condition

Z1(0) =

[
0
I

]
.

In other words, for u = 0 the basis for L1(u) should reduce to fa. Thus, for small u the lagrangian
frame Z(u) is

Z1(u) =

[
A(u)

I + δD(u)

]
, (2.68)

with δD(u) and A(u) matrices composed by infinitesimal quantities, and such that δD(0) = A(0) =
0n×n. The condition for Z(u) to be a lagrangian frame, that is, that DTA = ATD, implies that
AT (u) ≃ A(u) for u small enough. This means that for small u the matrix A is approximately
symmetric. Therefore

L1(u) ≃ span{fi +Aji(u)ej}, (2.69)

for u small enough.
On the other hand, a lagrangian space complementary to L1(u) is described generically at u = 0

as
W = span{ei + Cjifj},

as shown above in formula (3.40). Thus, the lagrangian L2(u) is expected to be described for any u
by a lagrangian frame of the form

Z2(u) =

[
I +B(u)
C(u)

]
,

with Bij(0) = 0 and Cij(0) = Cij . Therefore, given a vector v + w(u) with v ∈ L0, w(t) ∈ W one has
for u small that

v = vaea, w(u) = wa(u)(fa + Cba(u)eb),

where the effect of B(u) is neglected for small parameter values. In these terms

v + w(u) = (va + Cabw
b)ea + wafa.

However, ua and wa are not independent since, as stated above, v + w(u) ∈ L1(u). This, together
with description (2.69) of L1(u) implies that

wa = Aab(v
b + Cbcw

c).

With the help of the last formula, it is found then that

ω(v, v + w(u)) = ω(v,w(u)) = δabv
awb(u) = δabAad(v

d + Ccdw
c)vb.

By taking this and the fact that Aab(0) = 0 into account, and by introducing the notation

< x, y >= δabx
ayb, (2.70)
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it is easily calculated that

Q(v) =
dω(v, v + w(u))

du

∣∣∣∣
u=0

=< v, Ȧ(0)v > . (2.71)

This formula reproduces the third formula of the proof of Theorem 1.1 in the reference [49]. The
quantity Q(v) in (2.71) does not depend on Cij and thus is the same no matter the choice of the
complementary lagrangian. This is an important check.

Another link with [49] comes by employing a generic lagrangian frame for L1(u), not necessarily
equal to (2.68). As the definition ofQ(v) is independent on the choice of the complementary lagrangian,
one may choose L2(u) as the one described by the frame

W2(u) =

[
U(u)
0

]
,

with U(0) = I. For the lagrangian L1(u) chose the frame

W1(u) =

[
Y (u)
X(u)

]
,

with the component matrices not constrained by any particular condition except the lagrangian frame
one XTY = Y TX. This means that L1(u) = span{gi} with

gi = Yji(u)ej +Xji(u)fj . (2.72)

The initial vector v and the variation w(u) for small u are then given by

v = V igi, w(u) = wiUji(u)ej .

The vector V i are the components of v in the basis gi. Its projection on the basis ei and fj are given
by

vi = V jYij(0), vj = V iXji(0),

respectively. The vector V i is defined in terms of vi by these relations. By denoting wi(u) = wjUij(u),
it follows that

v + w(u) = (V iYji(0) + wj(u))ej + V iXji(0)fj .

There is a further relation between the above defined quantities, that come from the fact that v+w ∈
L1(u). By employing the notation (v+w)l for the components of v+w in the basis gl, it is clear that

(V iYji(0) + wj)ej + V iXji(0)fj = (v + w)lgl.

By use explicit of (2.72) it is found that

Yji(0)V
i + wj = Yjl(u)(v + w)l, Xji(0)V

i = Xjl(u)(v + w)l.

By then eliminating the quantity (v + w)l in the last expressions, it is found that

Yji(0)V
i + wj = Yjl(X

−1)klXki(0)V
i (2.73)

In these terms, by using the notation (2.70) and by taking into account that ω(ei, fj) = δij , it is found
that

ω(v,w(u)) =< X(0)V,w(u) > .

From here it follows that

Q(v) =
dω(v, v +w(u))

du

∣∣∣∣
u=0

=< X(0)V, ẇ(0) > .
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The last formula can be further worked out from (2.73) as

Q(v) =< X(0)V, Ẏ (0)V > − < X(0)V, Y (0)X−1(0)Ẋ(0)V > . (2.74)

The second term can be worked further. A simple calculation shows that

< X(0)V, Y (0)X−1(0)Ẋ(0)V >= δijXjlV
lYjk(X

−1)kmẊmnVn.

The condition (2.66) for lagrangian frames XTY = Y TX, that is, XjlYjk = YjlXjk can be employed
for cancelling out the terms proportional to Xij and (X−1)ij in the last formula. In these terms, it is
found that

< X(0)V, Y (0)X−1(0)Ẋ(0)V >=< Ẋ(0)V, Y (0)V >,

and the quantity (2.74) becomes

Q(v) =< X(0)V, Ẏ (0)V > − < Ẋ(0)V, Y (0)V > . (2.75)

This formula reproduce the second point of the statement of the Theorem 1.1 of reference [49], up to
some minor change of notation. The theory developed in that classic reference lead to the homotopy
properties stated along the text.
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