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REDUCING AND INVARIANT SUBSPACES UNDER TWO

COMMUTING SHIFT OPERATORS

A. AGUILERA, C. CABRELLI, D. CARBAJAL, AND V. PATERNOSTRO

Abstract. In this article, we characterize reducing and invariant subspaces of
the space of square integrable functions defined in the unit circle and having values
in some Hardy space with multiplicity. We consider subspaces that reduce the
bilateral shift and at the same time are invariant under the unilateral shift acting
locally. We also study subspaces that reduce both operators. The conditions
obtained are of the type of the ones in Helson and Beurling-Lax-Halmos theorems
on characterizations of the invariance for the bilateral and unilateral shift. The
motivations for our study were inspired by recently results on Dynamical Sampling
in shift-invariant spaces.

1. Introduction

Invariant subspaces under shift operators have been studied and characterized by
many authors. In particular, Beurling in 1949 [7] proved the celebrated theorem in
which he characterizes the invariant subspaces for the unilateral shift acting on the
Hardy space H2(T) where T is unit circle (see Theorem 2.9). This theorem led to
an enormous amount of work and has stimulated a very fruitful research in different
directions.

Many generalizations and applications of this result have enriched the literature
on invariant subspaces. Furthermore, the compression of the shift acting on the
orthogonal complement of any non-trivial invariant subspace for the unilateral shift
in H2, has served as a model of a lavish class of Hilbert space operators. This was
the initiation of the theory of model spaces [14]. Later, Helson and Lowdenslager
[17] generalized Beurling’s result to L2(T).

In 1959, Lax [18] extended Beurling’s theorem to Hardy spaces of K-valued func-
tions where K is a finite dimensional Hilbert space, i.e. Hardy spaces with finite
multiplicity. Shortly after, in 1961 Halmos [15] obtained a characterization for the
general case (infinite multiplicity), using a beautiful functional analysis approach.
See Theorem 2.12, referred to as Beurling-Lax-Halmos Theorem.

On the other hand, generalizations to invariant subspaces of L2(T,K) by the
bilateral shift have been given by Helson and Lowdenslager [17, 16] and Srinivasan
[20].

In the present paper, we consider two operators acting on L2(T, H2
K): the bilateral

shift U and the unilateral shift Ŝ, the latter acting pointwisely on H2
K. See Definition

1.3. We obtain a characterization, in the line of the theorems of Helson, and Beurling-
Lax-Halmos, for the subspaces that are reducing for U – that is, invariant under
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U and U∗ – and at the same time are invariant under Ŝ. We also characterize the
subspaces that are reducing for both, U and Ŝ.

1.1. Motivation from Dynamical Sampling. The motivation for our study comes
from the Dynamical Sampling Problem in shift-invariant spaces formulated in [2, 3].
For references on the general problem of Dynamical Sampling see [4, 5, 6, 10, 12].

Dynamical sampling involves reconstructing an unknown signal that evolves over
time from its spatial-temporal samples. A common scenario in dynamical sampling
is when the initial spatial samples are insufficient to fully recover the signal, which
requires compensating for this lack of information by sampling the signal at the
same spatial locations but at different times. In other words, rather than having a
large number of sensors that are activated only once, we activate a smaller number
of sensors multiple times. This approach is particularly significant when the cost of
sensors is substantial

The problem of dynamical sampling can be equivalently stated as the problem of
determining when the orbit of a function through a bounded operator in a Hilbert
space forms a frame. A surprising result is that this occurs if and only if the op-
erator is similar to the compression of the shift in a model subspace of the Hardy
space in the unit disk [12]. Lately, there has been a great interest in this approach,
and researchers have also explored the scenario involving multiple orbits. The gen-
eralization to multiple functions requires consideration of model subspaces in Hardy
spaces with multiplicity, as described in [11]. Beurling, Halmos, Helson, Lax and
Lowdenslager, among others, have characterized model spaces in these different con-
texts for both forward and bilateral iterations of the shift operator.

When considering the iterations of two commuting operators, the model space
that arises is the orthogonal complement in the space L2(T, H2

K) of a subspace that
is reducing by the bilateral shift and invariant by the unilateral shift acting locally
in the Hardy space H2

K. Despite their importance, these subspaces have not been
previously characterized. The contribution of this paper is the characterization of
subspaces that are both invariant and reducing for the shifts involved.

The general setting of two commuting operators acting in a Hilbert space H
includes the case where H is an integer translation invariant subspace of L2(R),
one operator is the translation by the integer 1 and the other is a shift-preserving
operator that is iterated forward. These subspaces play a crucial role in various
applications as sampling, wavelet and approximation theory.

1.2. Notation. In order to state our results in more detail we need to introduce
some notation and known facts Along this paper, all the Hilbert spaces considered
will be complex and separable. In particular the letters K and H will always denote
Hilbert spaces.

For Hilbert spaces H and K, we will denote by B(H,K) the set of linear bounded
operators from H into K and B(H) := B(H,H). We will write N0 := N ∪ {0} and
T := {z ∈ C : |z| = 1}. If E is a measurable subset of T, we will denote by |E| its
Lebesgue measure normalized such that |T| = 1. We will use the symbol ⊕ to denote
the orthogonal sum of subspaces. For N ,M closed subspaces of H, we will use N ⊥

to denote the orthogonal complement of N in H, M ⊖ N = M ∩ N ⊥, and PN will
denote the orthogonal projection of H onto N . Finally, we will write N ≃Φ M if
N and M are isomorphic through a bounded operator Φ.
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1.3. Spaces of vector-valued functions. A vector-valued (or K-valued) function
f : T → K is said to be measurable if for each x ∈ K, the complex-valued function
λ 7→ 〈f(λ), x〉K is measurable on T.

The space L2(T,K) is the Hilbert space of all measurable K-valued functions f
such that

∫
T

‖f(λ)‖2
K dλ < ∞, endowed with the inner product

〈f, g〉 =

∫

T

〈f(λ), g(λ)〉K dλ, f, g ∈ L2(T,K).

Given an orthonormal basis B = {εi}i∈I of K (where #I = dim(K)), we can write

f(λ) =
∑

i∈I

〈f(λ), εi〉K εi, a.e. λ ∈ T.

Let us call fi := 〈f(·), εi〉K the coordinate functions of f respect to the basis B. It can
be seen that fi belongs to L2(T) for every i ∈ I. Indeed, fi : T → C is measurable
since so is f : T → K. On the other hand, |〈f(λ), εi〉K| ≤ ‖f(λ)‖K‖εi‖K = ‖f(λ)‖K

a.e. λ ∈ T and thus we have that

‖fi‖
2
L2(T) =

∫

T

|fi(λ)|2 dλ =

∫

T

|〈f(λ), εi〉K|2 dλ ≤
∫

T

‖f(λ)‖2
K dz = ‖f‖ < ∞.

The Hardy space H2 will be the subspace of L2(T) consisting of all f ∈ L2(T)
whose Fourier coefficients vanish for n < 0, i.e.,

H2 :=

{
f ∈ L2(T) :

∫

T

f(z)z−n dz = 0 for n < 0

}
.

The Hardy space with multiplicity is denoted by H2
K := H2(T,K). It is the closed

subspace of L2(T,K) consisting of all functions f ∈ L2(T,K) whose coordinate
functions fi respect to any orthonormal basis of K belong to the Hardy space H2.
Equivalently, H2

K is the subspace of functions in L2(T,K) with zero negative Fourier
coefficients, where these latter are defined in a weak sense (for details see [19, page
48]).

In this paper we will consider operators acting on the Hilbert space L2(T, H2
K),

that is, measurable functions defined in the circle T, and having values in the space
H2

K. Since there are two variables involved we will stablish the following convention:
we will use the letter λ for the variable of functions in L2(T,H) for any Hilbert
space H and z for the variable of functions in H2

K. So, for f ∈ L2(T, H2
K), f(λ) ∈

H2
K and f(λ)(z) ∈ K for a.e. λ, z ∈ T.

1.4. Shift-operators. First, let us define two operators which will play a crucial
role in this paper: the bilateral and the unilateral shifts.

Definition 1.1. The operator U : L2(T,K) → L2(T,K) defined by

(Uf)(λ) = λf(λ), a.e. λ ∈ T, f ∈ L2(T,K),

is called the bilateral shift on L2(T,K) with multiplicity α = dim(K).

Observe that U is unitary and its adjoint operator is given by (U∗f)(λ) = λf(λ),
for a.e. λ ∈ T and f ∈ L2(T,K).

Definition 1.2. The operator S : H2
K → H2

K given by the restriction of U to H2
K is

called the unilateral shift on H2
K with multiplicity α = dim(K).
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Since H2
K is invariant under U which is unitary, then the operator S is an isometry.

When K = C, we have that L2(T,K) = L2(T) and H2
K = H2, hence the definitions

above apply to those spaces accordingly, being the multiplicity α = 1.
In the next definition, we will introduce an operator on L2(T, H2

K) which acts
pointwise as an unilateral shift operator.

Definition 1.3. The operator Ŝ : L2(T, H2
K) → L2(T, H2

K) is defined by

(Ŝf)(λ) = S(f(λ)), a.e. λ ∈ T, f ∈ L2(T, H2
K),

where S is the unilateral shift operator on H2
K. More precisely, for f ∈ L2(T, H2

K)
and for a.e. λ, z ∈ T

(Ŝf)(λ)(z) = S(f(λ))(z) = zf(λ)(z).

The choice of notation Ŝ will be clear in Subsection 2 (cf. Remark 2.11). An

easy computation shows that Ŝ and U , the bilateral shift on L2(T, H2
K), commute.

Moreover, Ŝ is an isometry. A subspace of L2(T, H2
K) that is reducing for U and Ŝ

will be called a full-Hardy space, see Subsection 3.1.
There is a natural way to construct an orthonormal basis of L2(T,K) or H2

K
starting from an orthonormal basis B = {εi}i∈I of K. Since K can be thought as
a subspace of L2(T,K) (the constant K-valued functions), we will make an abuse
of notation by considering {εi}i∈I ⊂ L2(T,K) as the constant functions with values
forming an orthonormal basis of K. Then, it is easy to see that {Ukεi : k ∈ Z, i ∈ I}
is an orthonormal basis of L2(T,K). Analogously, the system {Sjεi : j ∈ N0, i ∈ I}
is an orthonormal basis of H2

K.

1.5. Main results. We are now ready to state our main results.
The first one is the characterization of subspaces of L2(T, H2

K) reducing for U and

invariant under Ŝ.

Theorem 1.4. Let M ⊆ L2(T, H2
K) be a closed subspace. The following statements

are equivalent:

i) M is reducing for U and invariant under Ŝ.
ii) There exists a full-Hardy subspace W ⊆ L2(T, H2

K) and a partial isometry
Φ : L2(T, H2

K) → L2(T, H2
K) with initial space W that commutes with U and

Ŝ such that W ≃Φ M.

Our second result gives the uniqueness of the characterization up to an isometry
that commutes with U and Ŝ.

Theorem 1.5. Let W1,W2 ⊆ L2(T, H2
K) be two full-Hardy spaces and Φ1,Φ2 :

L2(T, H2
K) → L2(T, H2

K) two partial isometries with initial spaces W1 and W2, re-

spectively. Suppose that Φ1 and Φ2 commute with U and Ŝ, and that Φ1(W1) =
Φ2(W2). Then, there exists a partial isometry Ψ : L2(T, H2

K) → L2(T, H2
K) with ini-

tial space W2 that commutes with U and Ŝ such that Ψ(W2) = W1 and Φ2 = Φ1Ψ.

To state our theorem on the characterization of subspaces of L2(T, H2
K) that

simultaneously reduce U and Ŝ we need more notation, this is given in Section 3.1.
We want to remark here that our results hold in the more general setting of

multiplicative-invariant spaces [20, 9], where the circle T with the normalized Lebesgue
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measure is replaced by a general finite measure space (X,µ). In particular, this in-
cludes the multivariable case of L2(Td, H2

K). See Subsection 3.4. We stick here with
the circle T for simplicity in the treatment.

About Theorem 1.4: The proof of this theorem uses fiberization techniques, a
standard tool for reducing subspaces of L2(T,K). Informally, a subspace M of
L2(T, H2

K) that reduces U can be described, using a result of Helson, by a measurable
range function, that is, a family of subspaces of H2

K indexed by T, say {JM(λ) ⊆
H2

K : λ ∈ T}, ‘measurable’ in a sense that will be defined later. On the other hand,

the invariance of M under Ŝ implies that each fiber space JM(λ) is invariant under
the unilateral shift in H2

K for almost every λ.
The fiberization technique consists in solving the problem in almost each fiber

space JM(λ) and transferring the results back to the main space, in our case, from
{JM(λ)}λ to M. Thus, one can think that by applying the Beurling-Lax-Halmos
Theorem to JM(λ) for almost each λ ∈ T we can deduce the desired characterization.
However, this strategy does not work since measurability issues come up and it
does not seem possible to solve it within this context. Instead, our approach is
to construct carefully the needed isometries, step by step, taking into account the
measurability property.

The organization of the paper is as follows. In Section 2 we state classical re-
sults on the characterization of invariant and reducing subspaces of L2(T,K) by the
bilateral shift U and the invariant subspaces of H2

K by the unilateral shift S. In
particular, we review the theory of range fuctions and list some of their properties,
since is one of the main tools for our characterization. Section 3 is devoted to the
proof of our main results. In particular, in Subsection 3.1 we characterize the spaces
reducing for U and Ŝ, the full-Hardy spaces. The proof of the characterization the-
orem for subspaces reducing for U and invariant under Ŝ is in Subsection 3.2 and
in Subsection 3.3 we prove the uniqueness of the characterization.

2. Invariant subspaces

In this section we will state some well known results on invariant subspaces. For
further details, we refer the reader to [19, 13].

Let H be a Hilbert space, A ∈ B(H) and M ⊆ H a closed subspace. The
subspace M is invariant for A (or A-invariant) if A(M) ⊆ M. Furthermore, M is
reducing for A (or M reduces A) if M and M⊥ are invariant under A. The condition
A(M⊥) ⊆ M⊥ is equivalent to A∗(M) ⊆ M, where A∗ denotes the adjoint operator
of A. Hence, M is reducing for A if and only if M is invariant under A and A∗.

2.1. Wandering subspaces. Given a Hilbert space H and an operator A ∈ B(H),
a wandering subspace R ⊆ H for A is a subspace such that R ⊥ Aj(R) for every

j ≥ 1. When A is an isometry, this latter condition is equivalent to Aj(R) ⊥ Aj′

(R)
for every j ≥ 0 and j 6= j′.

The wandering subspaces are related to the invariant subspaces for A as fol-
lows: Each wandering subspace R produces an invariant subspace for A of the form
MR =

⊕∞
j=0A

j(R) ⊆ H. In fact, the correspondence R 7→ MR between wandering
subspaces and invariant subspaces for A is one-to-one, since R = MR ⊖A(MR).
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On the other hand, given an invariant subspace M ⊆ H for A, the subspace
R = M ⊖A(M) is a wandering subspace for A and the equation below holds

(1) M =
∞⊕

j=0

Aj(R) ⊕
∞⋂

j=0

Aj(M).

We say that A is a pure isometry if
⋂∞

j=0A
j(H) = {0}. For this type of operators,

the decomposition in (1) reduces to the following.

Lemma 2.1. Let H be a Hilbert space and A ∈ B(H) a pure isometry. Then if
M ⊆ H is an invariant subspace for A, we have that

(2) M =
∞⊕

j=0

Aj(R),

where R = M ⊖A(M) is the unique wandering subspace for A that satisfies (2).

Proof. Observe that
⋂∞

j=0A
j(M) ⊆

⋂∞
j=0A

j(H) = {0}, and so from (1) we de-
duce (2). �

Lemma 2.2. For i = 1, 2, let Hi be a Hilbert space and let Mi ⊆ Hi be an invariant
subspace for the pure isometry Ai ∈ B(Hi), with associated wandering subspace
Ri. Then, if Φ : H1 → H2 is an isometry such that ΦA1 = A2Φ, we have that
M1 ≃Φ M2 if and only if R1 ≃Φ R2.

Proof. Observe that

(3) Φ(M1) = Φ(
∞⊕

j=0

Aj
1(R1)) =

∞⊕

j=0

Aj
2Φ(R1).

If Φ(M1) = M2, by uniqueness of the wandering subspace for A2 associated to M2,
we get that Φ(R1) = R2. Conversely, if Φ(R1) = R2, from (3) we easily see that
Φ(M1) = M2. �

It can be easily seen that the unilateral shift S is a pure isometry and moreover,
the following lemma holds. The proof can be found in [15, Lemma 4] (see also [19,
Lemma 3.24]).

Lemma 2.3. Let K be a Hilbert space and let M ⊆ H2
K be a closed subspace which

is invariant under S. Then, the wandering subspace R = M ⊖ SM ⊆ H2
K satisfies

that dim(R) ≤ dim(K).

2.2. Reducing subspaces for the bilateral shift of L2(T,K). In this subsection,
we will focus on the reducing subspaces for the bilateral shift U of Definition 1.1
acting on L2(T,K). These subspaces were completely characterized by Helson [16]
in terms of range functions.

A range function J in K is a mapping

J : T → {closed subspaces of K}.

The range function J is measurable if λ 7→ 〈PJ(λ)x, y〉 is a measurable complex-
valued function for each x, y ∈ K, where PJ(λ) denotes the orthogonal projection of
K onto J(λ).

The characterization theorem proved in [16] was later extended by Bownik and
Ross in [9, Theorem 2.4], as we will state it. We remark that the subspaces of
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L2(T,K) which are reducing for U are multiplication invariant subspaces of L2(T,K)
as defined in [9, Definition 2.3], see also Definition 3.13.

Theorem 2.4. A closed subspace M ⊆ L2(T,K) is reducing for U if and only if
there exists a measurable range function J such that

M = {f ∈ L2(T,K) : f(λ) ∈ J(λ) a.e λ ∈ T}.

Identifying range functions which are equal almost everywhere, the correspondence
between reducing subspaces for U and measurable range functions is one-to-one and
onto.

Moreover, if M is generated by iterations of U on an (at most) countable set of
functions A ⊆ L2(T,K), i.e. M = span{Ukf : f ∈ A, k ∈ Z}, then, the measurable
range function associated to M is given by J(λ) = span{f(λ) : f ∈ A}, for a.e.
λ ∈ T.

Since L2(T,K) is a separable Hilbert space, every closed subspace M ⊆ L2(T,K)
reducing for U admits an at most countable set of generators A ⊂ L2(T,K) in the
above sense.

Observe that for the particular case of K = C, since its closed subspaces are C

or {0}, a range function J in C must be of the form J(λ) = XE(λ)C for a.e. λ ∈ T,
where E is a measurable set in T and χE denotes its characteristic function. Hence,
Theorem 2.4 implies that the reducing subspaces for U of L2(T) are the ones that
can be written as

M = {f ∈ L2(T) : f = 0 a.e. T \ E} = XEL
2(T).

Given that the reducing subspaces for U of L2(T,K) can be characterized through
the associated range function, many properties of these spaces can be understood
through the pointwise properties of the range function (as long as they are satisfied
uniformly) as we see below. From now on, we will use the notation JM when the
range function is associated to a reducing subspace M.

Lemma 2.5. The following statements hold.

i) Let M be a reducing subspace for U in L2(T,K) with range function JM.
Then, the range function of M⊥ is given by λ 7→ (JM(λ))⊥, for a.e. λ ∈ T.

ii) Let {Mn}n∈I be an at most countable sequence of pairwise orthogonal re-
ducing subspaces for U in L2(T,K) with range functions {JMn

}n∈I . Then,⊕
n∈I Mn is reducing for U and its range function is given by λ 7→

⊕
n∈I JMn

(λ),
for a.e. λ ∈ T.

The proof of the above lemma is a consequence of the results in [9].
Since the range function JM(λ) can be the subspace {0} for some values of λ ∈ T,

we define the spectrum of M as the measurable set

(4) σ(M) = {λ ∈ T : JM(λ) 6= {0}} .

Even more, the dimension of JM(λ) as a subspace of K may vary with λ ∈ T. Thus,
it is often convenient to analyze the subsets of T where this dimension is constant.
The following lemma shows that given a closed subspace M ⊆ L2(T,K) reducing for
U with measurable range function JM, there exists a measurable partition of T into
sets where dim(JM(λ)) is constant and explicitly provides a measurable orthonormal
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basis of JM(λ) which holds a.e. over each of these sets. This result is a consequence
of [9, Theorem 2.6] and the proof can be easily extended from [1, Lemma 2.9].

Lemma 2.6. Let M ⊆ L2(T,K) be a reducing subspace for U with range function
JM. For each n ∈ N0 ∪ {∞} define the sets An = {λ ∈ T : dim(JM(λ)) = n}.
Then, {An}n is a family of disjoint measurable sets such that T =

⋃
n∈N0∪{∞}An

and there exist functions {φi}i∈N ⊂ L∞(T,K) for which the following statements
hold:

i) {Ukφi : i ∈ N, k ∈ Z} is a Parseval frame of M.
ii) For every n ∈ N and i > n, φi(λ) = 0 a.e. λ ∈ An.
iii) For every n ∈ N, {φ1(λ), ..., φn(λ)} is an orthonormal basis of JM(λ) a.e.

λ ∈ An, and {φi(λ)}i∈N is an orthonormal basis of JM(λ) a.e. λ ∈ A∞.

Remark 2.7. Observe that if dim(JM(λ)) ≤ k for a.e. λ ∈ T, then |An| = 0 for
every n > k and thus φi ≡ 0 for every i > k. Therefore, in this case, we can assume
that the partition {An}n of T and the functions {φi}i are finitely many (as many as
k or less).

2.3. Invariant subspaces for the unilateral shift of H2
K. Now, we turn to the

invariant spaces for the unilateral shift S of Definition 1.2 acting on H2
K. We begin

by considering the case of multiplicity 1, i.e. taking K = C. In this case, the
invariant subspaces for S were characterized by Beurling [7]. A simplified version of
the proof can be found in [19, Corollary 3.11].

Definition 2.8. A function h ∈ H2 is said to be inner if |h(z)| = 1 a.e. z ∈ T.

Theorem 2.9. (Beurling’s Theorem). A closed subspace M ⊆ H2 is invariant
under S if and only if there exists an inner function h ∈ H2 such that M = hH2.
Furthermore, it holds that h1H

2 = h2H
2 with h1, h2 inner functions if and only if

h1/h2 is a constant a.e. λ ∈ T.

An extension of Beurling’s theorem (Theorem 2.9) to multiplicities greater than
1 was provided by Lax [18], for the case of finite multiplicity, and by Halmos [15] in
the general case. We will refer to this extension as Beurling-Lax-Halmos Theorem.
The latter shows that the closed subspaces of H2

K which are invariant under S can
be characterized through the theory of operator-valued functions.

Before stating it, let us give some definitions and preliminary results. An operator-
valued function in K is a function F : T → B(K). The function F is said to be
measurable if for every x ∈ K, the K-valued function λ 7→ F (λ)x is measurable. Note
that the measurablity of a range function J in K is equivalent to the measurability
of the operator-valued function in K given by λ 7→ PJ(λ).

For an operator-valued function in K, F : T → B(K), its norm is defined as
‖F‖∞ = ess supλ∈T‖F (λ)‖op.

Definition 2.10. Let F : T → B(K) be a measurable operator-valued function in

K such that ‖F‖∞ < ∞. We denote by F̂ : L2(T,K) → L2(T,K) the operator given
by

(F̂ f)(λ) = F (λ)f(λ), a.e. λ ∈ T, f ∈ L2(T,K),

As ‖F‖∞ < ∞, it can be easily seen that F̂ is well-defined and bounded.
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Remark 2.11. The operator Ŝ : L2(T, H2
K) → L2(T, H2

K) in Definition 1.3 is, in
fact, the operator associated to the constant operator-valued function λ 7→ S, where
S : H2

K → H2
K is the unilateral shift operator on H2

K.

Let us denote by F the class of all measurable functions F : T → B(K) such that

‖F‖∞ < ∞ and F̂ = {F̂ : F ∈ F}.

In [19, Theorem 3.17] it is shown that the mapping F → F̂ defined by F 7→ F̂ is

an adjoint-preserving algebra isomorphism. In particular, F̂ is normal (self-adjoint,
unitary or a projection), if and only if F (λ) is normal (self-adjoint, unitary or a
projection) for a.e. λ ∈ T.

An operator-valued function F ∈ F is analytic if F̂ (H2
K) ⊆ H2

K. We will denote
by F0 the set of all analytic elements of F .

Beurling-Lax-Halmos Theorem shows that any closed subspace of H2
K that is

invariant under S is isometrically isomorphic to a space of the form H2
K1

where
K1 ⊆ K is a closed subspace, through an operator that is associated to an analytic
operator-valued function. We refer the reader to [19, Corollary 3.26] for a proof.

Theorem 2.12. (Beurling-Lax-Halmos Theorem) A closed subspace M ⊆ H2
K is

invariant under S if and only if there exists a subspace K1 ⊆ K and an operator-
valued function F ∈ F0 such that

M = F̂ (H2
K1

),

where F (z) is a partial isometry with initial space K1 for a.e. z ∈ T.

In the rest of this section, we state some results regarding operator-valued func-
tions that we will need later. The following proposition shows that every operator
that commutes with U or S must belong to the class F̂ .

Proposition 2.13. [19, Corollary 3.19 and 3.20] Given a Hilbert space K, let U
and S be the bilateral and unilateral shifts acting on L2(T,K) and H2

K respectively.
Then, the following conditions hold:

i) The commutant of U is F̂ .

ii) The commutant of S is {F̂ |H2
K

: F ∈ F0}.

Lemma 2.14. Let F : T → B(K) be an operator-valued function in F , let A = F̂ ,
and let M ⊆ L2(T,K) be a reducing subspace for U with range function JM. Then
the following statements hold:

i) The subspace A(M) ⊆ L2(T,K) is reducing for U and its range function is

given by λ 7→ F (λ)(JM(λ)), for a.e. λ ∈ T.
ii) The subspace ker(A) ⊆ L2(T,K) is reducing for U and its range function is

given by λ 7→ ker(F (λ)), for a.e. λ ∈ T.
iii) A is a partial isometry with initial space M if and only if F (λ) is a partial

isometry with initial space JM(λ) for a.e. λ ∈ T.

iv) The subspace R = M ⊖A(M) is also reducing for U and its range function
is given by λ 7→ JM(λ) ⊖ F (JM(λ)), for a.e. λ ∈ T.

The proofs of items i)-iii) of the lemma above can be found in [8, Theorem 4.1 and
Lemma 4.2] in the context of multiplication invariant operators and range operators
as defined in Definition 3.2 and Definition 3.6 in [8], see also Subsection 3.4. Item
iv) can be easily deduced from i) and Lemma 2.5.
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3. Invariant subspaces of L2(T, H2
K)

In this section we will prove our main result, i.e. the characterization of the closed
subspaces of L2(T, H2

K) which are reducing for the bilateral shift U : L2(T, H2
K) →

L2(T, H2
K) and invariant under Ŝ : L2(T, H2

K) → L2(T, H2
K) (see Definition 1.1 and

Definition 1.3, respectively).
By Theorem 2.4, we know that given a closed subspace M ⊆ L2(T, H2

K) reducing
for U , there exists a measurable range function JM in H2

K associated to M. The

invariance of M by Ŝ is equivalent to the invariance for the unilateral shift S on
H2

K of JM(λ) for a.e. λ ∈ T as we show next.

Lemma 3.1. Let M ⊆ L2(T, H2
K) be a reducing subspace for U with range function

JM in H2
K. Then, M is invariant under Ŝ if and only if JM(λ) is invariant under

S a.e. λ ∈ T.

Proof. Let A ⊂ L2(T, H2
K) be an at most countable set of generators for M, that is,

M = span{Ukf : f ∈ A, k ∈ Z}. Theorem 2.4 states that for a.e. λ ∈ T

JM(λ) = span{f(λ) : f ∈ A}.

If M is invariant under Ŝ, then for every f ∈ A we have that Ŝf ∈ M. Then
(Ŝf)(λ) = S(f(λ)) ∈ JM(λ) for a.e. λ ∈ T. Finally, by linearity and continuity of
S,

S(JM(λ)) ⊆ span{S(f(λ)) : f ∈ A} ⊆ JM(λ)

for a.e. λ ∈ T. The converse is clear. �

Having in mind Lemma 3.1, it appears that we may derive a description of the
closed subspaces M ⊆ L2(T, H2

K) which are reducing for U and invariant under

Ŝ by an application of the Beurling-Lax-Halmos Theorem (Theorem 2.12) to each
subspace JM(λ) ⊆ H2

K for a.e. λ ∈ T. However, this approach is not as simple
since, for a.e. λ ∈ T, one would have a different operator-valued function Fλ : T →
B(K) and a different initial space Kλ ⊆ K. A characterization for M, require the
measurability of the functions λ → Fλ and λ → Kλ plus certain uniformity. In
order to fulfill this requirements our strategy is to construct these functions step by
step using the properties of U and Ŝ.

Remark 3.2.

i) Observe that since S is a pure isometry, so is Ŝ. Now, let M ⊆ L2(T, H2
K) be a

subspace reducing for U and invariant under Ŝ. Then, R = M⊖ ŜM is a wandering
subspace for Ŝ and by Lemma 2.1 we have that

M =
∞⊕

j=0

Ŝj(R).

Moreover, item iv) of Lemma 2.14 shows that R is reducing for U . In fact, its range
function JR produces the wandering subspaces for S associated to JM(λ) for a.e.
λ ∈ T. Hence, by ii) in Lemma 2.5

(5) JM(λ) =
∞⊕

j=0

Sj(JR(λ))

and dim(JR(λ)) ≤ dim(K) for a.e. λ ∈ T (see Lemma 2.3).
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ii) For i = 1, 2, let Mi ⊆ L2(T, H2
K) be an invariant subspace for Ŝ and Ri the

wandering subspace for Ŝ associated to Mi. Assume that there exists an isometry
Φ : L2(T, H2

K) → L2(T, H2
K) such that Φ commutes with Ŝ and U and M1 ≃Φ M2.

Then, by Lemma 2.2, we have that R1 ≃Φ R2. Now, as Φ commutes with U , by
Proposition 2.13, Φ ∈ F̂ , that is, Φ = F̂ for F : T → B(H2

K) an operator-valued
function in the class F . Moreover, using Lemma 2.14 we get that F (λ) is an isometry
such that JR1(λ) ≃F (λ) JR2(λ) for a.e. λ ∈ T.

3.1. Full-Hardy spaces. In order to understand the structure of spaces that are
reducing for U and invariant under Ŝ, we first study a subclass of them, the full-
Hardy spaces. As we will see, these are precisely the spaces that are reducing for
both, U and Ŝ. To give a proper definition, we need the following lemma.

Lemma 3.3. The following statements hold:

i) If K1 is a closed subspace of K, then for each f ∈ H2
K we have that

(PH2
K1

f)(z) = PK1(f(z)) for a.e. z ∈ T,

where PH2
K1

: H2
K → H2

K is the orthogonal projection of H2
K onto H2

K1
and

PK1 : K → K is the orthogonal projection of K onto K1.
ii) Let J be a range function on K. Then J is measurable if and only if the map

λ 7→ H2
J(λ) is a measurable range function in H2

K.

Proof. i) Let B1 = {εi}i∈I be an orthonormal basis of K1 (with #I = dim(K1)). Let
Q : H2

K → H2
K be defined by (Qf)(z) = PK1(f(z)) for a.e. z ∈ T, and f ∈ H2

K. In
order to see that Q is a well-defined operator, observe that the K-valued function
z 7→ PK(f(z)) belongs to H2

K. Indeed, by completing B1 to an orthonormal basis
of K, namely B, we have that the coordinate functions of f ∈ H2

K respect to the
basis B belong to H2 (in particular, fi = 〈f(·), εi〉K ∈ H2 for every i ∈ I). Since
PK(f(z)) =

∑
i∈I〈f(z), εi〉Kεi for a.e. z ∈ T, we have that PK(f(·)) ∈ H2

K.
Now, observe that Q2 = Q by computing, for a.e. z ∈ T and f ∈ H2

K,

(Q2f)(z) = (Q(Qf))(z) = PK1((Qf)(z)) = PK1(PK1(f(z)))

= P 2
K1

(f(z)) = PK1(f(z)) = (Qf)(z).

Moreover, we see that Q∗ = Q, as for every f, g ∈ H2
K:

〈Qf, g〉 =

∫

T

〈(Qf)(z), g(z)〉K dz =

∫

T

〈PK1(f(z)), g(z)〉K dz

=

∫

T

〈f(z), PK1(g(z))〉K dz =

∫

T

〈f(z), (Qg)(z)〉K dz = 〈f,Qg〉.

Consequently, we have that Q is an orthogonal projection. Even more, Q(H2
K) =

H2
K1

since (Qf)(z) ∈ K1 for a.e. z ∈ T and f ∈ H2
K and Qf = f for every f ∈ H2

K1
.

Hence, we deduce that Q = PH2
K1

, which proves statement i).
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ii) Let {εi}i∈I be an orthonormal basis of K (with #I = dim(K)). Then, the
system {Sjεi : j ∈ N0, i ∈ I} is an orthonormal basis of H2

K. Using i) we see that

〈PH2
J(λ)

Sjεi, S
j′

εi′〉 =

∫

T

〈(PH2
J(λ)

Sjεi)(z), (S
j′

εi′)(z)〉K dz

=

∫

T

〈PJ(λ)(z
jεi), z

j′

εi′〉K dz

= 〈PJ(λ)εi, εi′〉K

∫

T

zj−j′

dz

= δj,j′〈PJ(λ)εi, εi′〉K.

From here, statement ii) follows immediately. �

Definition 3.4. Let J be a measurable range function in K. The full-Hardy sub-
space with base J is the unique closed subspace W ⊆ L2(T, H2

K) reducing for U
whose range function is given by λ 7→ H2

J(λ) for a.e. λ ∈ T.

This definition makes sense because, given J a measurable range function in K,
by Lemma 3.3, we know that λ 7→ H2

J(λ) is a measurable range function in H2
K.

Let us show some properties on these spaces.

Proposition 3.5. If W ⊆ L2(T, H2
K) is a full-Hardy subspace, then so is W⊥.

Proof. Assume that W is full-Hardy with base J , for J a measurable range function
in K. By i) in Lemma 2.5, we have that the measurable range function of W⊥

is given by λ 7→ (H2
J(λ))

⊥ for a.e. λ ∈ T. Now, since (H2
J(λ))

⊥ = H2
J(λ)⊥ , if we

denote by J⊥ the range function given by J⊥(λ) = (J(λ))⊥ for a.e. λ ∈ T (which
is measurable by means of ii) in Lemma 3.3), we have that W⊥ is the full-Hardy
subspace with base J⊥. �

Remark 3.6. Given any closed subspace K1 ⊆ K, we have that H2
K = H2

K1
⊕H2

K⊥

1
.

The fact that both components are invariant under S implies that H2
K1

is reducing
for S. Actually, these are the only reducing subspaces for S (see, for instance, [19,
Theorem 3.22]).

As we anticipated, full-Hardy spaces are those that are reducing for U and for Ŝ.
We prove this fact in the next theorem.

Theorem 3.7. Let W ⊆ L2(T, H2
K) be a closed subspace. Then, W is simultaneously

reducing for U and for Ŝ if and only if W is a full-Hardy subspace.

Proof. Let W be reducing for U and for Ŝ with range function JW in H2
K. By

Lemma 3.1 and i) in Lemma 2.5, we have that JW(λ) ⊆ H2
K is reducing for S for a.e.

λ ∈ T (since W and W⊥ are invariant under Ŝ, then JW(λ) and JW⊥(λ) = (JW(λ))⊥

are invariant under S a.e. λ ∈ T). As discussed in Remark 3.6, this implies that
JW(λ) = H2

Kλ
, where Kλ is a closed subspace of K for a.e. λ ∈ T. By ii) in Lemma

3.3, since JW : λ 7→ H2
Kλ

is measurable, then so is J : λ 7→ Kλ. We conclude that
W is full-Hardy with base J .

Conversely, if W is full-Hardy with base J , for J a measurable range function in
K, by Proposition 3.5 and Lemma 3.1, we have that W and W⊥ are clearly invariant
under Ŝ. Then, W is reducing for Ŝ. �
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Remark 3.8. Let J be a measurable range function in K, let W ⊆ L2(T, H2
K)

be a full-Hardy subspace with base J and let R be the wandering subspace for Ŝ
associated to W, that is R = W ⊖ ŜW. By Remark 3.2, we know that R is reducing
for U and that its range function is given by

JR(λ) = JW(λ) ⊖ S(JW(λ)) = H2
J(λ) ⊖ S(H2

J(λ)) = J(λ)

for a.e. λ ∈ T, where J(λ) ⊆ K ⊆ H2
K is understood as a subspace of H2

K of constant

functions. This implies that the wandering subspace for Ŝ associated to a full-Hardy
subspace can be seen as a subspace of L2(T,K) ⊆ L2(T, H2

K) reducing for U .

Combining this with ii) of Remark 3.2, we see that given two full-Hardy subspaces
W1,W2 with respective bases J1, J2 such that W1 ≃Φ W2, where Φ : L2(T, H2

K) →

L2(T, H2
K) is an isometry that commutes with Ŝ and U , then J1(λ) ≃ J2(λ) isomet-

rically for a.e. λ ∈ T.

3.2. Subspaces reducing for U and invariant under Ŝ. In Theorem 3.7 we
proved that full-Hardy subspaces are the only reducing subspaces for U that are
also reducing for Ŝ (in particular, invariant under Ŝ). Theorem 1.4 shows that

any other subspace reducing for U and invariant under Ŝ needs to be isometrically
isomorphic to a full-Hardy subspace.

3.2.1. Proof of Theorem 1.4.

Proof. i) ⇒ ii) We wish to find a full-Hardy subspace W ⊆ L2(T, H2
K) and a partial

isometry Φ : L2(T, H2
K) → L2(T, H2

K) with initial space W that commutes with

U and Ŝ such that W ≃Φ M. Notice that since Φ must commute with U , by
Proposition 2.13, Φ ∈ F̂ , that is, Φ = F̂ for F : T → B(H2

K) an operator-valued

function in the class F . Let R be the wandering subspace for Ŝ associated to M, i.e.
R = M ⊖ ŜM. From the discussions in item ii) of Remark 3.2 and Remark 3.8, we
deduce that the basis range function J of W should satisfy that J(λ) ≃F (λ) JR(λ)
for a.e. λ ∈ T.

Thus, the idea of the proof will be to construct first a measurable range function J
in K such that dim(J(λ)) = dim(JR(λ)) for a.e. λ ∈ T, and secondly, a measurable
operator-valued function F : T → B(H2

K) such that for a.e. λ ∈ T, F (λ) is a partial
isometry with initial space H2

J(λ) that commutes with S and satisfies that

(6) F (λ)(H2
J(λ)) = JM(λ).

Because the dimension of JR(λ) may vary with λ ∈ T, to pursue these constructions
we will consider the measurable sets {An}n∈N0∪{∞} and the functions {φi}i∈N ⊂

L∞(T, H2
K) provided by Lemma 2.6 applied to the subspace R.

Fix {εi}i∈I an orthonormal basis of K where I = {1, . . . , k} in case that dim(K) =
k ∈ N or I = N if dim(K) = ∞. For every n ∈ I, let us define the subspaces
Kn = span{ε1, . . . , εn} and K0 = {0}. We will construct the range function J in K
as follows:

J(λ) =

{
Kn if λ ∈ An, n ∈ I

K if λ ∈ A∞.

It is clear that J is measurable since it is constant on each measurable set An in the
partition of T. In addition, we have that dim(JR(λ)) = dim(J(λ)) for a.e. λ ∈ T by
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definition of J , because An = {λ ∈ T : dim(JR(λ)) = n}. We take W ⊆ L2(T, H2
K)

as the full-Hardy space with base J .
To construct F as in (6), we will proceed in the following way: for a.e. λ ∈ A0,

define F (λ) ≡ 0. Now, let us fix n ∈ N. Observe that from (5) we can deduce that,
for a.e. λ ∈ An, the system {Sjφi(λ) : i = 1, . . . , n, j ∈ N0} is an orthonormal
basis of JM(λ). On the other hand, for a.e. λ ∈ An, we have that {Sjεi : i =
1, . . . , n, j ∈ N0} is an orthonormal basis of H2

J(λ). Thus, for a.e. λ ∈ An, we define

F (λ) : H2
J(λ) → JM(λ) as

(7) F (λ)(Sjεi) = Sjφi(λ), i = 1, . . . , n, j ≥ 0,

extended by linearity to the whole H2
J(λ). For n = ∞, we proceed similarly because,

for a.e. λ ∈ A∞, the system {Sjφi(λ) : i ∈ N, j ∈ N0} is an orthonormal basis
of JM(λ), and {Sjεi : i ∈ N, j ∈ N0} is an orthonormal basis of H2

J(λ). Thus, we

define F (λ) as in (7) but for every i ∈ N.
Now, for a.e. λ ∈ T, we set F (λ)f = 0 for every f in (H2

J(λ))
⊥ ⊆ H2

K, getting that

the operator F (λ) : H2
K → H2

K is a partial isometry with initial space H2
J(λ) and

equation (6) holds. Finally, it is clear that F (λ) commutes with S for a.e. λ ∈ T.
Let us see that the operator-valued function F : T → B(H2

K) constructed above
belongs to the class F . Indeed, it satisfies that ‖F‖∞ < ∞ as ‖F (λ)‖op ≤ 1 for a.e.
λ ∈ T. To show that is measurable we need to see that the complex-valued function

(8) λ 7→ 〈F (λ)f, g〉H2
K

= 〈F (λ)PH2
J(λ)

f, g〉H2
K

is measurable for every f, g ∈ H2
K. Again, let us prove this over each set of the

measurable partition {An}n∈N0∪{∞} of T. On the set A0 it is clear that F (λ) ≡ 0 is

measurable. Now, fix n ∈ N. For a.e. λ ∈ An and for f ∈ H2
K, we have that

PH2
J(λ)

f =
∞∑

j=0

n∑

i=1

〈
f, Sjεi

〉
H2

K

Sjεi,

and therefore
〈
F (λ)PH2

J(λ)
f, g

〉
=

∞∑

j=0

n∑

i=1

〈
f, Sjεi

〉
H2

K

〈
F (λ)(Sjεi), g

〉
H2

K

=
∞∑

j=0

n∑

i=1

〈
f, Sjεi

〉
H2

K

〈
Sjφi(λ), g

〉
H2

K

.

Then, (8) is measurable for every f, g ∈ H2
K since so is

λ 7→
〈
Sjφi(λ), g

〉
H2

K

=
〈
(Ŝjφi)(λ), g

〉
H2

K

for every j ∈ N0 and i = 1, . . . , n.
If n = ∞, we proceed in the same way but taking into account that

PH2
J(λ)

f =
∞∑

j=0

∞∑

i=1

〈
f, Sjεi

〉
H2

K

Sjεi.

Let Φ : L2(T, H2
K) → L2(T, H2

K) be the function defined as Φ = F̂ (an thus
commuting with U). Since F (λ) commutes with S then it is easily seen that Φ
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commutes with Ŝ. Finally, by i) and iii) in Lemma 2.14, since F (λ) is an isometry
with initial space H2

J(λ) and (6) holds for a.e. λ ∈ T, we conclude that Φ is a partial

isometry with initial space W and Φ(W) = M.
ii) ⇒ i) Assuming that W is a full-Hardy space with base range function J , we

have that W is reducing for U and Ŝ (see Theorem 3.7). Then, as Φ commutes with

Ŝ and M = Φ(W) we get that

Ŝ(M) = ŜΦ(W) = ΦŜ(W) ⊆ Φ(W) = M,

that is, M is invariant under Ŝ. Analogously, it can be seen that M is reducing for
U given that Φ also commutes with U and U∗. �

The fact that the initial subspace of the partial isometry in Theorem 1.4 is full-
Hardy is a consequence of the commutation with U and Ŝ as the next proposition
shows.

Proposition 3.9. If Φ : L2(T,K) → L2(T,K) is a partial isometry that commutes

with U and Ŝ, then the initial space of Φ is full-Hardy.

Proof. We need the following property:
a) If T, V : H → H, T is an isometry and V a partial isometry that commutes

with T , then the initial space of V reduces T .
To prove a) set M the initial space of V and observe that if f ∈ M⊥ then

0 = TV f = V Tf implies that Tf ∈ Ker(V ) = M⊥. Thus M⊥ is invariant under
T . On the other hand, if f ∈ M then,

||V Tf || = ||TV f || = ||V f || = ||f || = ||Tf ||.

So, V preserves the norm of Tf which implies that Tf is in the initial space of V .
We conclude that M reduces T which ends the proof of a).

Now, let W ⊆ L2(T, H2
K) be the initial space of Φ. We apply a) twice. First to Φ

and U , from where we conclude that W reduces U . Second to Φ an Ŝ which gives
that W reduces Ŝ. Now, by Theorem 3.7 in this paper, W is full-Hardy. �

Taking K = C, we can deduce a characterization of the closed subspaces of
L2(T, H2) which are reducing for U and invariant under Ŝ, which bear a resem-
blance to Beurling’s Theorem (Theorem 2.9).

Corollary 3.10. Let M ⊆ L2(T, H2) be a closed subspace. The following state-
ments are equivalent:

i) M is reducing for U and invariant under Ŝ.
ii) There exists φ ∈ L2(T, H2) such that φ(λ) is an inner function for a.e.

λ ∈ σ(M) and M = φL2(T, H2), where σ(M) is defined in (4).

Proof. i) ⇒ ii) By taking K = C in Theorem 1.4, there exist a full-Hardy space
W ⊆ L2(T, H2) and Φ : L2(T, H2) → L2(T, H2) a partial isometry with initial

space W that commutes with U and Ŝ such that M = Φ(W).

First, observe that since Φ = F̂ , where F : T → B(H2) ∈ F is an operator-valued
function such that F (λ) is a partial isometry with initial space JW(λ) and (6) holds,
then JM(λ) and JW(λ) are isomporphic a.e. λ ∈ T (see items i) and iii) of Lemma
2.14). This implies that E := σ(M) = σ(W). Let J be the range function in C

for which JW(λ) = H2
J(λ) for a.e. λ ∈ T. We observe that the measurable range
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function J in C has the form J(λ) = XE(λ)C. Then, H2
J(λ) = XE(λ)H2 for a.e.

λ ∈ T, which implies that

W = {f ∈ L2(T, H2) : f(λ) ∈ XE(λ)H2} = XEL
2(T, H2).

Moreover, since F (λ) commutes with S, for a.e. λ ∈ T, there exists a function
hλ ∈ H∞ such that F (λ) = Mhλ

, where Mhλ
(f) = hλf for f ∈ H2 (see [19,

Theorem 3.4]). Further, as F (λ) is a partial isometry with initial space XE(λ)H2

for a.e. λ ∈ T, then hλ ≡ 0 for a.e. λ ∈ T \ E and, for a.e. λ ∈ E, it holds that
|hλ(z)| = 1 (that is, hλ is an inner function). Using the measurability of λ 7→ F (λ)
we get that λ 7→ hλ = F (λ)1 is an H2-valued measurable function. Hence, if we
define φ(λ) = hλ for a.e. λ ∈ T, we obtain that φ ∈ L2(T, H2). In fact, it can
be seen that Φ = Mφ, where Mφ(f) = φf for every f ∈ L2(T, H2). Indeed, for
f ∈ L2(T, H2) and for a.e. λ ∈ T,

(Φf)(λ) = F (λ)f(λ) = hλf(λ) = φ(λ)f(λ) = (φf)(λ) = (Mφ(f))(λ).

Consequently, M = Φ(W) = φXEL
2(T, H2) = φL2(T, H2).

ii)⇒ i) Assuming that M = φL2(T, H2) with φ ∈ L2(T, H2) such that φ(λ) is an
inner function for a.e. λ ∈ σ(M), then

Ŝ(M) = ŜφL2(T, H2) = φŜL2(T, H2) ⊆ φL2(T, H2) = M.

Analogously, it can be seen that UM ⊆ M and U∗M ⊆ M. �

We finish this section with a result that describes the range functions associated
to subspaces in L2(T, H2) of the form φL2(T, H2) for some φ ∈ L2(T, H2). In
particular this shows how are the range functions associated to subspaces that are
reducing for U and invariant for Ŝ.

Proposition 3.11. Let φ ∈ L2(T, H2). If M = φL2(T, H2), then the range func-
tion associated to M is given by

JM(λ) = φ(λ)H2 a.e. λ ∈ T.

Proof. Let J be the measurable range function given by J(λ) = φ(λ)H2 a.e. λ ∈ T

and let N be the subspace of L2(T, H2) whose range function is J . We will prove
that M = N .

For g ∈ L2(T, H2), we have that f := φg ∈ M. Then, since f(λ) = φ(λ)g(λ) ∈
φ(λ)H2 a.e. λ ∈ T, it holds that JM(λ) ⊆ φ(λ)H2 a.e. λ ∈ T and then M ⊆ N .

To prove that the other inclusion also holds, assume that there is f ∈ N such
that f ⊥ M. Notice that, since f(λ) ∈ φ(λ)H2 for a.e. λ ∈ T we can write
f(λ) = φ(λ)hλ for some hλ ∈ H2 for a.e λ ∈ T. Therefore, since φ ∈ M and, by
Lemma 2.5, f(λ) ∈ JM(λ)⊥ for a.e. λ ∈ T, we obtain that

0 = 〈φ(λ), f(λ)〉H2 = hλ‖φ(λ)‖2
H2

for a.e. λ ∈ T. Then, hλ = 0 for a.e λ ∈ supp (φ). Hence f(λ) = 0 for a.e. λ ∈ T

and thus f = 0 proving that M = N . �

3.3. Uniqueness. We will prove here the uniqueness of the characterizations in
Theorem 1.4 and Corollary 3.10.
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3.3.1. Proof of Theorem 1.5.

Proof. Let Ψ := (Φ1|W1)−1Φ2. This operator is well defined and bounded acting on
L2(T, H2

K) and satisfies that Ψ(W2) = W1 and Φ2 = Φ1Ψ. In fact, it is a partial
isometry with initial space W2. Indeed, for f ∈ W2, we have that ‖f‖ = ‖Φ2(f)‖ =
‖Φ1(Ψ(f))‖ = ‖Ψ(f)‖, and for f ∈ W⊥

2 , Ψ(f) = 0.

Let us see now that Ψ commute with U and Ŝ. Since Φ2 = Φ1Ψ and using the
commutativity of Φ1 and Φ2 with U , for every f ∈ L2(T, H2

K) we have

Φ2Uf = Φ1ΨUf and Φ2Uf = UΦ2f = UΦ1Ψf = Φ1UΨf.

So we conclude that Φ1ΨUf = Φ1UΨf . Now, if f ∈ W2 then UΨf and ΨUf belong
to W1 and, since Φ1 is one-to-one in W1, we have that ΨUf = UΨf. On the other
hand, if f ∈ W⊥

2 then UΨf = 0 = ΨUf because W2 is the initial space of Ψ and is

reducing for U . The proof for Ŝ is the same replacing U by Ŝ above. �

Theorem 3.12. Let φ1, φ2 ∈ L2(T, H2) be two functions such that φi(λ) is an inner
function for a.e. λ ∈ Ei := Suppφi for i = 1, 2 and φ1L

2(T, H2) = φ2L
2(T, H2).

Then, E1 = E2 := E and there exists a function ψ ∈ L2(T, H2) such that ψ(λ) is an
inner function for a.e. λ ∈ E and φ2 = ψφ1.

Proof. As φ1L
2(T, H2) = φ2L

2(T, H2), it is clear that E1 = E2 = E. Moreover, by
Proposition 3.11 for a.e. λ ∈ E, we have that

φ1(λ)H2 = φ2(λ)H2.

As for λ ∈ E, φ1(λ), φ2(λ) are inner functions, by Theorem 2.9, we obtain that for
a.e. λ ∈ E, φ1(λ)/φ2(λ) = cλ, where cλ ∈ C with |cλ| = 1.

Since φ1, φ2 are measurable functions, the function ψ : T → C, given by ψ(λ) = cλ

for λ ∈ E and ψ(λ) = 0 for λ ∈ T \ E, is measurable. Also ψ(λ) is inner for a.e.
λ ∈ E. �

3.4. Multiplication-invariant subspaces. In this section, we discuss how the
results we present in this paper can be stated with more generality, by replacing
the circle T with a σ-finite measure space (X,µ) for which L2(X) := L2(X,µ) is
separable. Given a Hilbert space K, we define L2(X,K) in the same manner as in
Subsection 1.3, where the vector-valued functions are defined on X.

Definition 3.13. Let M be a closed subspace of L2(X,K). We say that M is
multiplication invariant if for every f ∈ M and g ∈ L∞(X), it holds that fg ∈ M.

To see that this property holds, it suffices to check the multiplication invariance
over a subset of L∞(X) called determining set. A subset D of L∞(X) is said to be
a determining set for L1(X) if for every f ∈ L1(X), it holds that

∫

X
fg dµ = 0 ∀g ∈ D ⇒ f = 0.

For instance, when X = T and µ is the normalized Lebesgue measure, the system
{ξj}j∈Z is a determining set for L1(T) where ξ(λ) = λ, λ ∈ T. Observe, then, that
a subspace M ⊆ L2(T,K) is reducing for the bilateral shift U if it is multiplication
invariant, given that it is invariant with respect to the determining set {ξj}j∈Z.
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Definition 3.14. We say that an operator Φ : L2(X,K) → L2(X,K) is multipli-
cation invariant if it is bounded and for every φ ∈ L∞(X), Φ commutes with the
multiplication operator Mφ : L2(X,K) → L2(X,K), defined by Mφ(f) = φf for
f ∈ L2(X,K).

As before, if D is a determining subset for L1(X), to see that Φ is multiplication
invariant, it suffices to show that Φ commutes with Mφ for every φ ∈ D.

In the case of X = T, it is clear that a bounded operator Φ : L2(X,K) → L2(X,K)
is multiplication invariant if and only if Φ commutes with the bilateral shift U .

The proof of Theorem 1.4 is constructed over two main concepts. On the one
hand, the existence of a range function for the subspaces of L2(T,K) which are
reducing for U . This existence is assured by Theorem 2.4 that, as we mention
before, still holds in the general case of L2(X,K), see [9, Theorem 2.4], allowing the
ensuing results of Subsection 2.2 to be stated in the general setting. On the other
hand, the existence of an operator-valued function F : T → B(K) associated to an
operator in B(L2(T,K)) that commutes with U as stated in Proposition 2.13. This
result can be extended to the general setting by [8, Theorem 3.7] which shows that a
multiplication invariant operator Φ : L2(X,K) → L2(X,K) admits a range operator
[8, Definition 3.6].

Moreover, the concept of full-Hardy space that we introduced in Section 3.1 can
be stated in L2(X,H2

K). Therefore, we obtain the following version of Theorem 1.4
in L2(X,H2

K).

Theorem 3.15. Let M ⊆ L2(X,H2
K) be a closed subspace. The following state-

ments are equivalent:

i) M is mutiplication invariant and invariant under Ŝ.
ii) There exists a full-Hardy subspace W ⊆ L2(X,H2

K) and a partial isometry
Φ : L2(X,H2

K) → L2(X,H2
K) with initial space W, that is multiplication

invariant and commutes with Ŝ such that W ≃Φ M.
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”Luis Santaló” (IMAS-CONICET-UBA), Buenos Aires, Argentina

Email address: carlos.cabrelli@gmail.com

Faculty of Mathematics, University of Vienna, Vienna, Austria
Email address: diana.agustina.carbajal@univie.ac.at
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