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AN ALTERNATIVE DEFINITION OF TENSE OPERATORS ON

RESIDUATED LATTICES

ISMAEL CALOMINO, GUSTAVO PELAITAY, AND WILLIAM ZULUAGA BOTERO

Abstract. In this paper we introduce and study an alternative definition of
tense operators on residuated lattices. We give a categorical equivalence for
the class of tense residuated lattices, which is motivated by an old construction
due to J. Kalman. The paper concludes with some applications regarding the
description of congruences and a 2-contextual translation.

1. Introduction

Classical tense logic is a logical system obtained from introducing within the
classical propositional logic the notion of time, i.e., an expansion of propositional
logic by new unary operators which are called tense operators. It is customary to
denote these operators by G, H , F and P , and usually we define F and P via G
and H as F (x) = ¬G(¬x) and P (x) = ¬H(¬x), where ¬x denote the Boolean
negation of x. It is well known that the class of tense Boolean algebras provides
an algebraic semantics for classical tense logic [2]. A tense Boolean algebra is a
structure 〈B,G,H〉 such that B is a Boolean algebra and G and H are unary
operators on B satisfying the following conditions:

(TB1) G(1) = 1 and H(1) = 1,
(TB2) G(x ∧ y) = G(x) ∧G(y) and H(x ∧ y) = H(x) ∧H(y),
(TB3) x ≤ GP (x) and x ≤ HF (x).

Note that from conditions (TB1) and (TB2) it is the case that both operators G
and H are in fact, certain kind of modal operators, so the class of tense Boolean
algebras is, in particular, a class of Boolean algebras with operators. Such class of
alebras was studied in detail by Jónsson and Tarski in [22].

Tense operators in intuitionistic logic were introduced by Ewald in [15]. In
this paper it was established the corresponding intuitionistic tense logical system,
called IKt. The axiomatization of Ewald is not minimal and in contrast to classical
tense logic, the tense operators F and P cannot be defined in terms of G and H .
In [17], Figallo and Pelaitay gave an algebraic axiomatization of the IKt system
and showed that the algebraic axiomatization given by Chajda in [9] of the tense
operators P and F in intuitionistic logic is not in accordance with the Halmos
approach to existential operators [21]. Thereafter, the study of tense operators has
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been extended to different algebraic structures associated with non-classical logics
[10, 14, 8]. This can be evidenced by the approach applied in [17, 6], and also in
[29], in where a Kalman’s construction for the class of tense distributive lattices
with implication was studied.

Following the methodology proposed in [21, 9, 7, 1] and [28], the research on al-
gebraic properties of tense operators have been taken into the context of residuated
lattices. Motivated by the results presented in [17, 29], the aim of this paper is to
propose an alternative definition of tense operators on residuated lattices different
from the one presented in [1]. We also establish a categorical equivalence through
an adaptation of the Kalman’s construction developed in [29] and moreover, we
present some applications.

The paper is organized as follows. In Section 2 we review some results on in-
tegral commutative residuated distributive lattices, or ICRDL-algebras for short.
In Section 3 we present a definition of tense operators on ICRDL-algebras, unalike
from the one depicted in [1], and we prove a Glivenko style theorem for ICRDL-
algebras as a generalization of similar results for Heyting algebras. In Section 3.3,
and following the results given in [5, 4], we introduce the class of tense c-differential
residuated lattices, or tense DRL-algebras for short. In Section 4, we extend the
Kalman’s construction to establish a categorical equivalence between the category
of tense ICRDL-algebras and the category of tense DRL-algebras. In Section 5,
we prove that there is an isomorphism between the congruence lattice of a tense
ICRDL-algebra L and the congruence lattice of the tense ICRDL-algebra arising
from the Kalman functor K(L). Furthermore, as an application, we see that there
is a correspondence between tense filters of the classes of tense ICRDL-algebras
and tense DRL-algebras. Finally, in Section 6 we apply the results given in Sec-
tion 5 to obtain a nontrivial finite 2-contextual translation between the equational
consequence relations relative to tense DRL-algebras and tense ICRDL-algebras,
respectively. The reader is assumed to be familiar with standard results about
adjoint functors as presented in [25].

2. Preliminaries

In this section we recall some results that will be useful through this paper. For
more details on residuated lattices the reader can see [19].

Definition 1. [19] An integral commutative residuated distributive lattice, or ICRDL-
algebra for short, is a structure 〈L,∨,∧, ·,→, 0, 1〉 of type (2, 2, 2, 2, 0, 0)such that:

(R1) 〈L,∨,∧, 0, 1〉 is a bounded distributive lattice,
(R2) 〈L, ·, 1〉 is a commutative monoid,
(R3) x · y ≤ z if and only if x ≤ y → z, for all x, y, z ∈ L.

As usual, in what follows, we will denote ICRDL-algebras by their underlying set
L, when it is clear from the context.

Proposition 2. [19] Let L be a ICRDL-algebra. Then, the following hold:

(1) 1 → x = x,
(2) x · y ≤ x, y,
(3) y ≤ x→ y,
(4) x ≤ y if and only if x→ y = 1,
(5) x→ y ≤ (x · z) → (y · z),
(6) x ≤ y implies x · z ≤ y · z,
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(7) x ≤ y implies z → x ≤ z → y and y → z ≤ x→ z,
(8) x→ (y → z) = (x · y) → z,
(9) (x ∨ y) → z = (x→ z) ∧ (y → z).

We recall that in every ICRDL-algebra, we can define a unary operation ¬ as
¬x := x → 0. The subsequent proposition summarizes the properties of this
operation.

Proposition 3. Let L be a ICRDL-algebra. Then, the following hold:

(1) x ≤ y implies ¬y ≤ ¬x,
(2) x ≤ ¬¬x,
(3) ¬¬¬x = ¬x,
(4) ¬1 = 0 and ¬0 = 1,
(5) x · ¬x = 0,
(6) x→ y ≤ ¬y → ¬x,
(7) ¬(x ∨ y) = ¬(¬¬x ∨ ¬¬y) = ¬x ∧ ¬y,
(8) ¬¬(x ∧ y) = ¬¬x ∧ ¬¬y.

If L is a ICRDL-algebra, then the set of regular elements of L is Reg(L) =
{¬¬a : a ∈ A}. For any ⋆ ∈ {∨,∧, ·,→}, we consider the operation x ⋆r y :=
¬¬(x ⋆ y). So, the structure 〈Reg(L),∨r,∧r, ·r,→r, 0, 1〉 is a ICRDL-algebra. Note
that a →r b = a → b and a ∧r b = a ∧ b, for all a, b ∈ Reg(L). However, ∨r and
·r are different, in general, from ∨ and ·, respectively, and so Reg(L) may not be a
subalgebra of L. Nevertheless, from the results given in [13], in some cases Reg(L)
can be obtained as a homomorphic image of L.

Lemma 4. [13] Let L be a ICRDL-algebra. Then, the following are equivalent:

(1) The correspondence x 7→ ¬¬x is a homomorphism of L onto Reg(L),
(2) L satisfies the equation

¬¬(¬¬x → x) = 1.

Recall that a pseudocomplemented ICRDL-algebra is a ICRDL-algebra L that
satisfies the equation

x ∧ ¬x = 0.

Theorem 5. [12, 3] Let L be a ICRDL-algebra. Then L is pseudocomplemented if
and only if Reg(L) is a Boolean algebra.

3. Tense ICRDL-algebras

In this section, we present an alternative definition of tense operators in ICRDL-
algebras. We stress that such a definition differs from the one proposed by Barkhshi
in [1].

3.1. Definition and properties. In [29], tense operators were defined on Heyt-
ing algebras and distributive lattices with implication. Given that every Heyting
algebra is, in particular, an ICRDL-algebra, it is natural to provide the following
definition.

Definition 6. Let L be a ICRDL-algebra. Let G, H, F and P be unary operations
on L satisfying:

(T1) P (x) ≤ y if and only if x ≤ G(y),
(T2) F (x) ≤ y if and only if x ≤ H(y),
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(T3) G(0) = 0 and H(0) = 0,
(T4) G(x) · F (y) ≤ F (x · y) and H(x) · P (y) ≤ P (x · y),
(T5) G(x ∨ y) ≤ G(x) ∨ F (y) and H(x ∨ y) ≤ H(x) ∨ P (y),
(T6) G(x→ y) ≤ G(x) → G(y) and H(x→ y) ≤ H(x) → H(y).

An algebra L = 〈L,G,H, F, P 〉 will be called tense ICRDL-algebra and G,H, F and
P will be called tense operators.

Remark 7. Note that any tense Heyting algebra 〈A,G,H, F, P 〉 (refer to Definition
8.2 in [29]) is also a tense ICRDL-algebra.

In the following remarks, we can observe that Definition 6 and the one proposed
by Bakhshi in [1] are not necessarily related.

Remark 8. In [1], the author introduces tense operators in the class of residu-
ated lattices as follows: a structure 〈L,G,H〉 is a tense residuated lattice if L is a
residuated lattice, and G and H are unary operations on L satisfying

(TRL0) G(1) = 1 and H(1) = 1,
(TRL1) G(x→ y) ≤ G(x) → G(y) and H(x→ y) ≤ H(x) → H(y),
(TRL2) x ≤ GP (x) and x ≤ HF (x),

where F (x) = ¬G(¬x) and P (x) = ¬H(¬x). If we consider the following bounded
distributive lattice

b

0

a

c d

1

and the operations · = ∧,

→ 0 a b c d 1
0 1 1 1 1 1 1
a b 1 b 1 1 1
b d d 1 1 d 1
c 0 d b 1 d 1
d b c b c 1 1
1 0 a b c d 1

x 0 a b c d 1
G(x) 0 a 0 c d 1
H(x) 0 0 b c 0 1
F (x) 0 c b c 1 1
P (x) 0 a b c d 1

then it is easy to check that 〈L,G,H, F, P 〉 is a tense ICRDL-algebra. However, it
is not a tense residuated lattice in the sense of [1] since

F (a) = c 6= 1 = ¬G(¬a),

and

P (c) = c 6= 1 = ¬H(¬c).

Remark 9. Consider the chain of four elements L = {0, a, b, 1}, where 0 < a <
b < 1, along with the binary operations · and → defined by the following tables:
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. 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

We define the tense operators G and H as G(x) = H(x) = 1 for all x ∈ {0, a, b, 1}.
Then the structure 〈L,G,H〉 is a tense residuated lattice in the sense of [1], but it
is not a tense ICRDL-algebra since H(0) = 1 6= 0 and G(0) = 1 6= 0.

The following proposition can be proved in a similar fashion to Proposition 3.1
in [29], so we leave the details to the reader.

Proposition 10. Let L be a tense ICRDL-algebra. Then:

(T7) G(x→ y) ≤ F (x) → F (y) and H(x→ y) ≤ P (x) → P (y),
(T8) G(1) = 1 and H(1) = 1,
(T9) G(x ∧ y) = G(x) ∧G(y) and H(x ∧ y) = H(x) ∧H(y),

(T10) x ≤ GP (x) and x ≤ HF (x),
(T11) F (0) = 0 and P (0) = 0,
(T12) F (x ∨ y) = F (x) ∨ F (y) and P (x ∨ y) = P (x) ∨ P (y),
(T13) FH(x) ≤ x and PG(x) ≤ x,
(T14) x ≤ y implies G(x) ≤ G(y) and H(x) ≤ H(y),
(T15) x ≤ y implies F (x) ≤ F (y) and P (x) ≤ P (y),
(T16) x · F (y) ≤ F (P (x) · y) and x · P (y) ≤ P (F (x) · y),
(T17) F (x) · y = 0 if and only if x · P (y) = 0,
(T18) G(x ∨H(y)) ≤ G(x) ∨ y and H(x ∨G(y)) ≤ H(x) ∨ y,
(T19) x ∨H(y) = 1 if and only if G(x) ∨ y = 1.

The following result was proved for Heyting algebras in [18]. We now present its
version for ICRDL-algebras.

Lemma 11. Let G and H be two unary operators on a ICRDL-algebra L such that
G and H satisfy (T14). Then (T6) is equivalent to

(T6’) G(x) ·G(y) ≤ G(x · y) and H(x) ·H(y) ≤ H(x · y).

Proof. Let a, b ∈ L and suppose that (T6’) is true. Then

G(a) ·G(a → b) ≤ G(a · (a→ b)) ≤ G(b).

So, G(a → b) ≤ G(a) → G(b). Reciprocally, if we suppose that (T6) is true, then
we have G(a) ≤ G(b → (a · b)) ≤ G(b) → G(a · b) and G(a) · G(b) ≤ G(a · b). Is
similar for the operator H . �

Remark 12. Note that if L is a tense ICRDL-algebra, then is a fuzzy dynamic
algebra in the sense of [8].

Proposition 13. Let 〈L,G,H, F, P 〉 be a tense ICRDL-algebra. Then

G(x) · F (x→ y) ≤ F (y) and H(x) · P (x→ y) ≤ P (y).

Proof. Let a, b ∈ L. Since a ≤ (a→ b) → b, then

G(a) ≤ G((a → b) → b) ≤ F (a→ b) → F (b)

and G(a) · F (a → b) ≤ F (b). Similarly, we can prove the inequality H(x) · P (x →
y) ≤ P (y). �
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3.2. Connections between tense ICRDL-algebras and tense Boolean al-

gebras. We know that if L is a ICRDL-algebra, then the set of regular elements
Reg(L) of L is a ICRDL-algebra. We conclude this section by showing some neces-
sary and sufficient conditions for the ICRDL-algebra Reg(L) to be a tense Boolean
algebra.

The following result was proven in [17], within the context of Heyting algebras.

Proposition 14. Let L be a tense ICRDL-algebra. Then:

(1) G(¬x) ≤ ¬G(x) and H(¬x) ≤ ¬H(x),
(2) G(¬x) ≤ ¬F (x) and H(¬x) ≤ ¬P (x),
(3) G(x) ≤ ¬F (¬x) and H(x) ≤ ¬P (¬x),
(4) F (¬x) ≤ ¬G(x) and P (¬x) ≤ ¬H(x).

Proof. We only prove (4). By Proposition 13, we have G(x) · F (x → y) ≤ F (y).
Consequently, according to (T11), it follows that G(x) ·F (x→ 0) ≤ F (0) = 0, and
F (¬x) ≤ G(x) → 0, i.e., F (¬x) ≤ ¬G(x). �

If L is a tense ICRDL-algebra, then we know that the structure Reg(L) =
〈Reg(L),∨r,∧r, ·r,→r, 0, 1〉 is a ICRDL-algebra. Now, we define on Reg(L) the
following unary operators

Gr(x) := ¬¬G(x),

Hr(x) := ¬¬H(x),

Fr(x) := ¬¬F (x),

Pr(x) := ¬¬P (x),

and consider the inequalities

(A1) ¬F (¬x) ≤ G(x),
(A2) ¬P (¬x) ≤ H(x).

Remark 15. Not every tense ICRDL-algebra satisfies conditions (A1) and (A2)
(see [17], Example 2). On the other hand, by Proposition 14, in every tense ICRDL-
algebra that satisfies conditions (A1) and (A2), we have the equations G(x) =
¬F (¬x) and H(x) = ¬P (¬x).

Theorem 16. Let L be a tense ICRDL-algebra. Then, there are equivalent:

(1) L is pseudocomplemented and satisfies conditions (A1) and (A2),
(2) 〈Reg(L), Gr, Hr〉 is a tense Boolean algebra.

Proof. (1) ⇒ (2) By Theorem 5, the structure Reg(L) is a Boolean algebra. By
(T8) and (T9) it easily follows (TB1) and (TB2). We prove (TB3). Let a ∈ Reg(L).
Then, by Remark 15 and as a = ¬¬a, we have

¬Gr(¬a) = ¬¬¬G(¬a) = ¬G(¬a) = ¬¬F (¬¬a) = ¬¬F (a) = Fr(a),

i.e., Fr(a) = ¬Gr(¬a). Similarly, we have Pr(a) = ¬Hr(¬a). Finally, we see that
a ≤ GrPr(a). By (T10), (T14), (T15) and (2) of Proposition 3,

a ≤ GP (a) ≤ ¬¬G(¬¬P (a)) = GrPr(a).

Analogously, a ≤ HrFr(a). So, 〈Reg(L), Gr, Hr〉 is a tense Boolean algebra.
(2) ⇒ (1) It is immediate. �
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3.3. Tense DRL-algebras. The aim of this subsection is to introduce the class
of tense DRL-algebras, which will be crucial for the rest of the paper.

We recall that a centered integral involutive residuated lattice is a structure
〈A,∨,∧, ∗,∼, c, 0, 1〉 such that:

(1) 〈A,∨,∧, ∗,∼,⇒, 0, 1〉 is an integral commutative residuated lattice, where
x⇒ y =∼ (x ∗ (∼ y)),

(2) ∼ is a dual lattice-automorphism which is also an involution,
(3) c is a fixed point of the involution.

If there is no risk of confusion, we will denote centered integral involutive resid-
uated lattices by their underlying set A.

A centered integral involutive residuated lattice A is said to be a c-differential
residuated lattice, or DRL-algebra for short, if the following equation, called Leibniz
condition in [5, 4], holds:

(LC) (x ∗ y) ∧ c = ((x ∧ c) ∗ y) ∨ (x ∗ (y ∧ c)).

The following lemma will be useful in Section 6 of this paper.

Lemma 17. Let A be a DRL-algebra. Then, the following hold:

(1) [(x ∨ c) ∗ (y ∨ c)] ∨ c = (x ∗ y) ∨ c.
(2) ∼ ((x ∨ c) ∗ (∼ (∼ y ∨ c)))∧ ∼ ((y ∨ c) ∗ (∼ (∼ x ∨ c))) =∼ (x ∗ y) ∨ c.

Proof. On the one hand, observe that

[(x ∨ c) ∗ (y ∨ c)] ∨ c = (x ∗ y) ∨ (c ∗ y) ∨ (x ∗ c) ∨ (c ∗ c) ∨ c
= (x ∗ y) ∨ c.

On the other hand, let

t(x, y) =∼ ((x ∨ c) ∗ (∼ (∼ y ∨ c)))∧ ∼ ((y ∨ c) ∗ (∼ (∼ x ∨ c))).

Then, we have

t(x, y) = ∼ [((x ∨ c) ∗ (y ∧ c)) ∨ ((y ∨ c) ∗ (x ∧ c))]
= ∼ [(x ∗ (y ∧ c)) ∨ (y ∗ (x ∧ c)) ∨ (c ∗ (x ∧ c)) ∨ (c ∗ (y ∧ c))].

Note that c∗ (x∧c) =∼ (c⇒ (∼ x∨c)) =∼ 1 = 0. Similarly c∗ (y∧c) = 0. Finally,
by (LC), (x ∗ (y ∧ c)) ∨ (y ∗ (x ∧ c)) = (x ∗ y) ∧ c. Hence,

t(x, y) =∼ [((x ∗ y) ∧ c) ∨ 0] =∼ (x ∗ y) ∨ c.

This concludes the proof. �

Let A be a DRL-algebra and G,H : A → A be two unary operators. We define
the operators F and P by F (x) :=∼ G(∼ x) and P (x) :=∼ H(∼ x), for any x ∈ A.

Definition 18. Let A be a DRL-algebra. Let G and H be unary operations on A
satisfying:

(t0) G(1) = 1 and H(1) = 1,
(t1) G(c) = c and H(c) = c,
(t2) G(x ∧ y) = G(x) ∧G(y) and H(x ∧ y) = H(x) ∧H(y),
(t3) x ≤ GP (x) and x ≤ HF (x),
(t4) G(x ∨ y) ≤ G(x) ∨ F (y) and H(x ∨ y) ≤ H(x) ∨ P (y),
(t5) G(x⇒ y) ≤ G(x) ⇒ G(y) and H(x⇒ y) ≤ H(x) ⇒ H(y).

An algebra A = 〈A,G,H〉 will be called tense DRL-algebra.
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Remark 19. Notice that if A is a tense DRL-algebra, then the reduct 〈A,∨,∧,∼
, G,H, 0, 1〉 becomes a tense De Morgan algebra, as defined in [16].

The following result enables us to provide an equivalent definition of tense DRL-
algebras.

Lemma 20. Let A be a tense DRL-algebra. Then, axiom (t5) is equivalent to each
of the following axioms:

(t6) G(x⇒ y) ≤ F (x) ⇒ F (y) and H(x⇒ y) ≤ P (x) ⇒ P (y).
(t7) G(x) ∗ F (∼ y) ≤ F (x ∗ (∼ y)) and H(x) ∗ P (∼ y) ≤ P (x ∗ (∼ y)),
(t8) F (x) ∗G(y) ≤ F (x ∗ y) and P (x) ∗H(y) ≤ F (x ∗ y).

Proof. Let a, b ∈ A. We only prove that (t6) is equivalent to (t7). We start by
noticing that the following follows straight from the definitions: a∗(∼ b) =∼ (a⇒ b)
and ∼ F (a) = G(∼ a). Therefore, if G(a⇒ b) ≤ G(a) ⇒ G(b), then

G(∼ (a ∗ (∼ b))) ≤ G(a) ⇒ G(b).

Thus, since ∼ is antitone, from the identities above we get ∼ (G(a) ⇒ G(b)) ≤
F (a ∗ (∼ b)). Hence, G(a) ∗ F (∼ b) ≤ F (a ∗ (∼ b)). The converse uses the same
arguments. The details of the remaining proofs are left to the reader. �

The following proposition will be useful in the categorical equivalence that we
will present in the next section.

Proposition 21. Let A be a tense DRL-algebra. Then:

(c1) F (c) = c and P (c) = c,
(c2) G(x ∨ c) = G(x) ∨ c and H(x ∨ c) = H(x) ∨ c,
(c3) F (x ∧ c) = F (x) ∧ c and P (x ∧ c) = P (x) ∧ c.

Proof. We will only prove (c1) and (c2).
(c1): By (t1) and (t3), F (c) =∼ G(∼ c) =∼ G(c) =∼ c = c. Similarly, P (c) = c.
(c2): Let a ∈ A. Since a ≤ a∨ c and c ≤ a∨ c, we have that G(a) ≤ G(a∨ c) and

c = G(c) ≤ G(a ∨ c). So, G(a) ∨ c ≤ G(a ∨ c). On the other hand, from (t4) and
(c1), we obtain G(a∨ c) ≤ G(a)∨F (c) = G(a)∨ c. Therefore, G(a∨ c) = G(a)∨ c.
Similarly, we have H(a ∨ c) = H(a) ∨ c. �

4. Kalman’s construction

In this section we prove some results that establish the connection between the
class of tense ICRDL-algebras and the class of tense DRL-algebras.

Let L be a tense ICRDL-algebra and let us consider

K(L) = {(a, b) ∈ L× L : a · b = 0}.
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It is well known from [5, 4] that by defining

(a, b) ∨ (x, y). := (a ∨ x, b ∧ y),

(a, b) ∧ (x, y) := (a ∧ x, b ∨ y),

(a, b) ∗ (x, y) := (a · x, (a → y) ∧ (x→ b)),

(a, b) ⇒ (x, y) := ((a → x) ∧ (y → b), a · y),

∼ (a, b) := (b, a),

0 := (0, 1),

1 := (1, 0),

c := (0, 0),

we get that the structure LK = 〈K(L),∨,∧, ∗,∼, c, 0, 1〉 is a DRL-algebra. Now,
we define on K(L) the following unary operators given by

GK((a, b)) := (G(a), F (b)),

HK((a, b)) := (H(a), P (b)),

FK((a, b)) := (F (a), G(b)),

PK((a, b)) := (P (a), H(b)).

Taking into account the unary operators defined earlier, we obtain the following
result.

Lemma 22. Let L be a tense ICRDL-algebra. Then, for every (a, b) ∈ K(L):

(1) GK(a, b), HK(a, b) ∈ K(L),
(2) FK(a, b) =∼ GK(∼ (a, b)) and PK(a, b) =∼ HK(∼ (a, b)),
(3) FK(a, b), PK(a, b) ∈ K(L).

Proof. We will only prove (1). If (a, b) ∈ K(A), then a ·b = 0. Therefore, from (T4)
and (T11), G(a) · F (b) ≤ F (a · b) = F (0) = 0. So, (G(a), F (b)) ∈ K(A). The proof
of HK(a, b) ∈ K(A) is similar. The details of the proof of the remaining items are
left to the reader. �

Lemma 23. Let L be a tense ICRDL-algebra. Then

K(L) = 〈LK , GK , HK〉

is a tense DRL-algebra.

Proof. From Lemma 22, the operators GK and HK are well defined. We will prove
the axioms of tense DRL-algebra. Due to the symmetry of tense operators GK and
HK , we will prove the axioms only for the operator GK . We take (a, b), (x, y) ∈
K(A).

(t0): From (T8) and (T11) it follows

GK(1) = GK(1, 0) = (G(1), F (0)) = (1, 0) = 1.

Similarly, HK(1) = 1.
(t1): From (T3) and (T10) it follows

GK(c) = GK(0, 0) = (G(0), F (0)) = (0, 0) = c.

Similarly, HK(c) = c.
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(t2): From (T9) and (T12) we have

GK((a, b) ∧ (x, y)) = GK(a ∧ x, b ∨ y)
= (G(a ∧ x), F (b ∨ y))
= (G(a) ∧G(x), F (b) ∨ F (y))
= (G(a), F (b)) ∧ (G(x), F (y))
= GK(a, b) ∧GK(x, y).

(t3): By properties (T10) and (T13),

(a, b) ∧GKPK(a, b) = (a, b) ∧GK((P (a), H(b)))
= (a, b) ∧ (GP (a), FH(b))
= (a ∧GP (a), b ∨ FH(b))
= (a, b),

i.e., (a, b) ≤ GKPK(a, b).
(t4): From (T5) and (T4), then

GK((a, b) ∨ (x, y)) = GK(a ∨ x, b ∧ y)
= (G(a ∨ x), F (b ∧ y))
≤ (G(a) ∨ F (x), G(b) ∧ F (y))
= (G(a), G(b)) ∨ (F (x), F (y))
= GK(a, b) ∨ FK(x, y).

(t5): We start by noticing that (a, b) ⇒ (x, y) =∼ ((a, b) ∗ (y, x)). Thus, it is
the case that GK((a, b) ⇒ (x, y)) = (G(a → x) ∧ G(y → b), F (a · y)). Further,
GK(a, b) ⇒ GK(x, y) = ((G(a) → G(x)) ∧ (F (y) → F (b)), G(a) · F (y)). So, from
(T6) and (T7), we have G(a → x) ≤ G(a) → G(x) and G(y → b) ≤ F (y) → F (b).
Besides, from (T4), G(a) · F (y) ≤ F (a · y). Hence,

(G(a → x) ∧G(y → b), F (a · y)) ≤ ((G(a) → G(x)) ∧ (F (y) → F (b)), G(a) · F (y)).

Therefore, GK((a, b) ⇒ (x, y)) ≤ GK(a, b) ⇒ GK(x, y). �

We write tICRDL for the category whose objects are tense ICRDL-algebras, tDRL
for the category whose objects are tense DRL-algebras and in both cases, the mor-
phisms are the corresponding algebra homomorphisms. If L = 〈L,G,H, F, P 〉 and
M = 〈M,G,H, F, P 〉 are tense ICRLD-algebras and f : L → M is a morphism
in tICRDL, then it is no hard to see that the map K(f) : K(L) → K(M) given
by K(f)(x, y) = (f(x), f(y)) is a morphism in tDRL from 〈K(L), GK , HK〉 to
〈K(M), GK , HK〉. These assignments establish a functor K from tICRDL to tDRL.

Let A be a DRL-algebra and define

C(A) = {x ∈ A : x ≥ c}.

If we consider x · y = (x ∗ y) ∨ c and x→ y =∼ (x ∗ (∼ y)), then the structure

AC = 〈C(A),∨,∧, ·,→, c, 1〉

is a ICRDL-algebra (see [5], Theorem 7.6). Moreover, if f : A → B is a homo-
morphism of DRL-algebras, then it is not hard to see that C(f) : C(A) → C(B),
defined by C(f)(x) = f(x), is a homomorphism of DRL-algebras. The following
lemma shows that the latter construction can be lifted to the class of tense DRL-
algebras.
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Lemma 24. Let A be a tense DRL-algebra. Then

C(A) = 〈AC , G,H, F, P 〉

is a tense ICRDL-algebra. Moreover, if f : A → B is a morphism in tDRL, then
C(f) : C(A) → C(B) is a morphism in tICRDL.

Proof. Let a, b ∈ A. We only proof (T4). Notice that from (t3), it is the case that
F preserves all the existing joins. Therefore, from by Lemma 20 we have

G(x) · F (y) = (G(x) ∗ F (y)) ∨ c ≤ F (x ∗ y) ∨ c = F (x · y),

as desired. �

Let A and B be two tense DRL-algebras. Let f : A → B be a homomorphisms
of tense DRL-algebras. It is clear now, from Lemma 24, that the assingments
A 7→ C(A) and f 7→ C(f) determine a functor C from tDRL to tICRDL.

Lemma 25. Let L be a tense ICRDL-algebra. Then the map αL : L → C(K(L))
given by αL(x) = (x, 0) is an isomorphism in tICRDL.

Proof. Taking into account [5, Theorem 7.6], we only have to prove that αL pre-
serves the tense operators. Let a ∈ A. Then

αL(G(a)) = (G(a), 0) = (G(a), F (0)) = GK((a, 0)) = GK(αL(a))

and
αL(F (a)) = (F (a), 0) = (F (a), G(0)) = FK((a, 0)) = FK(αL(a)).

Similarly, we can prove αL(H(a)) = HK(αL(a)) and αL(P (a)) = PK(αL(a)). �

If A is a DRL-algebra, then

βA : A→ K(C(A))

given by βA(x) = (x∨c,∼ x∨c) is an injective homomorphism of DRL-algebras (see
[5], Lemma 7.5). We consider the folllowing condition on the class of DRL-algebras:

(CK·) for every x, y ≥ c such that x · y ≤ c, there exists z ∈ A such that z ∨ c = x
and ∼ z ∨ c = y.

The next lemma follows from the definition of βA.

Lemma 26. [5] Let A be a DRL-algebra. Then A satisfies the condition (CK·) if
and only if βA is a surjective map.

Next, we will present a crucial lemma for the proof of Theorem 28.

Lemma 27. Let A be a tense DRL-algebra. Then the map βA is a monomorphism
in tDRL.

Proof. Let a ∈ A. From (t3), (c2) and (c1) we have that

βA(G(a)) = (G(a) ∨ c,∼ G(a) ∨ c)
= (G(a) ∨ c, F (∼ a) ∨ c)
= (G(a ∨ c), F (∼ a ∨ c))
= GK((a ∨ c,∼ a ∨ c)),

i.e., βA(G(a)) = HK(βA(a)). Similarly, βA(H(a)) = HK(βA(a)). �

We will denote by tDRLc for the full subcategory of tDRL whose objects satisfy
the condition (CK·). Straightforward computations based on previous results of
this section prove the following result.
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Theorem 28. The functors K and C establish a categorical equivalence between
tICRDL and tDRLc with natural isomorphisms α and β.

5. A round trip between tense filters

Let L be a ICRDL-algebra. In Remark 7.12 of [5] it was proved that Kalman’s
construction can be used in order to establish an isomorphism between the congru-
ence lattice of L and the congruence lattice of the DRL-algebra K(L). Moreover,
if A is a DRL-algebra, such a result can also be extended for proving that there is
an isomorphism between the congruence lattice of A and the congruence lattice of
the ICRDL-algebra C(L). In this section we are intended to extend these results
to the context of tense DRL-algebras and tense ICRDL-algebras. Nevertheless, our
approach borrows some of the ideas employed along Section 7.1 of [29]. As an ap-
plication, we provide a detailed description between the tense filters of the members
of the varieties of tense DRL-algebras and tense ICRDL-algebras.

We start by recalling some notions. Let L be a bounded distributive lattice. If
θ ∈ Con(L), we can define a congruence γθ of K(L) by

(a, b)γθ(x, y) if and only if (a, x) ∈ θ and (b, y) ∈ θ.

Reciprocally, if γ ∈ Con(K(L)), we can also define a congruence θγ of L as

(a, b) ∈ θγ if and only if (a, 0)γ(b, 0).

Lemma 29. Let L be a tense ICRDL-algebra and let θ ∈ Con(L). Then γθ ∈
Con(K(L)).

Proof. We only proof that γθ is compatible with the product because the proof
of the compatibility with respect the residual is analogue. The proof of the com-
patibility of θγ with the rest of the operations uses the same ideas of Lemma
7.1 of [29]. Let (ai, bi)γθ(xi, yi) with i = 1, 2. By definition of γθ we have that
(ai, xi), (bi, yi) ∈ θ for i = 1, 2. Then, since θ is a congruence of L we get that
(a1a2, x1x2), ((a1 → b2)∧ (a2 → b1), (x1 → y2)∧ (x2 → y1)) belong to θ. Therefore,
(a1, b1) ∗ (a2, b2)γθ(x1, y1) ∗ (x2, y2). �

Lemma 30. Let L be a tense ICRDL-algebra and let γ ∈ Con(K(L)). Then θγ ∈
Con(L).

Proof. We will prove the compatibility of θγ with respect to the implication and the
product. For the compatibility of θγ with the rest of the operations, the reader may
consult Lemma 7.1 of [29]. To do so, let (a1, b1), (a2, b2) ∈ θγ . By definition of θγ

it is the case that (ai, 0)γ(bi, 0) with i = 1, 2. Thus, (a1 → a2, 0)γ(b1 → b2, 0) from
the assumption on γ. Hence, (a1, 0) ⇒ (a2, 0)γ(b1, 0) ⇒ (b2, 0), so θ

γ is compatible
with the implication. On the other hand, since γ ∈ Con(K(L)), we obtain that
(a1, 0) ∗ (a2, 0)γ(b1, 0) ∗ (b2, 0) and (a1a2,¬a1 ∧ ¬a2)γ(b1b2,¬b1 ∧ ¬b2). Moreover,
we also get that (0, a2) =∼ (a2, 0)γ ∼ (b2, 0) = (0, b2), so (a1, 0) ⇒ (0, a2)γ(b1, 0) ⇒
(0, b2) and consequently (¬a1 ∧¬a2, 0)γ(¬b1 ∧¬b2, 0). Finally, by transitivity on γ
we get (a1a2, 0)γ(b1b2, 0), we can conclude (a1a2, b1b2) ∈ θγ , as desired. �

The proof of the following result is a straight consequence of Lemmas 29 and 30
and it uses the same ideas deployed in Corollary 5.4 of [6]. So, we leave the details
to the reader.

Theorem 31. Let L be a tense ICRDL-algebra. Then the assignment f : Con(L) →
Con(K(L)) defined by f(θ) = γθ is an order isomorphism.
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Definition 32. Let L be a tense ICRDL-algebra. A non-empty subset S of L is a
tense filter provided that S is an up-set, S is closed under multiplication, G and H.

Remark 33. We claim that tense filters of tense ICRDL-algebras are closed under
F and P . Indeed, if S is a tense filter of a tense ICRDL-algebra L and x ∈ S, then
since G(0) = 0 and H(0) = 0, by (T5) we get that G(x) ≤ F (x) and H(x) ≤ P (x).
Since S is increasing and closed under G and H, then F (x), P (x) ∈ S, as claimed.

Let L be a tense ICRDL-algebra. We write tFi(L) for the poset of tense filters of
L orderded by inclusion and Con(L) for the congruence lattice of L. If we consider
the operation x ◦ y = (x→ y) · (y → x), then we have the following result.

Theorem 34. Let L be a tense ICRDL-algebra, S ∈ tFi(L) and θ ∈ Con(L). Then:

(1) Sθ := 1/θ is a tense filter of L,
(2) θS := {(x, y) ∈ L2 : x ◦ y ∈ S} is a congruence of L,
(3) The assignments θ 7→ Sθ and S 7→ θS establish a mutually-inverse poset

isomorphism between tFi(L) and Con(L).

Proof. It is proved in a similar way to Lemma 11 of [17]. �

Let A be a tense DRL-algebra. Note that since by definition, A is a tense
ICRDL-algebra, and by Theorem 34, we can obtain a description of the lattice of
congruences of A by means of tense filters.

Corollary 35. Let A be a tense DRL-algebra. Then the assignments θ 7→ Dθ

and D 7→ θD establish a mutually-inverse poset isomorphism between tFi(A) and
Con(A).

Let A be a tense DRL-algebra. Our next goal is to describe explicitly how from
a congruence of A we can get a unique tense filter of C(A). We start by recalling
from Theorem 28 that the map βA : A → K(C(A)) defined by βA(x) = (x ∨ c,∼
x ∨ c) is an isomorphism of tense DRL-algebras. Further, from general reasons the
map hA = βA × βA which is defined by hA(x, y) = (βA(x), βA(y)), induces an
isomorphism between ContDRL(A) and ContDRL(KC(A)). Now, from Theorem 31,
the map

g : ContDRL(K(C(A))) → ContICDRL(C(A))

defined by g(γ) = θγ is an isomorphism. Consider the composite w = ghA, i.e.,

w : ContDRL(A) → ContICDRL(C(A)).

Lemma 36. Let A be a tense DRL-algebra and let D ∈ tFi(A). Then

SD = D ∩C(A)

is a tense filter of C(A).

Proof. Notice that from Corollary 35 and the discussion of above it is no hard to
see that w(θD) = θD ∩ C(A)2. So, from Lemma 34 and the fact that

1/(θD ∩ C(A)2) = 1/θD ∩ C(A) = D ∩ C(A)

the result follows. �

Let A be a tense DRL-algebra. Now, we proceed to describe explicitly how from
a tense filter of C(A) we can obtain a unique congruence of A. To do so, let S be
a tense filter of C(A). Recall that from Lemma 34 the map

Θ: tFi(C(A)) → Con(C(A))
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is an isomorphism. By Proposition 31, the map

k : Con(C(A)) → Con(K(C(A)))

defined by k(θ) = γθ is a poset isomorphism. Let (a, b) ∈ K(C(A)). Then, since
βA is an isomorphism, from condition (CK·) there exists a unique z ∈ A such that
z ∨ c = a and ∼ z ∨ c = b. Thus, it is the case that the map rA : K(C(A)) → A

defined by rA(a, b) = z is in fact β−1
A

and therefore an isomorphism. By general
reasons, the map wA = rA × rA induces an isomorphism between Con(K(C(A)))
and Con(A). Consider then the composite m = wAkΘ, i.e.,

m : tFi(C(A)) → Con(A).

Lemma 37. Let A be a tense DRL-algebra and let S ∈ tFi(C(A)). Then

DS = {u ∈ A : u ∨ c, c⇒ u ∈ S}

is a tense filter of A.

Proof. From the discussion of above, notice that m(S) is a congruence of A. We
shall prove that m(S) = θS . To do so, observe first that from Theorem 31 and
Lemma 34 we have

(1) kΘ(S) = {((a, b), (x, y)) ∈ K(C(T ))2 : a ◦ x, b ◦ y ∈ S}.

Thus, if we write rA(a, b) = u and rA(x, y) = v, it is the case that u ∨ c = a,
v ∨ c = x, ∼ u ∨ c = b and ∼ v ∨ c = y. Since c ≤ v ∨ c, then c ⇒ (v ∨ c) = 1. So,
we get

a⇒ x = (u ∨ c) ⇒ (v ∨ c)
= (u⇒ (v ∨ c)) ∧ (c ⇒ (v ∨ c))
= (u⇒ (v ∨ c)) ∧ 1
= u⇒ (v ∨ c).

By the same arguments of above, we can prove also that x ⇒ a = v ⇒ (u ∨ c),
b⇒ y =∼ u⇒ (∼ v ∨ c) and y ⇒ b =∼ v ⇒ (∼ u ∨ c). Then, since S is an up-set,
we obtain

m(S) = {(u, v) ∈ T 2 : u⇒ (v∨ c), v ⇒ (u∨ c), u⇒ (∼ v∨ c),∼ v ⇒ (∼ u∨ c) ∈ S}.

Hence m(S) = θS . We conclude by noticing that from Corollary 35 and the fact
that ∼ u⇒ c = c⇒ u we get DS = 1/θS, as claimed. �

Theorem 38. Let A be a tense DRL-algebra, D ∈ tFi(A) and S ∈ tFi(C(A)).
Then the assignments D → SD and S 7→ DS establish a mutually-inverse poset
isomorphism between tFi(A) and tFi(C(A)).

Proof. We shall prove that DSD
= D. On the one hand, let u ∈ D. Then from

the fact that D is an up-set and u ≤ c ⇒ u, we get that u ∨ c and c ⇒ u belong
to D ∩ C(A). Thus, u ∈ DSD

. On the other hand, if u ∨ c, c ⇒ u ∈ D ∩ C(A),
since (u ∨ c) ∗ (c ⇒ u) ≤ u and D is a tense filter, we conclude u ∈ D. The proof
of SDS

= S is analogue. Straightforward calculations prove that both assignments
are monotone. �

We conclude this section by noticing that Theorems 31 and 34, and Corollary
35 may also be applied in order to make explicit the relation between the tense
filters of a tense ICRDL-algebra L and the tense filters of K(L). To this end,
let Θ be the lattice isomorphism between tFi(L) and Con(L) of Theorem 34, w
be the isomorphism between Con(L) and Con(K(L)) of Theorem 31 and µ be the
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isomorphism between Con(K(L)) and tFi(K(L)) of Corollary 35. Then, if g denotes
the composition of these, it is clear that g establishes an isomorphism between
tFi(L) and tFi(K(L)). Moreover, if S ∈ tFi(L) and J ∈ tFi(K(L)), straightforward
calculations show that

g(S) = {(x, y) ∈ K(A) : x ∈ S,¬y ∈ S} = JS

and
g−1(J) = {a ∈ L : (a, 0) ∈ J} = SJ .

The latter discussion may be summarized in the following result.

Theorem 39. Let L be a tense ICRDL-algebra, S ∈ tFi(L) and J ∈ tFi(K(A)).
Then the assignments S → JS and J 7→ SJ establish a mutually-inverse poset
isomorphism between tFi(L) and tFi(K(L)).

6. A contextual translation

Let V and W be varieties. Let us write V and W for the categories of algebras
and homomorphisms of V and W , respectively. In [26], Moraschini proved that
there is a correspondence between the nontrivial adjunctions between V and W

(i.e. pairs of functors F : V → W and G : W → V such that F is left adjoint to G
(denoted by F ⊣ G)) and nontrivial κ-contextual translations from the equational
consequence relation relative to V into the equational consequence relation relative
to W , denoted by |=V and |=W , respectively. In this setting, κ is assumed to be a
non necessarily finite cardinal. Classical examples of κ-contextual translations are
the Kolmogorov translation induced by the well known adjunction coming from the
Kalman construction for distributive lattices [11], the Glivenko translation induced
by Glivenko’s functor that relates Boolean algebras and Heyting algebras [23] and
the Gödel translation which relates the equational consequence relative to Heyting
algebras and interior algebras [20].

The aim of this section is to show that Theorem 28 can be employed to ob-
tain a finite nontrivial 2-contextual translation between the equational consequence
relations relative to tense DRL-algebras (or tDRL-algebras, for short) and tense
ICDRL-algebras (or tIRL-algebras, for short). In order to make this section self-
contained, we proceed to recall the definitions that we will require on the following.

Let X be a set of variables. If L is a propositional language we write FmL(X)
for the absolutely free algebra of L-terms. If V is a variety, we write FV(X) for
the V-free algebra over X . Further, if L is the language of V and t(x1, ..., xn)
is an L-formula, we also denote by t(x1, ..., xn) its image under the natural map
FmL(X) → FV(X) from the term algebra FmL(X) over X onto FV(X). In
particular, if X = {x1, ..., xk}, then we write FV(k) instead of FV(X). We also
denote by V the category associated to the variety. Let A ∈ V . If S ⊆ A × A,

we write CgA(S) for the congruence generated by S. We also write CgA(~a,~b), for

the congruence generated by all pairs (a1, b1), . . . , (aN , bN ) where ~a,~b ∈ AN . We

say that a congruence θ on A is finitely generated if θ = CgA(S) for some finite
set S ⊆ A × A. We recall that an algebra A in V is a finitely generated free
algebra if it is isomorphic to FV(m) for some finite m, and finitely presented if it
is isomorphic to an algebra of the form FV(k)/θ, for some k finite and θ finitely
generated congruence on FV(k).

If l : X → Y is a function, it is well known that there is a unique homomorphism
FV(l) : FV(X) → FV(Y ) extending the map α(x) = l(x). If (x1, ..., xn) ∈ Xn
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and t(x1, ..., xn) is a L-term with variables in {x1, ..., xn}, then it is well known
that FV(l)(t(x1, ..., xn)) = t(l(x1), ..., l(xn)). Let F = {Ai}i∈I be a family of
algebras of V and let us assume w.l.o.g. that their universes are pair-wise disjoint.
Let πi : FV(Ai) → Ai be the unique onto-homomorphism extending the identity

of Ai. Then, if X =
⋃
i∈I Ai and γ = CgFV(X)(

⋃
i∈I Ker(πi)) it is well known

that FV(X)/γ toghether with the homomorphisms fi : Ai → FV(X)/γ defined by
a 7→ a/γ, is isomorphic to the coproduct of F , denoted by

∑
i∈I Ai. In particular,

if I = {1, ..., n}, then we write A1 + . . .+An instead of
∑

i∈I Ai.

6.1. 2-contextual translations. Let K be a class of similar algebras and let LK

be the language of K. Then L2
K

is the algebraic language whose n-ary operations
(for every n ∈ N) are all pairs of LK-terms built up with the variables Xn =
{x1j : 1 ≤ j ≤ n} ∪ {x2j : 1 ≤ j ≤ n}. That is to say,

f((x11, x
2
1), ..., (x

1
n, x

2
n)) = (t1(x

1
1, x

2
1, ..., x

1
n, x

2
n), t2(x

1
1, x

2
1, ..., x

1
n, x

2
n)).

where t1, t2 ∈ TmLK
(Xn). Thus, for instance, if we set the language of binary

operations LK = {+, ·}, then the operation ⊕, defined as

⊕((x11, x
2
1), (x

1
2, x

2
2)) := (x22 · (x

1
1 + x12), x

2
1 · x

1
2),

is a binary operation on L2
K
.

Let A ∈ K. We write A[2] for the algebra of type L2
K

with universe A2 where
every n-ary operation f ∈ L2

K
is interpreted as

fA
[2]

((a11, a
2
1), ..., (a

1
n, a

2
n)) := (tA1 (a11, a

2
1, ..., a

1
n, a

2
n), t

A

2 (a11, a
2
1, ..., a

1
n, a

2
n)),

for every (a1j , a
2
j) ∈ A2, with 1 ≤ j ≤ n.

By the 2-matrix power of K me mean the class I{A[2] : A ∈ K}. Such a class
will be denoted by K[2]. It is well known that K[2] is a variety if and only if K is
a variety (Theorem 2.3 (iii) of [24]). Moreover, if A,B ∈ K and h : A → B is a
homomorphism, then the map h× h : A2 → B2 is a homomorphism. So, if we set
h[2] = h × h, then it is easy to see that the assignments A 7→ A[2] and h 7→ h[2]

establish a functor [2] : K → K[2].
Let LV and LW be the languages of the varieties V and W , respectively. A

2-translation of LV into LW is a map τ : LV → L2
W

that preserves the arities of
function symbols. That is to say, if ψ is a n-ary function symbol of LV , then

τ(ψ)((x11 , x
2
1), ..., (x

1
n, x

2
n)) = (t1(x

1
1, x

2
1, ..., x

1
n, x

2
n), t2(x

1
1, x

2
1, ..., x

1
n, x

2
n))

for some t1, t2 ∈ TmLK
(Xn). It is worth recalling that τ maps constant symbols

into pairs of constant symbols. Therefore for a translation to exists, both languages
are required to contain at least one constant symbol. Observe that 2-translations
extend to arbitrary terms as follows: if λ is a cardinal, we write Xλ for the set
{x1j : j < λ} ∪ {x2j : j < λ}. Thus, we define recursively a map

τ∗ : Tm(LV , λ) → Tm(LW , Xλ)
2

as
τ∗(xj) := (x1j , x

2
j ), for every j < λ,

τ∗(c) := τ(c).

For variables and constant symbols. If ψ ∈ LV is n-ary and ϕ1, ..., ϕn ∈ Tm(LV , Xλ),
then

τ∗(ψ(ϕ1, ..., ϕn)) := τ(ψ)(τ∗(ϕ1), ..., τ∗(ϕn)).



AN ALTERNATIVE DEFINITION OF TENSE OPERATORS 17

Furthermore, the map τ∗ may be raised to sets of equations in order to produce a
new map

τ∗ : P(Eq(LV , λ)) → P(Eq(LW , Xλ))

through the assignment

Φ 7−→ {τ∗(ε) ≈ τ∗(δ) : ε ≈ δ ∈ Φ}.

A 2-contextual translation of |=V into |=W is a pair (τ,Θ) where τ is a 2-
translation of LV into LW and Θ ⊆ Eq(LW , 2) is a set of equations written with
variables among {xj : j < λ} such that:

(1) For every n-ary ψ ∈ LV :

Θ(x11, x
2
1) ∪ . . . ∪Θ(x1n, x

2
n) |=W Θ(τ∗(ψ)((x

1
1, x

2
1), ..., (x

1
n, x

2
n))).

(2) For every cardinal λ and Φ ∪ {ε ≈ δ} ⊆ Eq(LV , λ):

Φ |=V ǫ ≈ δ ⇒ τ∗(Φ) ∪
⋃

j<λ

Θ(x1j , x
2
j ) |=W τ∗(ε ≈ δ).

The set Θ is called the context of the 2-contextual translation (τ,Θ). We say
that a 2-contextual translation is nontrivial if there is a (nonempty) sequence ~ϕ ∈
Tm(LW , ∅)2 of constant symbols such that if W |= Θ(~ϕ) then there is i0 ∈ {1, 2}
and sequences of variables ~x = (x1, x2) and ~y = (y1, y2) such that

Θ(~x) ∪Θ(~y) 6|=W xi0 ≈ yi0 .

Now, we proceed to present some technical results that we will require in order to
establish the main result of this section.

Lemma 40. Let A be a tense ICDRL-algebra. Then, for all a, b ∈ A such that
a · b = 0, there exists a unique homomorphism ψ : C(FtDRL(1)) → A such that
ψ(z ∨ c) = a and ψ(∼ z ∨ c) = b.

Proof. Let a, b ∈ A such that a · b = 0 and consider the assignment ε(z) = (a, b). If
we take h : FtDRL(1) → K(A) as the unique homomorphism that extends ε, since
C ⊣ K (by Theorem 28), there exists a unique homomorphism ψ : C(FtDRL(1)) →
A. For general reasons, it follows that ψ = α−1

A
C(h), where αA is the map of

Lemma 25. Observe that

ψ(∼ z ∨ c) = α−1
A

(h(∼ z ∨ c))
= α−1

A
(∼ h(z) ∨ (0, 0)))

= α−1
A

(∼ (a, b) ∨ (0, 0))
= α−1

A
((b, a) ∨ (0, 0))

= α−1
A

(b, 0)
= b.

In a similar fashion it can be proved that ψ(z∨c) = a. Now, suppose that there ex-
ists another homomorphism ψ′ : C(FtDRL(1)) → A such that ψ′(z∨c) = a and ψ′(∼
z∨ c) = b. Then, since C ⊣ K (Theorem 28), there exist a unique ψ′

∗ : FtDRL(1) →
K(A). We stress that from general reasons, ψ′

∗ = K(ψ′)βFtDRL(1). Therefore,

ψ′
∗(z) = K(ψ′)(z ∨ c,∼ z ∨ c)

= (ψ′(z ∨ c), ψ′(∼ z ∨ c))
= (a, b)
= ε(z)

so ψ′
∗ = h and consequently, ψ′ = ψ, as claimed. �
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Corollary 41. Let A be a tense ICDRL-algebra. Then, for all a1, a2, b1, b2 ∈
A such that a1 · b1 = 0 and a2 · b2 = 0, there exists a unique homomorphism
µ : C(FtDRL(2)) → A such that µ(x ∨ c) = a1, µ(y ∨ c) = a2, µ(∼ x ∨ c) = b1 and
µ(∼ y ∨ c) = b2.

Proof. Consider the assignment defined by ε(x) = (a1, b1) and ε(y) = (a2, b2), and
take h : FtDRL(2) → K(A) as the unique homomorphism extending ε. It is no hard
to see that the rest of the proof is analogue to the one of Lemma 40. �

Let V be a variety, A ∈ V and ~a,~b ∈ AN , with N ∈ N. It is well known

that the canonical homomorphism ν : A → A/CgA(~a,~b) has the universal property

of identify ~a with ~b, in the sense that for every homomorphism h : A → B such
that g(ai) = g(bi) for every 1 ≤ i ≤ N , there exists a unique homomorphism

g : A/CgA(~a,~b) → B such that hν = g. This fact implies that in order to prove that

an algebraC of V is isomorphic toA/CgA(~a,~b) it is enough to find a homomorphism
with domain A with the universal property mentioned above. This observation will
be crucial for showing the following result.

Theorem 42. C(FtDRL(1)) is isomorphic to FtICRL(2)/Cg
FtIRL(2)(x · y, 0).

Proof. In order to prove our claim, regard the assignment α(x) = z∨c and α(y) =∼
z ∨ c and let h : B → C(FtDRL(1)) be the homomorphism that extends α. Notice
that for every t(x, y) ∈ B, it is the case that h(t(x, y)) = tC(FtDRL(1))(z∨c,∼ z∨c).
In particular we have that h(x · y) = c = 0C(FtDRL(1)). In order to prove our claim,
we will show that h is universal with respect to the homomorphisms f : B → A

such that f(x ·y) = 0A. To do so, if we consider such an f , then f(x)∗A f(y) = 0A,
thus from Lemma 40, there exists a unique homomorphism ψ : C(FtDRL(1)) → A

such that ψ(z ∨ c) = f(x) and ψ(∼ z ∨ c) = f(y). We will prove that the diagram
below

B
h

//

f
%%▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲ C(FtDRL(1))

ψ

��
A

commutes. Indeed, if t(x, y) ∈ B, then we have

ψh(t(x, y)) = ψ(tC(FtDRL(1))(z ∨ c,∼ z ∨ c))
= tA(ψ(z ∨ c), ψ(∼ z ∨ c))
= tA(f(x), f(y))
= f(t(x, y)).

This concludes the proof. �

Corollary 43. Let X2 be the set {x11, x
1
2, x

2
1, x

2
2} and let C = FtIRL(X2). Then,

if θ = CgC(x11 · x21, 0) ∨ CgC(x12 · x22, 0), the algebras C(FtDRL(2)) and C/θ are
isomorphic.

Proof. Let B = FtICRL(2) and δ = CgFtIRL(2)(x · y, 0). Then, from Theorem 42,
the fact that C and FtDRL preserve coproducts, and the well known description on
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coproducts of algebras, the following holds:

C(FtDRL(2)) ∼= C(FtDRL(1)) + C(FtDRL(1))
∼= B/δ +B/δ
∼= C/CgC((x11 · x

2
1, 0), (x

1
2 · x

2
2, 0))

∼= C/θ,

i.e., C(FtDRL(2)) and C/θ are isomorphic. �

Next, we describe the procedure to obtain the contextual 2-translation associated
to the adjunction C ⊣ K. If ψ is a n-ary function symbol on the language of
tense DRL-algebras, by Theorem 4.3 of [27], the 2-translation τ is determined by a
homomorphism τ(ψ) that makes the following diagram commutes:

FtICRL(2)

τ(ψ)

zz✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉

h

��

C(FtDRL(1))

C(ψ)

��

FtICRL(Xn) πn

// C(FtDRL(n))

We stress that the existence of τ(ψ) is granted because FtICRL(2) is onto-projective
in tICRL. Furthermore, the map τ : LtDRL → L2

tICRL can be identified with
its values on the generators. I.e. τ(ψ) := (τ(ψ)(x11), τ(ψ)(x

2
1)). Notice that

in order to find such a map, it is enough to find terms t(x11, x
2
1, . . . , x

1
n, x

2
n) and

s(x11, x
2
1, . . . , x

1
n, x

2
n) in FtICRL(Xn) such that C(ψ)(h(x)) = h(t(x11, x

2
1, . . . , x

1
n, x

2
n))

and C(ψ)(h(y)) = h(s(x11, x
2
1, . . . , x

1
n, x

2
n)). In the next result we will see that in

our case, such terms can be obtained from the operations we defined in Section 4
at the moment of establishing the functor K.

Lemma 44. The adjunction C ⊣ K induces the 2-translation τ : LtDRL → L2
tICRL

defined as follows:

τ(∧)((x11 , x
2
1), (x

1
2, x

2
2)) := (x11 ∧ x

1
2, x

2
1 ∨ x

2
2)

τ(∨)((x11 , x
2
1), (x

1
2, x

2
2)) := (x11 ∨ x

1
2, x

2
1 ∧ x

2
2)

τ(∗)((x11, x
2
1), (x

1
2, x

2
2)) := (x11 · x

1
2, (x

1
1 → x22) ∧ (x12 → x21))

τ(⇒)((x11 , x
2
1), (x

1
2, x

2
2)) := ((x11 → x12) ∧ (x22 → x21), x

1
1 · x

2
2)

τ(G)(x11 , x
2
1) := (Gx11, Fx

2
1)

τ(F )(x11, x
2
1) := (Fx11, Gx

2
1)

τ(H)(x11, x
2
1) := (Hx11, Px

2
1)

τ(P )(x11, x
2
1) := (Px11, Hx

2
1)

τ(∼)(x11, x
2
1) := (x21, x

1
1)

τ(c) := (0, 0)
τ(0) := (0, 1)
τ(1) := (1, 0).

Proof. We start by recalling that C(G) : C(FtDRL(1)) → C(FtDRL(1)) maps a term
u(z) into u(G(z)) and by Theorem 42, h : FtICRL(2) → C(FtDRL(1)) maps a term
t(x11, x

2
1) into tC(FtDRL(1))(z ∨ c,∼ z ∨ c). Now, let us consider t(x11, x

2
1) = G(x11)

and s(x11, x
2
1) = F (x21). Observe that from Proposition 21, it is the case that
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h(G(x11)) = C(G)(h(x11)). On the other hand, from Definition 18 (t1) and (t2), we
have

h(F (x21)) = F (∼ z ∨ c)
= ∼ G(z ∧ c)
= ∼ (G(z) ∧ c)
= ∼ G(z) ∨ c
= C(G)(∼ z ∨ c)
= C(G)(h(x21)).

Hence, we can set τ(G)(x11 , x
2
1) = (Gx11, Fx

2
1) as claimed. The proof of the state-

ments about τ(H), τ(F ), τ(P ) and τ(∼) is similar. Now, in order to show that

τ(∗)((x11, x
2
1), (x

1
2, x

2
2)) = (x11 · x

1
2, (x

1
1 → x22) ∧ (x12 → x21)),

we will proceed as next we will describe. Let us consider the following diagram

FtIRL(2)

h

��τ(∗)

yy

❦
❧

❧
♠

♠
♥

♦
♦

♣
♣

q
r

C(FtDRL(1))

C(∗)

��

FtIRL(X2)
ϕθ

//

π2

44
FtIRL(X2)/θ

λ
// C(FtDRL(2))

in which θ denotes Cg
FtICRL(X2)(x1 · y1, 0) ∨ Cg

FtICRL(X2)(x2 · y2, 0), ϕθ is its re-
spective quotient homomorphism and λ is the isomorphism of Corollary 43. Having
into account that π2 = λϕθ , it is clear that proving π2τ(∗) = C(∗)h is equivalent
to proof that λϕθτ(∗) = C(∗)h. Thus, since C(∗) : C(FtDRL(1)) → C(FtDRL(2))
maps a term u(z) into u(x ∗ y), if s(x11, x

2
1, x

1
2, x

2
2) and t(x

1
1, x

2
1, x

1
2, x

2
2) are terms of

FtICRL(X2) such that π2(s(x
1
1, x

2
1, x

1
2, x

2
2)) = C(∗)(h(x)) and π2(t(x11, x

2
1, x

1
2, x

2
2)) =

C(∗)(h(y)) the latter equation leads us to prove the following

sC(FtDRL(2))(λ(x11/θ), λ(x
2
1/θ), λ(x

1
2/θ), λ(x

2
2/θ)) = (x ∗ y) ∨ c,

tC(FtDRL(2))(λ(x11/θ), λ(x
2
1/θ), λ(x

1
2/θ), λ(x

2
2/θ)) =∼ (x ∗ y) ∨ c.

Now, since x11/θ · x
2
1/θ = 0/θ and x12/θ · x

2
2/θ = 0/θ, from Corollary 41, we can

assume w.l.o.g. that λ(x11/θ) = x ∨ c, λ(x12/θ) = y ∨ c, λ(x21/θ) =∼ x ∨ c and
λ(x22/θ) =∼ y∨c. Therefore, by taking s(x11, x

2
1, x

1
2, x

2
2) = x11 ·x

1
2, t(x

1
1, x

2
1, x

1
2, x

2
2) =

(x11 → x22) ∧ (x12 → x21) and having in mind that λ is a homomorphism, in order to
prove our claim, we shall prove the following

λ(x11/θ) · λ(x
1
2/θ) = (x ∗ y) ∨ c,

(λ(x11/θ) ⇒ λ(x22/θ)) ∧ (λ(x12/θ) ⇒ λ(x21/θ)) = ∼ (x ∗ y) ∨ c.

But notice that these are precisely the equations (1) and (2) of Lemma 17. So

τ(∗)((x11, x
2
1), (x

1
2, x

2
2)) = (x11 · x

1
2, (x

1
1 → x22) ∧ (x12 → x21)),

as desired. The proof of the statements about τ(⇒), τ(∨) and τ(∧) are analogue.
The details on the proof of τ(c), τ(0) and τ(1) are left to the reader. �
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In addition to Lemma 44, we stress that from Theorem 42, we may identify the
generating set {(x · y, 0)} with the set equations Θ = {x · y ≈ 0}. Then, from
Theorem 4.3 of [26], it turns out that the pair (τ,Θ) is a 2-contextual translation
of |=tDRL into |=tICRL. Further is true. Since C is faithful (Theorem 28), then by
Lemma 6.4 of [27] we are able to conclude:

Theorem 45. For every cardinal λ and Φ ∪ {ε ≈ δ} ⊆ Eq(LtDRL, λ),

Φ |=tDRL ε ≈ δ ⇐⇒ τ∗(Φ) ∪ {(x1j · x
2
j , x

1
j · x

2
j ) ≈ (0, 0): j < λ} |=tICRL τ∗(ε ≈ δ).

where (τ,Θ) is the contextual translation of |=tDRL into |=tICRL induced by C.
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