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Abstract. We deal with quasilinear elliptic problems with measure data:{
Lw = H(x,w,∇w) + µ in Ω
w = 0 on ∂Ω,

(0.1)

where Lw := −div(A(x)∇w) with A = A(x) a bounded, coercive, and symmetric matrix field, the

Hamiltonian H has at most q-growth in the gradient for 0 < q < 1, and µ is any Radon measure.

We employ the compactness of the Green operator associated to L from the space of measures to

W 1,p
0 (Ω) for all p ∈ [1, N/(N − 1)) together with fixed point arguments to solve problem (0.1) for

any measure µ. Moreover, we provide explicit estimates of the solution in terms of the data. As an

application, stability results are given. We also give conditions for the existence of W 1,2
0 -solutions

through the classic theory of monotone and coercive operators. In any case, we do not impose any

size restriction on µ and any sign condition on H.

Key Words and Phrases: Quasilinear elliptic equations, fixed point, Green’s functions, weak
solutions, uniqueness.
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1. Introduction

In this paper, we consider second-order quasilinear elliptic problems of the form{
Lw = H(x,w,∇w) + µ in Ω
w = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain, N ≥ 3, L is a linear and uniformly elliptic
operator Lw = −div(A(x)∇w), with A = A(x) a bounded, coercive, and symmetric
matrix field. Also, the Hamiltonian H is a continuous function satisfying a q-growth
condition in the gradient with 0 < q < 1, and µ is a Radon measure. Further details
in the assumptions will be given in Section 2.

Problems with first order terms arise naturally in the study of stationary models of
growing interfaces, like the Kardar-Parisi-Zhang model [22], and in stochastic control
problems, see for instance [23].
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The main assumption on H will be the following growth condition

|H(x, r, ξ)| ≤ c0h(x)|r|+ b(x)|ξ|q + |g(x)| for all r ∈ R, ξ ∈ RN , and a. e. x ∈ Ω,
(1.2)

for q ∈ (0, 1), h, b ≥ 0, and g ∈ L1(Ω). The model problem reads as{
−∆w + b(x)|∇w|q = c0h(x)w + µ in Ω
w = 0 on ∂Ω.

(1.3)

Our main contributions are the following. We prove that if b and h in (1.2) satisfy
certain variational conditions (see (2.3) and (2.4)) and c0 is small enough, then a
solution u of (1.1) exists for any measure µ. Here, we do not impose any size condition

on µ and any sign condition on H. Furthermore, we state the regularity u ∈W 1,p
0 (Ω)

for all p ∈ [1, N/(N − 1)), and we give a control on the norm of u in terms of the
data. As a consequence of these estimates, and among other stability results, we
may recover solutions of equations like −∆u + |∇u|q = µ as limits of solutions uε
as ε → 0+ of perturbed problems −∆uε + |∇uε|q = εuε + µε. Moreover, in the case
h ≡ 1, and when |r| is replaced by |r|l in (1.2), with l ∈ (0, 1), we show that no size

condition on c0 is requested to solve (1.1). Finally, we show that W 1,2
0 (Ω)-regularity

may be expected for solutions when the source µ belongs to M(Ω) ∩W−1,2(Ω) and
c0 is small.

There are several references considering linear problems like (1.1). We first mention
the works [25] and [28], where they introduced a notion of solution by duality that
we recover in this paper. They also proved existence and uniqueness of solutions,
and stated that when the right-hand side is a measure or an L1-function, the solution
belongs to W 1,p(Ω), for all p ∈ [1, N/(N − 1)). In [28], Stampacchia also provided a
further hierarchy of regularity, depending on the regularity of the source terms. We
remark that coercivity of the elliptic operator is essential in his results.

We now discuss about noncoercivity of the linear operators. We first mention the
work [6], where it is proved that the same results of existence and regularity of [28]
may be obtained for noncoercive linear operators, using techniques from nonlinear
problems. In [8], the authors studied noncoercive linear problems with discontinuous
coefficients and singular drifts in LN . By duality methods and a nonlinear approach,
the Spampacchia theory is recovered when the source is sufficiently integrable, and,
when the integrability is lower, the Calderón-Zygmund theory of distributional solu-
tions is obtained. In the second case, there is a parallelism with [11] when there is no
drift term. Weak maximum principles in this framework can be found in [9]. For less
regular drift terms, we quote the works [12] and [7].

We recall that for problems with first order terms having sub-quadratic growth in
the gradient, a size condition or higher regularity on the source are needed to obtain
existence of solutions (see for instance [1], [14], [16], [15], [21], and the references
therein). We also cite the surveys [27] and [17] where nice presentations of elliptic
problems with first order terms are given. Finally, a discussion of existence of weak
solutions for structures with q-power in the norm of the gradient (for any q > 1) is
provided in [20] and, for more general growths, in [4] and [1, Remark 2.5], among
many other references.
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Existence of solutions to boundary value problems with a q-power of the gradient,
where q ∈ (0, 1), was treated in [5] and [26]. The problem (1.1) with A = I, µ = 0,
H(x, ξ) = −|ξ|q, and non homogeneous boundary data, has been treated in [26],
where existence of very weak solutions is obtained. More general, in [5], the authors
established existence of renormalized solutions for the Laplace operator and first order
structures with sub-linear growth in the gradient, without any size condition on the
data. Much more general structures are considered in the book [29]. However, the
results contained in Chapters 5 and 6 of [29], like Theorem 6.2.3, for renormalized
solutions do not apply to our case since the growth or the sign assumptions imposed
there on the source and the absorption terms H are not valid for our case.

Here, we do not follow the renormalized-solution approach. The existence of
Sobolev weak solutions to (1.1) for any measure is achieved by using compactness
arguments in the Green operator G (see [28] and [13] for related arguments). Here,
and as a consequence of an Lp-estimate of solutions, we will provide a proof of the
compactness ofG. Moreover, our solution belongs toW 1,p(Ω) for all p ∈ [1, N/(N−1))
and hence we recover the well-known regularity results of solutions to linear uniformly
elliptic problems with measure data ([25], [28], see also [10] and [11]). Finally, for any

data in W−1,2, we provide the existence of weak solutions in W 1,2
0 . This is achieved

by applying the classical theory of coercive and monotone operators of Leray-Lions
type.

The paper is organized as follows. In Section 2, we give notation, definitions, and
assumptions. In Section 3, we prove the compactness of the Green operator. In
Section 4, we provide the main result of the paper and we also give some stability
results. Finally, in Section 5, we state the solvability of problem (1.1) for µ ∈W−1,2.

2. Notation and preliminaries

2.1. Basic notation. For a given real Banach space B, we let 〈·, ·〉 for the usual
pairing between B and its dual. The underlying norm in B will be denoted by ‖ · ‖
or ‖ · ‖B when is needed for clarity. When B = RN for some N ≥ 1, we denote the
Euclidean norm by | · |.

Let E ⊂ RN be a non empty set. The distance function to the complementary Ec

of E is δ(x) := dist(x,Ec), x ∈ RN . We now recall some well-known notation for
function spaces. We let M(E) be the set of all signed Radon measures ν in E such
that E is ν-measurable and the total variation norm ‖ν‖M(E) :=

∫
E
d|ν| is finite. By

M+(E) we denote the positive cone ofM(E). For any real-valued function ϕ, we set
ϕ+ := max {0, ϕ}, and ϕ− := −min {0, ϕ}.

For E ⊂ RN open, we denote by Cc(E) the set of continuous functions with
compact support in E, and by C0(E) the closure of Cc(E) in C(E), that is C0(E) ={
ϕ ∈ C(E) : ϕ = 0 on ∂E

}
. By C∞c (E) we denote the space of infinitely differentiable

functions which belong to Cc(E).
We use the standard notation for Lebesgue and Sobolev spaces. Moreover, for

p ∈ (1,∞), p′ denotes its conjugate and for p ∈ [1, N), p∗ denotes the critical exponent
in the Sobolev imbedding. Finally, in long calculations, by C we denote a positive
universal constant, which may differ from line to line.
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2.2. Set of assumptions. We now give the main assumptions that we will use in
the paper. Further hypothesis may be specified in some particular results.

(H1) The subset Ω ⊂ RN (N ≥ 3) is a bounded, open and C2 domain;
(H2) The matrix field A(x) = [aij(x)] is symmetric, measurable, bounded and
uniformly elliptic, i.e., there exists ν > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ ν|ξ|2, for all ξ ∈ RN and a. e. x ∈ Ω; (2.1)

(H3) The structural term H : Ω × R × RN → R is a continuous function
satisfying

|H(x, r, ξ)| ≤ c0h(x)|r|+b(x)|ξ|q+|g(x)| for all r ∈ R, ξ ∈ RN and a. e. x ∈ Ω, (2.2)

where c0 > 0, 0 < q < 1, g ∈ L1(Ω) and the non-negative functions b and h,
not zero in a set of positive measure, satisfy

[Eq(b)]
−1 := inf

φ 6=0, φ∈L1(Ω)

∫
Ω
|φ| dx(∫

Ω
b|φ|q dx

)1/q > 0, (2.3)

and

[E(h)]−1 := inf
φ6=0, φ∈W 1,1

0 (Ω)

∫
Ω
|∇φ| dx∫

Ω
h|φ| dx

> 0. (2.4)

(H4) The measure µ belongs to M(Ω).

We say that ‘assumption (H) holds’ if the hypothesis (H1)− (H4) are valid.
Observe that since 0 < q < 1, b ≡ 1 satisfies (2.3). More generally, if

b ∈ L1/(1−q)(Ω), b 6= 0, then Hölder’s inequality gives that E(b) > 0.
Also, we point out that condition (2.4) is analogous to the variational assumption

impose to h in [2, Theorem 2.9] to obtain existence of solutions. Finally, observe that
(2.4) implies that h ∈W−1,∞(Ω).

2.3. Notions of solutions. We now give the meaning of solutions that we use in the
paper. We first introduce the notion of weak solutions to problem (1.1). Afterwards,
for the linear problem, we provide the connection between weak solutions and the
notion of very weak solutions presented in [30]. Throughout the section, assume that
(H) holds. From now on we let Lu := −div (A(x)∇u) .

Definition 2.1. We say that u ∈W 1,1
0 (Ω) is a weak subsolution of problem (1.1) if∫

Ω

N∑
i,j=1

aij(x)
∂u

∂xi

∂ϕ

∂xj
dx ≤

∫
Ω

H(x, u,∇u)ϕdx+

∫
Ω

ϕdµ (2.5)

for all non-negative ϕ ∈ C∞c (Ω). A similar definition is given for weak supersolutions.
A weak solution is a weak sub- and supersolution.

Now we establish the definition of very weak solution from [30] for the linear case{
Lw = µ in Ω,
w = 0 on ∂Ω.

(2.6)
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Definition 2.2. We say that u ∈ L1(Ω) is a very weak subsolution of problem (2.6)
if ∫

Ω

uψ dx ≤
∫

Ω

ϕdµ,

for all non-negative ϕ ∈ C1
0 (Ω) solving (2.6) with µ = ψ ∈ L∞(Ω) in the following

sense ∫
Ω

N∑
i,j=1

aij(x)
∂ϕ

∂xi

∂φ

∂xj
dx =

∫
Ω

ψφdx for all φ ∈W 1,2
0 (Ω). (2.7)

A similar definition is given for very weak supersolutions. A very weak solution is
a very weak sub- and supersolution.

In the sequel, we will write Lϕ instead of ψ. The following proposition states the
equivalence between weak and very weak solutions in the linear problem.

Proposition 2.1. Suppose that (H1), (H2) and (H4) hold, and that A = [aij ] is

Lipschitz. Let u ∈ W 1,1
0 (Ω). Then u is a weak subsolution of problem (2.6) if and

only if u is a very weak subsolution of (2.6). A similar result holds for supersolutions.

Proof. Take u ∈ W 1,1
0 (Ω) a very weak subsolution of (2.6) and ϕ ∈ C∞c (Ω), non-

negative. Then, there is a sequence {un} ⊂ C∞c (Ω) such that un → u in W 1,1
0 (Ω).

Since the coefficients aij are Lipschitz, Lϕ ∈ L∞(Ω) and (2.7) holds for ψ = Lϕ.

Now, since un → u in W 1,1
0 (Ω) and ϕ is a test function for Definition 2.2 we have∫

Ω

uLϕdx = lim
n→∞

∫
Ω

unLϕdx = lim
n→∞

∫
Ω

N∑
i,j=1

aij(x)
∂un
∂xi

∂ϕ

∂xj
dx. (2.8)

Therefore, since u is a very weak subsolution of (2.6), by (2.8) we get∫
Ω

N∑
i,j=1

aij(x)
∂u

∂xi

∂ϕ

∂xj
dx = lim

n→∞

∫
Ω

N∑
i,j=1

aij(x)
∂un
∂xi

∂ϕ

∂xj
dx ≤

∫
Ω

ϕdµ. (2.9)

Conversely, if u ∈ W 1,1
0 (Ω) satisfies Definition 2.1, then for non-negative ϕ ∈ C1

0 (Ω)
with Lϕ ∈ L∞(Ω) we have∫

Ω

N∑
i,j=1

aij(x)
∂u

∂xi

∂ϕn
∂xj

dx ≤
∫

Ω

ϕn dµ

for any ϕn ∈ C∞c (Ω) converging to ϕ in C1(Ω) with ϕn ≥ 0. Taking n → ∞ and
recalling (2.8), we obtain that u is a very weak subsolution. �

2.4. Preliminaries on Green operators. The Green function G = G(x, y) of the
operator L in Ω is defined as the unique very weak solution of (2.6) with µ = δy, the
Dirac measure at y. The following result can be found in [30, Sections 2.3 and 2.4].

Theorem 2.1. (i) For A = [aij ] Lipschitz and for any µ ∈ M(Ω), the unique very
weak (or weak) solution u of (2.6) can be represented, for a.e. x in Ω, as

u(x) =

∫
Ω

G(x, y)dµ(y), (2.10)
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and u ∈ W 1,p
0 (Ω) for all p ∈ [1, N/(N − 1)). (ii) For all p ∈ [1, N/(N − 1)), the

mapping G :M(Ω) → W 1,p
0 (Ω) which assigns to each µ ∈ M(Ω) the solution (2.10)

is called the Green operator and it is continuous, that is, there is C ′p > 0 depending
on N , p and Ω so that

‖G(µ)‖W 1,p
0 (Ω) ≤ C

′
p‖µ‖M(Ω), for all µ ∈M(Ω). (2.11)

Remark 2.1. It is worth mentioning that, when A = [aij ] is Lipschitz, very weak
solutions u ∈ L1(Ω) of (2.6) are also duality solutions in the sense of [25] since
very weak solutions are unique and by Theorem 2.1 satisfy the representation (2.10).
Hence, the estimate in Theorem 2.1 also follows from [25, Sections 5 and 6].

Remark 2.2. The representation (2.10) gives that µ ({x}) = 0 for a.e. x in Ω. Indeed,
take x for which (2.10) holds and is finite. Since G ≥ 0 and limy→xG(x, y) = +∞,
for each positive integer n, there is r > 0 such that G(x, y) ≥ n for all y ∈ B(x, r).
Hence, u(x) ≥ nµ (B(x, r)) ≥ nµ ({x}) . Letting n→∞, we prove the claim.

For convenience of the reader, we also provide some estimates for the Green function
G and its gradient of uniformly elliptic operators L with Lipschitz coefficients. From
[18] and [30, Theorem 2.11], it follows that

C−1 min {δ(x), δ(y)} |x− y|1−N ≤ G(x, y) ≤ C min {δ(x), δ(y)} |x− y|1−N (2.12)

for some C > 0 and all x 6= y in Ω. Finally, by [19, Theorem 3.3], we have the next
upper bound for the norm of the gradient of G,

|∇xG(x, y)| ≤ C min
{
|x− y|1−N , δ(y)|x− y|−N

}
, C > 0, x 6= y. (2.13)

3. The linear case: H ≡ 0

Throughout this section, we consider uniformly elliptic operators L of the form
L = −div (A(x)∇u) with associate Green operator G.

The aim of this section is to provide an Lp-estimate for weak subsolutions in the
linear case. Afterwards, we apply the estimate to prove that the Green operator
G of L with Lipschitz coefficients is compact from M(Ω) into W 1,p

0 (Ω) for any p ∈
[1, N/(N − 1)) (some related results can be found in [11]).

Theorem 3.1. Assume (H1), (H2) and that A(x) = [aij(x)] is Lipschitz. Let µ ∈
M+(Ω) and let u ∈ W 1,1

0 (Ω), u 	 0, be a weak subsolution to (2.6). Then, u ∈
W 1,p

0 (Ω) for any p ∈ [1, N/(N − 1)), and for any such p there is r0 ∈ [1, N/(N − 2))
such that ∫

Ω

|∇u(x)|p dx ≤ C
[∫

Ω

up(x)

δp(x)
dx+ ‖u‖p−1

Lr0 (Ω)‖µ‖M(Ω)

]
. (3.1)

Proof. For ϕ ∈ C∞c (Ω), define

F (ϕ) :=

∫
Ω

ϕdµ−
∫

Ω

uLϕ.

Then, by Proposition 2.1, F (ϕ) ≥ 0 for ϕ ≥ 0. Thus, by the Riesz representation
Theorem, there is ν ∈M+(Ω) so that

Lu = µ− ν (3.2)
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in the sense that
∫

Ω
uLϕdx =

∫
Ω
ϕd(µ− ν) for any ϕ ∈ C∞c (Ω). By Proposition 2.1,

(3.2) also holds in the very weak sense. By comparison principle ([30, Theorem 2.9]),
we have Lu ≥ 0 weakly, because otherwise we would obtain u ≤ 0. In particular,∫

Ω

ϕd(µ− ν) ≥ 0 (3.3)

for any ϕ ∈ C∞c (Ω), ϕ ≥ 0. We now prove that (3.3) implies µ ≥ ν. Indeed, let
B ⊂⊂ Ω be open, with B ⊂ Ω, and take ϕn → χB locally uniformly as n → ∞
with ϕn ∈ C∞c (Ω), ϕn ≥ 0, and supp ϕn ⊂ K ⊂ Ω for some fixed compact K. Then∫

Ω
ϕn d(µ−ν) ≥ 0 for all n. Taking n→∞, we get µ(B) ≥ ν(B). Now, suppose there

is a Borel set A such that µ(A) < ν(A). For each j, take open sets Bj containing A
so that µ(Bj) < µ(A) + 1

j . Hence µ(A) < ν(A) ≤ ν(Bj) ≤ µ(Bj) < µ(A) + 1
j which

gives a contradiction when j →∞.
By Theorem 2.1, we have u ∈ W 1,p

0 (Ω) for any p ∈ [1, N/(N − 1)) and u(x) =∫
Ω
G(x, y) d(µ− ν)(y) for a.e. x in Ω. Observe that (µ− ν) ({x}) = 0 for a. e. x by

Remark 2.2. Thus, for a.e. x,

|∇u(x)| ≤
∫

Ω

|∇xG(x, y)| d(µ− ν)(y) =

∫
Ω

|∇xG(x, y)|
G(x, y)

G(x, y) d(µ− ν)(y).

Fix p ∈ [1, N/(N − 1)). Then

|∇u(x)|p ≤
(∫

Ω

|∇xG(x, y)|
G(x, y)

G(x, y) d(µ− ν)(y)

)p
.

By the estimates (2.12) and (2.13), it follows that

|∇xG(x, y)|
G(x, y)

≤ C max

{
1

δ(x)
,

1

|x− y|

}
for all x 6= y in Ω. Hence, we have

|∇u(x)|p ≤ C
[(

1

δ(x)

∫
δ(x)≤|x−y|

G(x, y) d(µ− ν)(y)

)p

+

(∫
δ(x)>|x−y|

G(x, y)

|x− y|
d(µ− ν)(y)

)p ]
= C (I1(x) + I2(x)) .

For I1 we have that I1(x) ≤ up(x)
δp(x) . Hence∫

Ω

I1(x) dx ≤
∫

Ω

up(x)

δp(x)
dx. (3.4)

Regarding I2(x), using Hölder’s inequality and estimate (2.12), we get

I2(x) ≤
(∫

Ω

G(x, y)1−1/pG(x, y)1/p

|x− y|
d(µ− ν)(y)

)p
≤
(∫

Ω

G(x, y) dµ(y)

)p−1(∫
Ω

G(x, y)

|x− y|p
dµ(y)

)
(recall µ− ν ≤ µ)

≤ Cu(x)p−1

(∫
Ω

1

|x− y|N−2+p
dµ(y)

)
.
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Then ∫
Ω

I2(x) dx ≤ C
∫

Ω

(∫
Ω

u(x)p−1

|x− y|N−2+p
dx

)
dµ(y).

Next, choose r0 ≥ 1 such that

N

(
p− 1

2− p

)
< r0 <

N

N − 2
. (3.5)

The choice is possible since the quantity N(p − 1)/(2 − p) is increasing with p and

N

(
p− 1

2− p

)
↗ N

N−2 as p→ N
N−1 . By Hölder’s inequality,∫

Ω

I2(x) dx

≤ C
∫

Ω

(∫
Ω

u(x)r0 dx

) p−1
r0

(∫
Ω

dx

|x− y|(N−2+p)
r0

r0−(p−1)

) r0−(p−1)
r0

 dµ(y).

Now, by the fact p < N/(N − 1) and (3.5), we have

1 < N − 1 < (N − 2 + p)
r0

r0 − (p− 1)
< N,

and so we obtain that ∫
Ω

I2(x) dx ≤ C‖u‖p−1
Lr0 ‖µ‖M(Ω). (3.6)

Therefore, by (3.4) and (3.6) we get (3.1). �

Proposition 3.1. Suppose that (H1), (H2) and (H4) hold, and that A = [aij ] is
Lipschitz. Let u be the solution of (2.6). Then u+ and u− solve respectively{

Lw ≤ µ+ in Ω
w = 0 on ∂Ω

and

{
Lw ≤ µ− in Ω
w = 0 on ∂Ω.

(3.7)

Proof. Let u be the solution of (2.6) and take {µn} ⊂ C∞(RN ) such that µn
∗
⇀ µ in

the sense ∫
Ω

µnϕdx→
∫

Ω

ϕdµ for all ϕ ∈ C1
0 (Ω). (3.8)

Consider un the solution of Lw = µn in Ω, with w = 0 on ∂Ω. Then, by Theorem 2.1,
we have for 1 ≤ p < N/(N − 1) that ‖un‖W 1,p

0 (Ω) ≤ C‖µn‖L1(Ω) ≤ C. Hence there is

v ∈W 1,p
0 (Ω) such that, up to a subsequence, un ⇀ v in W 1,p

0 (Ω).

Since un solves Lw = µn, we have for all ϕ ∈ C1
0 (Ω) that Lϕ ∈ L∞(Ω) and∫

Ω

unLϕdx =

∫
Ω

µnϕdx.

Then, by the weak convergence of un to v in W 1,p
0 (Ω) and (3.8) we get∫

Ω

vLϕdx =

∫
Ω

ϕdµ for all ϕ ∈ C1
0 (Ω), Lϕ ∈ L∞(Ω).
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Therefore, the uniqueness of solutions to problem (2.6) implies v = u. Hence un(x)→
u(x) a.e. in Ω. Now we can write [un(x)]+ = un(x)

2 + |un(x)|
2 . Thus

[un(x)]+ → [u(x)]+ a.e. in Ω. (3.9)

On the other hand, ‖u+
n ‖W 1,p

0 (Ω) ≤ ‖un‖W 1,p
0 (Ω) ≤ C. Then, up to a subsequence

u+
n ⇀ w in W 1,p

0 (Ω) for some w ∈W 1,p
0 (Ω). Hence, by (3.9) we get w = u+.

Now, applying Kato’s inequality (see for instance Theorem 2.4 in [30]) we have∫
Ω

u+
nLϕdx ≤

∫
Ω

µnϕdx.

Therefore, by the weak convergence of u+
n to u+ in W 1,p

0 (Ω) and (3.8) we obtain∫
Ω

u+Lϕdx ≤
∫

Ω

ϕdµ ≤
∫

Ω

ϕdµ+,

for all nonnegative function ϕ ∈ C1
0 (Ω). Hence u+ solves the first problem in (3.7).

Finally, we may use the same argument with −u to get the conclusion for u−. �

Theorem 3.2 (Compactness of the Green operator). Assume (H1), (H2) and that

A(x) = [aij(x)] is Lipschitz. Then, the Green operator G : M(Ω) 7→ W 1,p
0 (Ω) is

compact for any p ∈ [1, N/(N − 1)).

Proof. Take a sequence {µi} ⊂ M(Ω) such that ‖µi‖M(Ω) ≤ C for all i. Hence, up

to a subsequence which we do not relabel, µi
∗
⇀ µ in M(Ω) for some µ ∈M(Ω).

Let ui be the weak solution of (2.6) with µ = µi, and let u the weak solution of
(2.6) with the limiting µ. Then, L(ui − u) = µi − µ, and by Proposition 2.1 and

Theorem 2.1, ui − u ∈ W 1,p
0 (Ω) and ‖ui − u‖W 1,p(Ω) ≤ C for all p ∈ [1, N/(N − 1)).

In particular, up to a subsequence, ui − u → ũ in Lp(Ω), for some ũ ∈ W 1,p
0 (Ω).

Moreover, applying Definitions 2.1 and 2.2 we get for all ϕ ∈ C∞c (Ω) that∫
Ω

(ui − u)Lϕdx =

∫
Ω

N∑
j,k=1

ajk(x)
∂(ui − u)

∂xj

∂ϕ

∂xk
dx =

∫
Ω

ϕd(µi − µ)→ 0

as i → ∞. Hence,
∫

Ω
ũLϕ dx = 0 for all ϕ ∈ C∞c (Ω). Consequently, ũ ∈ W 1,p

0 (Ω)

solves Lũ = 0 in Ω. By uniqueness, we deduce ũ = 0. Let v+
i (resp. v−i ) be the

positive (resp. negative) part of ui − u. By Proposition 3.1, it follows that{
Lv±i ≤ (µi − µ)± in Ω
v±i = 0 on ∂Ω,

(3.10)

in the weak sense. Now, for each i, by definition we have v±i ∈ W 1,r
0 (Ω) for all

r < N
N−1 and

‖∇v±i ‖Lr(Ω) ≤ ‖∇ui −∇u‖Lr(Ω) ≤ C‖µi − µ‖M(Ω) ≤ C. (3.11)

Thus, there are v(±) ∈W 1,p
0 (Ω) such that, up to subsequences,

v±i ⇀ v(±) in W 1,p
0 (Ω), and v±i → v(±) in Lα(Ω) for all α <

N

N − 2
. (3.12)
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However, by the weak convergence of ui to u in W 1,p(Ω), we get v(±) = 0. On the
other hand, (3.1) yields∫

Ω

|∇v±i |
p dx ≤ C

[∫
Ω

(v±i )p(x)

δp(x)
dx+ ‖v±i ‖

p−1
Lr0 (Ω)‖µi − µ‖M(Ω)

]
. (3.13)

Since ‖µi − µ‖M(Ω) ≤ C for all i and v±i → 0 in Lr0(Ω), the last term in (3.13) tends
to 0 as i→∞.

For the first term observe the following: if {hi} satisfies
∫

Ω
|hi|r dx ≤ C for some

r > 1 and for all i, then {hi} is uniformly integrable. Indeed, let ε > 0 and choose

γ > 0 such that γ
1
r′ < ε

C1/r . Then, by Hölder’s inequality, for any measurable set
A ⊂ Ω with |A| < γ we have∫

A

|hi| dx =

∫
Ω

|hi|XA dx ≤ ‖hi‖Lr(Ω)|A|
1
r′ < ε.

We can apply this fact to hi =
(v±i )p

δp , which is in Ls(Ω) for some s > 1 such that

ps < N
N−1 . Indeed, by Hardy’s inequality and (3.11) with r = ps, we get∫

Ω

(
(v±i )p

δp

)s
dx ≤ C

∫
Ω

|∇v±i |
ps dx ≤ C, for all i.

Thus, the sequence
{

(v±i )p

δp

}
is uniformly integrable in Ω.

Hence, by Vitali’s convergence theorem, the first term in the right hand side of (3.13)

goes to 0 as i→∞. Therefore we get the strong convergence of v±i to 0 in W 1,p
0 (Ω).

Consequently, ui → u strongly in W 1,p
0 (Ω). �

4. The general case: existence of solutions for Lipschitz coefficients
and any measure data

In this section, we deal with the existence of solutions to (1.1) for Lipschitz coeffi-
cients. Without loss of generality, we assume that ‖g‖L1(Ω) in (2.2) is so that

C ′p(‖g‖L1(Ω) + ‖µ‖M(Ω)) ≥ 1, (4.1)

where C ′p is the constant from (2.11).

Theorem 4.1. Assume that (H) holds, with (4.1), and that A(x) = [aij(x)] is Lips-

chitz. Let 1 ≤ p < N
N−1 . Suppose that c0 in (2.2) satisfies

c0 <
1

SpC ′pE(h)
(4.2)

where C ′p and E(h) come from (2.11) and (2.4), respectively, and Sp ≥ 1 is a constant

from the inclusion Lp(Ω) ⊂ L1(Ω). Then, problem (1.1) admits a weak solution v such
that

v ∈
⋂

1≤r< N
N−1

W 1,r
0 (Ω).
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Moreover, the following estimate holds

‖v‖W 1,p
0 (Ω) ≤ C

[
[Eq(b)]

q + ‖g‖L1(Ω) + ‖µ‖M(Ω)

1− SpC ′pc0E(h)

]1/(1−q)

. (4.3)

Remark 4.1. As illustrative examples, Theorem 4.1 may be applied to problems
where the main operator is −∆ (i.e., A(x) = I), −div(a(x)∇u) for 0 < c ≤ a(x) ≤M
(i.e., A(x) = a(x)I), or −div(diag[aii]∇u), for 0 < c ≤ ai(x) ≤ M, among many
others. Regarding the lower order term H, we may take

H(x, u,∇u) = c0h(x)u+ b(x)|∇u|q + µ,

where

• h and b are any L∞-functions, ‖h‖L∞ 6= 0. Then we may take E(h) =
C‖h‖L∞ , for some C > 0 and c0 satisfying (4.2).
• Similarly, we may have b ∈ L1/(1−q)(Ω) (for instance, b(x) = |x|α, for any
α ≥ −N(1− q), or b(x) = |x|α log |x|, α > −N(1− q)) and h as in the above
item.
• Finally, our theorem applies to the standard and largely studied problems:
−∆u± |∇u|q = µ in Ω, with u = 0 on ∂Ω.

Proof of Theorem 4.1. Let 1 ≤ p < N
N−1 .

First consider sequences {Hn} ⊂ C(Ω× R× RN ) and {µn} ⊂ C1
0 (RN ) such that

Hn(x, r, ξ) :=

 −n, if H(x, r, ξ) ≤ −n,
H(x, r, ξ), if − n ≤ H(x, r, ξ) ≤ n,

n, if H(x, r, ξ) ≥ n,

and

lim
n→∞

∫
Ω

ξµ±n dx =

∫
Ω

ξ dµ± for all ξ ∈ C0(Ω). (4.4)

Now, µ±(Ω) ≥ lim supn→∞ µ±n (Ω). Then, for any α > 0, there is nα so that n ≥ nα
implies

‖µn‖M(Ω) = µ+
n (Ω) + µ−n (Ω) < µ+(Ω) + µ−(Ω) + α = ‖µ‖M(Ω) + α. (4.5)

From now on, we take n ≥ nα.
In what follows, we will apply a fixed point argument to find a solution for each of

the approximating problems{
Lw = Hn(x,w,∇w) + µn in Ω,
w = 0 on ∂Ω.

(4.6)

For that purpose, define the closed and convex set

Oλ := {v ∈W 1,p
0 (Ω) : ‖∇v‖Lp(Ω) ≤ λ}

for some λ > 0 to be determined. For v ∈ Oλ, let vn = Tn(v) be the weak solution to
(4.6) with right-hand side Hn(x, v,∇v) + µn. The existence of such vn is guaranteed
by Theorem 2.1 and Proposition 2.1 since Hn(x, v,∇v) + µn ∈ L1(Ω). In addition,
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by Theorem 2.1 again, we have the representation vn = Tn(v) = G[Hn(·, v,∇v)+µn],
and

‖∇vn‖Lp(Ω) ≤ C ′p
∫

Ω

(|Hn(x, v,∇v)|+ |µn|) dx. (4.7)

We will prove, for an appropriate λ̄, that Tn maps Oλ into itself. Take v ∈ Oλ. Then,
(4.7), the fact that |Hn| ≤ |H|, (2.2), and (4.5) yield

‖∇Tn(v)‖Lp(Ω) ≤ C ′p
[
c0

∫
Ω

h(x)|v| dx+

∫
Ω

b(x)|∇v|q dx+ ‖g‖L1(Ω) + ‖µ‖M(Ω) + α

]
.

Thus, appealing to (2.3) and (2.4) we have

‖∇Tn(v)‖Lp(Ω)

≤ C ′p
[
c0E(h)‖∇v‖L1(Ω) + [Eq(b)]

q‖∇v‖qL1(Ω) + ‖g‖L1(Ω) + ‖µ‖M(Ω) + α
]

≤ C ′p
[
c0E(h)Sp‖∇v‖Lp(Ω) + [Eq(b)]

qSqp‖∇v‖
q
Lp(Ω) + ‖g‖L1(Ω) + ‖µ‖M(Ω) + α

]
≤ SpC ′p

[
c0E(h)‖∇v‖Lp(Ω) + [Eq(b)]

q‖∇v‖qLp(Ω) + ‖g‖L1(Ω) + ‖µ‖M(Ω) + α
]
.

Then, since v ∈ Oλ we get

‖∇Tn(v)‖Lp(Ω) ≤ SpC ′p
[
c0E(h)λ+ [Eq(b)]

qλ
q

+ ‖g‖L1(Ω) + ‖µ‖M(Ω) + α
]
. (4.8)

Now consider

F(λ) = SpC
′
p

[
[Eq(b)]

qλq−1 +
‖g‖L1(Ω) + ‖µ‖M(Ω) + α

λ
+ c0E(h)

]
− 1,

and recall by the assumption on c0 that SpC
′
pc0E(h) < 1. Then, for

λ′ = SpC
′
p(‖g‖L1(Ω) + ‖µ‖M(Ω)) ≥ 1

(by (4.1)), we get F(λ′) > 0. On the other hand, taking

λ′′ =

[
SpC

′
p([Eq(b)]

q + ‖g‖L1(Ω) + ‖µ‖M(Ω))

1− SpC ′pc0E(h)

]1/(1−q)

and recalling that Sp ≥ 1 ≥ 1
C′p(‖g‖L1(Ω)+‖µ‖M(Ω))

, it follows that λ′′ > 1, λ′ < λ′′ and

F(λ′′) < 0 for all α < (‖g‖L1(Ω) + ‖µ‖M(Ω))[(λ
′′)q − 1]. Therefore there is 0 < λ ≤ λ′′

such that F(λ) = 0. Then, for such λ (4.8) implies

‖∇Tn(v)‖Lp(Ω) ≤ λ ≤
[
SpC

′
p([Eq(b)]

q + ‖g‖L1(Ω) + ‖µ‖M(Ω))

1− SpC ′pc0E(h)

]1/(1−q)

(4.9)

and we get Tn : Oλ → Oλ. Observe that λ̄ does not depend on n (but on α).

Next we prove that Tn is continuous. So, take uk → u in W 1,p
0 (Ω). Then

Hn(x, uk,∇uk) → Hn(x, u,∇u) in L1(Ω) since {Hn} is bounded in Ω × R × RN
and (uk, |∇uk|) → (u, |∇u|) a.e. in Ω. Thus, by continuity of G from L1 into W 1,p,
we obtain that Tn is a continuous operator.
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On the other hand, if {vk} is a (bounded) sequence in Oλ, {Hn(x, vk,∇vk)} is
bounded in L1(Ω) for each n. Hence, by Theorem 3.2 we can extract a convergent

subsequence of {Tn(vk)} in W 1,p
0 (Ω). Thus Tn is a compact operator.

Therefore, since Oλ is a convex and closed subset of W 1,p
0 (Ω), by Schauder’s fixed

point Theorem there is vn ∈ Oλ such that Tn(vn) = vn and vn solves (4.6), that is,∫
Ω

N∑
i,j=1

aij(x)
∂vn
∂xi

∂ϕ

∂xj
dx =

∫
Ω

Hn(x, vn,∇vn)ϕdx+

∫
Ω

µnϕdx, for all ϕ ∈ C∞c (Ω).

(4.10)
To finish the proof, we will prove that up to a subsequence {vn} converges to some v
and that v solves problem (1.1) by taking the limit in (4.10).

First, observe that {Hn(x, vn,∇vn)} is bounded in L1(Ω) since by (2.4) and (2.3):∫
Ω

|Hn(x, vn,∇vn)| dx ≤ C(λ̄+ λ̄q) + ‖g‖L1(Ω). (4.11)

Then, we use Theorem 3.2 to extract a convergent subsequence {vnk
} from vn =

G[Hn(·, vn,∇vn) + µn] in W 1,p
0 (Ω). In particular, there exists v ∈ W 1,p

0 (Ω)
such that Hnk

(x, vnk
,∇vnk

) → H(x, v,∇v), a.e. in Ω. Now we will prove that
{Hnk

(x, vnk
,∇vnk

)} is uniformly integrable in Ω. Let E ⊂ Ω be a Borel subset.
Then, ∫

E

|Hnk
(x, vnk

,∇vnk
)| dx ≤ C

[
‖h(vnk

− v)‖L1(E) + ‖hv‖L1(E)

]
+ C

[
‖b|∇vnk

−∇v|q‖L1(E) + ‖b|∇v|q‖L1(E)

]
+ ‖g‖L1(E).

(4.12)

Observe that by (2.4) and (2.3), hvnk
→ hv and b|∇vnk

|q → b|∇v|q in L1(Ω), and
hence in any measurable E ⊂ Ω. Let η > 0. Then there exist k0, γ0 > 0 so that
k ≥ k0 implies

‖hvnk
− hv‖L1(Ω) + ‖b|∇vnk

−∇v|q‖L1(Ω) <
η

4C
(4.13)

and for any |E| < γ0,

max{C‖hv‖L1(E), C‖b|∇v|q‖L1(E), ‖g‖L1(E)} <
η

4
. (4.14)

On the other hand, for each k ∈ {1, . . . , k0 − 1} there is γk > 0 such that

‖h(vnk
− v)‖L1(E) + ‖b|∇vnk

−∇v|q‖L1(E) <
η

4C
(4.15)

for all E with |E| < γk. Choose γ := min{γ0, γ1, . . . , γk0−1}. Then for any
|E| < γ we have by (4.12)-(4.15) that

∫
E
|Hnk

(x, vnk
,∇vnk

)| dx < η, for all k.
Therefore we can apply Vitali’s convergence theorem and get Hnk

(x, vnk
,∇vnk

) →
H(x, v,∇v) in L1(Ω).

Hence, letting n = nk in (4.10) and taking k → ∞, we obtain that v is a weak

solution to problem (1.1). Also, observe that v ∈W 1,r
0 (Ω) for all r ∈ [1, N/(N − 1)).

Indeed, v = G(H(·, v,∇v)+µ) and H(x, v,∇v) ∈ L1(Ω), hence by Theorem 2.1 v has
the desired regularity.
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Finally, by (4.9)

‖vnk
‖W 1,p

0 (Ω) ≤ Cλ ≤ C
[
SpC

′
p([Eq(b)]

q + ‖g‖L1(Ω) + ‖µ‖M(Ω))

1− SpC ′pc0E(h)

]1/(1−q)

.

Then, letting k →∞ yield (4.3). �

Remark 4.2. We observe that the existence of solutions stated in Theorem 4.1
remains valid if H has sub-linear growth in u of the form:

|H(x, r, ξ)| ≤ c0|u|l + b(x)|ξ|q + |g(x)|, l, q ∈ (0, 1),

and with no need of imposing a size condition in c0. Indeed, the function F adopts
the form

F(λ) = SpC
′
p

[
[Eq(b)]

qλq−1 +
‖g‖L1(Ω) + ‖µ‖M(Ω) + α

λ
+ c0E(h)λl−1

]
− 1.

Hence, the conclusion F(λ̄) = 0 for some λ̄ > 0, follows by taking appropriate values
of λ.

Remark 4.3. Theorem 4.1 may be compared to [5, Theorem 3.1] where it is proved
the existence of renormalized solutions for the p-Laplacian operator, and to the results
in the survey [29] and the references therein, where a sign condition in the lower order
term H is imposed. Here, the approach is different, appealing to the compactness of
the Green operator and fixed-point argument. Moreover, we provide estimates of the
solutions in terms of the data, which are, as we shall see below, useful to get stability
results. See also the Introduction for more related comments and references.

As a consequence of Theorem 4.1, we may establish the following stability results.
For simplicity, we state it for the model problem.

Corollary 4.1. Let{
−∆w ± εn|∇w|q = εnw + µεn in Ω,

w = 0 on ∂Ω.
(4.16)

for εn < 1/SpC
′
pE(1) and µεn

∗
⇀ µ for some µ ∈ M(Ω). Let uεn be the solution

obtained in Theorem 4.1 of (4.16). Then, there is a function u ∈ W 1,p
0 (Ω) such that

uεn → u in W 1,p
0 (Ω) and u is the only weak solution of{

−∆w = µ in Ω,
w = 0 on ∂Ω.

(4.17)

Proof. Let εnk
be a subsequence of {εn}. Now, taking ϕ ∈ C∞c (Ω), we have∫

Ω

∇uεnk
· ∇ϕdx± εnk

∫
Ω

|∇uεnk
|qϕdx = εnk

∫
Ω

uεnk
ϕdx+

∫
Ω

ϕdµεnk
(4.18)

and the following representation for uεnk

uεnk
= G

[
±εnk

|∇uεnk
|q + εnk

uεnk
+ µεnk

]
. (4.19)
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Now observe that [Eq(εnk
)]q = [Eq(1)]qεnk

≤ C for all k. Therefore, by (4.3)

‖∇uεnk
‖Lp(Ω) ≤ C

[
[Eq(εnk

)]q + ‖µεnk
‖M(Ω)

1− SpC ′pεnk
E(1)

]1/(1−q)

≤ C
[

1

1− SpC ′pεnk
E(1)

]1/(1−q)

.

Thus, by Poincaré’s inequality and the fact that ‖µεnk
‖M(Ω) ≤ C, we get that{

±εnk
|∇uεnk

|q + εnk
uεnk

+ µεnk

}
is bounded in M(Ω). Due to (4.19), Theorem 3.2

allows us to get a further subsequence, which we do not relabel, uεnk
and u ∈W 1,p

0 (Ω)

such that uεnk
→ u in W 1,p

0 (Ω). Reasoning as in the proof of Theorem 4.1 we may

pass the limit in (4.18) and get u solves (4.17). Hence, every subsequence of uεn has
a further subsequence converging, by uniqueness, to the same limit u. Therefore, the
whole sequence uεn converges to u. �

Remark 4.4. Other stability results may also be obtained: let {εn} be as in Corollary
4.1 and {uεn} the sequence of functions solving −∆w±|∇w|q = εnw+µεn in Ω, w = 0
on ∂Ω, with ‖µεn‖M(Ω) ≤ C. Then, we can reproduce the proof of Corollary 4.1 in a

simpler way applying (4.3) with Eq(1) to get a subsequence {εnk
} and u ∈ W 1,p

0 (Ω)

such that uεnk
→ u in W 1,p

0 (Ω) and u satisfies −∆u ± |∇w|q = µ in Ω, with u = 0

on ∂Ω, for µ such that µεn
∗
⇀ µ up to a subsequence in M(Ω). In general, the limit

u depends on the subsequence {unk
} since by [3], uniqueness does not hold for the

considered problems.

5. Existence for data in W−1,2(Ω)

The following necessary and sufficient conditions for solutions in W 1,2
0 (Ω) resembles

the linear case ([25, Theorem 5.2]). Note that it is not necessary to impose the
Lipschitz condition on A.

Theorem 5.1. Assume (H), where:

(i) c0 satisfies c0 < ν.c−1
Ω with cΩ > 0 so that ‖v‖W 1,2(Ω) ≤ cΩ‖∇v‖L2(Ω) for all

v ∈W 1,2
0 (Ω);

(ii) h, b ≡ 1 and g ∈ L2(Ω).

Then µ ∈ M(Ω) ∩W−1,2(Ω) if and only if problem (1.1) has a weak solution u ∈
W 1,2

0 (Ω).

Proof. Assume first that µ ∈ M(Ω) ∩W−1,2(Ω). We shall apply Theorem 2 in [24].
By Rellich-Kondrachov’s Theorem, assumption (1.1) in [24, Theorem 2] is satisfied.

Next, we define the operator A : W 1,2
0 (Ω)→W−1,2(Ω), by

〈A(u), v〉 :=

∫
Ω

N∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
dx−

∫
Ω

H(x, u,∇u)v dx,
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for u, v ∈ W 1,2
0 (Ω). To see that A is well-defined and that A(u) ∈ W−1,2(Ω) for all

u ∈W 1,2
0 (Ω), we first define r ∈ (1, N) by r = 2N

N+2−qN . Observe that

1

2∗
+

1

2/q
+

1

r
= 1.

Moreover, g ∈ [L2∗(Ω)]′ since L2(Ω) ⊂ [L2∗(Ω)]′. Hence, Hölder’s inequality and the
Sobolev’s imbedding theorem imply

| 〈A(u), v〉 | ≤ C(‖u‖W 1,2
0 (Ω)‖v‖W 1,2

0 (Ω)

+ |Ω|1/r‖|∇u|q‖L2/q(Ω)‖v‖L2∗ (Ω) + ‖g‖(L2∗ (Ω))′‖v‖L2∗ (Ω))

≤ C‖v‖W 1,2
0 (Ω).

(5.1)

Therefore A is well-defined and A(u) ∈ W−1,2(Ω) for all u. To mimic the decompo-
sition of the main operator in [24], we write

〈A(u), v〉 =

N∑
j=1

∫
Ω

Aj(x,∇u)
∂v

∂xj
dx+

∫
Ω

A0(x, u,∇u)v dx

where for ξ ∈ RN and x ∈ Ω, Aj(x, ξ) =
∑N
i=1 aij(x)ξi, (j = 1, . . . , N), and

A0(x, r, ξ) = −H(x, r, ξ). Now observe that for a.e. x ∈ Ω and all ξ ∈ RN ,

|Aj(x, ξ)| ≤
N∑
i=1

|aij(x)||ξi| ≤ max
1≤i,j≤N

‖aij‖L∞(Ω)|ξ|

and |A0(x, r, ξ)| ≤ C(|r|+ |ξ|+ |g(x)|+1), where g ∈ L2(Ω). Hence assumptions (1.3),
(2.2)1 and (2.2)2 from [24, Theorem 2] hold true. We finally check that A is coercive,

that is,
〈A(u), u〉
||u||W 1,2

0 (Ω)

→∞ as ||u||W 1,2
0 (Ω) →∞. As in (5.1), we obtain∣∣∣∣ ∫

Ω

H(x, u,∇u)u dx

∣∣∣∣ ≤ c0‖u‖2W 1,2(Ω) + C
(
‖∇u‖q+1

L2(Ω) + ‖g‖(L2∗ (Ω))′‖∇u‖L2(Ω)

)
.

(5.2)
Hence, (2.1) and (5.2) yield

〈A(u), u〉
||u||W 1,2(Ω)

≥ (ν.c−1
Ω − c0)‖u‖W 1,2(Ω) − C

(
‖∇u‖qL2(Ω) − ‖g‖(L2∗ (Ω))′

)
→∞,

as ||u||W 1,2
0 (Ω) →∞. In this way, by [24, Theorem 2], there is u ∈W 1,2

0 (Ω) so that

〈A(u), v〉 = 〈µ, v〉 , for all v ∈W 1,2
0 (Ω). (5.3)

Thus, (5.3) holds for any ϕ ∈ C∞c (Ω). Hence, u is a weak solution of (1.1).

Next, suppose that problem (1.1) has a weak solution u in W 1,2
0 (Ω). By a density

argument we have for any ϕ ∈W 1,2
0 (Ω)∣∣∣∣ ∫

Ω

ϕdµ

∣∣∣∣ = | 〈A(u), ϕ〉 | ≤ C‖ϕ‖W 1,2
0 (Ω).

Hence, µ ∈M(Ω) ∩W−1,2(Ω) �
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A measure is not the most general datum for (1.1). Indeed, Theorem 5.1 holds true

for data in W−1,2(Ω), and for solutions u ∈ W 1,2
0 (Ω) of (1.1) in the sense of (5.3).

Hence, we have the following result

Theorem 5.2. Assume (H) and (i) and (ii) from Theorem 5.1. If F ∈ W−1,2(Ω),

then problem (1.1) has a solution u ∈W 1,2
0 (Ω) in the sense∫

Ω

N∑
i,j=1

aij
∂u

∂xi

∂v

∂xj
dx =

∫
Ω

H(x, u,∇u)v dx+ 〈F, v〉 for all v ∈W 1,2
0 (Ω).

Remark 5.1. For diagonal A = [aij ] but depending also on u and ∇u, and W−1,2

data, an existence result for non coercive problems having first order terms with
sub-linear growth has been obtained for instance in [14].
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[15] V. Ferone, F. Murat, Nonlinear problems having natural growth in the gradient: An existence

result when the source terms are small, Nonlinear Analysis, 42(2000), 1309-1326.

[16] V. Ferone, R. Posteraro, On a class of quasilinear elliptic equations with quadratic growth in
the gradient, Nonlinear Analysis, Theory, Method and Applications, 20(6)(1993), 703-711.

[17] A. Figalli, I. Peral, E. Valdinoci, Partial Differential Equations and Geometric Measure Theory,

Springer 2014.
[18] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-

Verlag, 2001.
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