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Self-similarity of pressure profiles during forced granular flows
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We present measurements of the vertical stress profile σ on the base of flat-bottomed cylindrical silos
discharged through an orifice centered on its base. An overweight forces the material on top of the free surface.
The mean bottom pressure σ (z, D,W ), with z the height of the granular column, D the silo diameter, and W the
mass of the overweight, increases significantly at the end of the discharge. Inspired by early models of stress
distribution, we show that σ measured at z = 0 can be rescaled to yield a collapse of the data, as a function
of z/D, for all D and W explored. We also show that the profile σ (r) is self-similar as a function of the radial
coordinate r and can be rescaled to collapse the data for different z, D, and W . Although the model correctly
predicts the functional dependences, it fails in quantitative terms. These results challenge our understanding of
free and forced granular flows through orifices.
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Introduction. When a dense granular material flows un-
der gravity through a constriction, some peculiar phenomena,
when contrasted against inviscid fluids, become apparent [1].
Among them, the flow rate remains constant [2,3] (or slightly
increases) while the containing vessel is emptied. This is
often attributed to the also peculiar Janssen effect [1,4], which
renders the bottom pressure of a static granular column in a
vertical silo almost independent of the column height (if the
height is above twice the container diameter). However, under
flowing conditions, the bottom pressure and flow rate seem to
be decoupled [5–11].

Walker [12] improved Janssen’s model of the bottom pres-
sure in a flowing silo by using the Coulomb yield criterion and
the Mohr circle scheme to put Janssen’s redirection factor K
as a function of the internal angle of friction and the wall fric-
tion. Walters elaborated these ideas and included predictions
for forced flows [13]. The main result of the Walker-Walters
(WW) approach is that in the flowing regime, the pressure
depends on a new parameter that replaces the well-known
Janssen K factor. It is noteworthy that the pressure is not
predicted to depend on the velocity of the flow. More than
30 years later, Bertho et al. [14] experimentally demonstrated
that the pressure at the bottom of a cylindrical vertical tube for
a moving column of grains is much more reproducible than
for a static material (due to the well-defined dynamic friction
force) and independent of the velocity over four orders of
magnitude. This validates in part Walter’s ideas, which were
not recognized at the time. More recently, Windows-Yule et al.
[15] have reproduced this finding numerically under more
general flowing conditions, using laterally moving sidewalls.
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To put models to the test, recent studies have explored the
effect of forcing the granular flow via mechanisms additional
to the weight of the granular material [16–19]. If an extra
weight is added to the top of the granular column, the flow rate
and the bottom pressure can be increased significantly, thus
refuting some early predictions about the flow of forced gran-
ular flows [20]. The traditional free-fall arch approximation,
which has been challenged [21] but leads to the well-known
Beverloo equation [22], becomes hopeless in these systems
since the flow rate does not remain constant during discharge.
Recent approaches based on energy balance [23] may help
in this respect. However, there is a lack of validated models
and empirical relations for the scaling of pressure with silo
diameter, column height, and external forcing.

In this Letter we present a series of experiments of forced
silo discharge for a range of silo diameters and external forc-
ing. We measure the evolution of the vertical pressure profile
at the base of the silo using a capacitive sensor array. We show
that the mean pressure is consistent with the WW model [13].
Significantly, the bottom pressure, irrespective of the forcing
condition, can be collapsed into a single master curve when
the column height is scaled with the silo diameter and the
mean stress is normalized with the difference between the
pressure exerted by the piston and the asymptotic pressure
measured for a very tall granular column. The radial pressure
profile measured at the silo bottom is nonuniform, which con-
tradicts Walter’s starting hypothesis and can be collapsed for
the various z, D, and W . These collapses align with previously
reported self-similarity properties in the silo discharge process
[21,24].

Experimental setup. Silos are made of stainless-steel
(0.5–1.5)-m-long cylindrical tubes of internal diameters D =
0.048, 0.056, 0.067, and 0.080 m. The base is separated from
the walls and has a circular hole (diameter D0 = 0.014 m)
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FIG. 1. (a) Photo of the experimental setup (we set a glass tube
to make the material visible to the reader). (b) Snapshot of the
capacitive sensor array response, including schematics of the silo
base. (c) Mean normal pressure σ at the base (D = 0.048 m and the
initial column height is 0.60 m) during discharge for free (W = 0 kg,
pink) and forced (W = 6.0 kg, green) flow as a function of time. Five
realizations are shown for each W . The inset shows a closeup of the
shadow region.

at its center. Glass beads (material density ρ = 2500 kg/m3,
Young’s modulus E = 70 GPa, and diameter 2.0 ± 0.2 mm)
are used as the granular material. Forcing is done using cylin-
drical pistons that fit in the corresponding tubes with a gap
smaller than 1.0 mm [see Fig. 1(a)]. These pistons can have
weights W up to 8.0 kg. The base and the vertical walls are
separated by less than 1.0-mm spacers that leave a gap wide
enough to fit a capacitive sensor array while preventing the
glass beads from leaking through the gap. The sensor and
base are taped to create a homogeneous leveled surface. The
250-µm-thick array sensor (Tekscan Pressure Mapping Sensor
5051-High sensitivity) consists of a square 44 × 44 matrix of
sensors of 1.27 × 1.27 mm2 each. This array is placed on the
base of the silo and covers only part of the cross section, just
reaching the edge of the central orifice [see Fig. 1(b)]. Sensors
provide 256 pressure levels acquired at 100 samples per sec-
ond. We adjusted the sensitivity of sensors to span the range
of pressures observed in the experiments. Only a few sensors
were observed to saturate for the highest pressures tested. The
sensor has a different (smoothly nonlinear) response under
static and dynamic conditions. We calibrated the taped sensor
by dragging on top of it known weights supported by a layer of
2-mm glass particles at a low velocity (0.3 cm/s) compatible
with the radial velocity of the grains during discharge. Details
of the procedures used to calculate the mean pressure and
pressure profiles can be found in the Supplemental Material
[25]. An electronic balance (AND EK-4100i, 0.1 g, 10 Hz)
beneath the silo records the total weight of grains poured
and a proximity ultrasound sensor (Pasco PS-2103A, 1.0-mm
precision, 50 Hz) on top of the silo measures the position of
the top piston as a function of time. We confirmed that the
column height and discharged mass are proportional to each
other throughout the discharge corresponding to a constant
bulk density (ρB = 1590 ± 20 kg/m3).

Results. Figure 1(c) shows the mean normal pressure σzz

on the base (we drop the subscript in the following) as a

FIG. 2. Mean bottom pressure σ as a function of z for (a) D =
0.048 m and different W and (b) W = 6.0 kg and different D. (c) and
(d) Same data as in (a) and (b) using rescaled pressures and rescaled
column height [see Eq. (2)]. The solid line corresponds to Eq. (2)
using β = 0.168 in both (c) and (d). The insets show the saturation
pressure σ∞ as a function of (c) W and (d) D. Error bars correspond
to the standard deviation over realizations. The solid lines correspond
to σ∞ = gρbD/4β as predicted by Eq. (1).

function of time during discharges made with and without
overweight. After the filling process but before starting the
discharge, σ shows constant plateaus with high variability
between different realizations. However, as soon as the ma-
terial flows, the stress rapidly evolves to the same value in
all realizations. The dynamic pressure plateau is consistent
with a dynamical Janssen effect [14,26–28] when the height of
the material is large (we denote this value by σ∞). However,
σ increases significantly in the final stages of the discharge
for W = 6.0 kg, in agreement with recent studies [16]. In the
results reported below, averages over five independent realiza-
tions of the experiment are used. At the end of the discharge,
when the height z of the granular column drops to zero,
the pressure reaches σ0, the pressure exerted by the piston
alone (σ0 = 4W g/πD2, with g the acceleration of gravity). In
Figs. 2(a) and 2(b) we plot σ for various W and D as a function
of the column height z. As expected, an increase of W or a
decrease of D increases the pressure sooner (at higher z during
discharge). Notably, the pressure plateau σ∞ is the same for all
the overweights explored but grows monotonically with the
silo diameter.

The traditional Janssen theory writes the force balance on
any horizontal slice of the material inside the silo. It assumes
that (i) the z and r directions coincide with the principal
stresses (Mohr’s circle) and (ii) the stresses are uniform across
the slice [2]. Then the shear stress at the wall is estimated as
σ w

rz = μwσrr (wall yield locus) and assumes the constitutive
relation σrr = Kσzz, with K the so-called Janssen distribution
factor. Hence, σ w

rz = βσzz with β = μwK . If the material is
in the critical state of internal yield, then K can only take
two possible values: If the z direction is the major principal
stress, then we say that the system is in an active Rankine
state and K < 1; if it is the minor principal stress we call
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this a passive Rankine state and K > 1 [2]. The active state
corresponds to the static conditions, whereas the passive state
develops during discharge [2]. The WW model improves the
analysis by considering that (i) the stresses are not uniform in
the slice and (ii) the principal stresses at the wall form an angle
ε with the z and r directions [12,13]. The expression obtained
by Walker and Walters for the stress normal to the silo base
filled up with grains to a height z and with an overweight of
mass W for a discharging (passive Rankine state) column is
[12,13]

σ (z) = gρbD

4β
(1 − e−4βz/D) + 4gW

πD2
e−4βz/D, (1)

with β a corrected Janssen-like constant that is a function
of the internal and wall friction angles (see [25] for details).
The limits z → ∞ and z → 0 are σ∞ = gρbD

4β
and σ0 = 4gW

πD2 ,
respectively. In the insets of Figs. 2(c) and 2(d) we show the
measured σ∞ as a function of W and D, respectively. These
plots confirm that the saturation pressure does not depend on
W and is linear on D. Both data sets can be fitted indepen-
dently according to σ∞ = gρbD

4β
, giving β = 0.168 ± 0.02.

Let us define a rescaled pressure σ ∗(z∗) as

σ ∗(z∗) = σ (z) − σ∞
σ0 − σ∞

⇒ σ ∗(z∗) = e−4βz∗
, (2)

with z∗ = z/D. As we can see, σ ∗(z∗) should be the same for
experiments with different W and D according to the WW
analysis. Figures 2(c) and 2(d) show σ ∗ for various D and W
tested, where we calculate the theoretical values of σ∞ and
σ0 setting β = 0.168, following the fits shown in the insets.
The data collapses onto a single functional dependence as
predicted by Eq. (2) with β = 0.168. These results confirm
that a single parameter β controls the saturation pressure and
defines the exponential growth scale under forced conditions.
It is worth mentioning that the pressure is independent of the
flow velocity, as shown by Bertho et al. [14]. Hence, using a
different orifice diameter will not alter the pressure law.

We estimate the particle-wall dynamic friction coefficient
as μd = 0.170 ± 0.005 and the internal friction as μint =
0.46 ± 0.02 (see the Supplemental Material [25]). The WW
model predicts β = 0.38 for these values, more than twice
the value we obtained by fitting the pressure data. Below we
discuss the possible mechanisms behind this discrepancy.

It is known that the pressure on a flat-bottomed silo is not
homogeneous in either static [29] or dynamic [8] conditions.
Figures 3(a) and 3(b) show the pressure over different concen-
tric rings as a function of z and Figs. 3(c) and 3(d) the radial
pressure profiles for the smallest and the largest silos studied
at different stages of the discharge when the same overpres-
sure σ0 = 15.5 kPa is applied. The profiles depend nonlinearly
on r and grow on average as the discharge proceeds. The
profiles show clear oscillations because sensors are smaller
than the grain size and can capture some degree of layering in
the radial direction. Significantly, all the profiles can be col-
lapsed by rescaling r by the silo radius D/2 and the pressure
by the maximum stress measured next to the wall [Fig. 3(e)].
This collapse also works for all W and D, not only for the
same applied overpressure [see Fig. 3(e)]. Previous studies,
without overweight, have found more complex profiles [8,29].
However, in those investigations, the size of each sensor was

FIG. 3. (a) and (b) Bottom pressure as a function of z over
different concentric rings (2.56 mm wide) for (a) D = 0.048 m
and (b) D = 0.080 m with equal overpressure (σ0 = 15.5 kPa).
(c) and (d) Radial profiles of the normal pressure σ (r) on the silo
base for (c) D = 0.048 m and (d) D = 0.080 m at various column
heights z during the discharge. (e) Pressure profile normalized by
the maximum pressure σwall next to the silo wall as a function of
rescaled radius [symbols are as in (c) and (d)]. We include data
for D = 0.056 m (pink stars) and D = 0.067 m (blue pentagons)
using an overweight W = 8 kg to show that the collapse works even
if the forcing pressures differ. The dashed line corresponds to the
Walters-Nedderman model [25].

larger than the particle size, and the grain size to silo diameter
was significantly larger than in the present experiments. Wal-
ters and Nedderman made some attempts to extend Walters’
calculations [30] and found a transcendental equation for the
radial profile of the vertical stress [25]. Although the collapse
in Fig. 3(e) aligns with the original assumptions used to derive
β [12], the actual radial dependence of the model profile
[dashed line in Fig. 3(e)] disagrees with the experiments. The
Walters-Nedderman derivation does not consider the effect of
the nearby orifice and should be valid only at a higher plane
away from the silo base. Hence, the disagreement between the
expected and fitted β values discussed above could be related
to the region where we perform the measurements (next to
the orifice). Moreover, Peralta et al. [31] showed that the
material keeps memory of the filling protocol during a (not
forced) silo discharge. Filling the silo with a hopper (as we do
in this work), they obtained a Janssen-like factor β = 0.155.
However, if the filling is distributed (rainlike), β becomes 0.35
(similar to the WW prediction above). One may speculate
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that a sequential protocol homogenizes the stress distribution,
making the WW approximations more suitable.

Conclusion. We have shown that the average normal pres-
sure at the base of a forced discharging silo is consistent with
the WW analysis [13]. Accordingly, the average stress can
be collapsed into a single master curve using three parame-
ters defining the problem scales, i.e., the silo diameter, the
forcing overweight, and the Janssen-like β parameter [28].
Importantly, β depends not only on the internal friction but
also on the material-wall friction. Radial pressure profiles are
self-similar during discharge when normalized by the maxi-
mum pressure (next to the wall) for all silo diameters, forcing
conditions, and column heights. More than ten years ago,
Janda et al. demonstrated that the velocity and density profiles
during free silo discharge are self-similar [24] and later Rubio-
Largo et al. showed numerically that the vertical kinetic stress
is self-similar too [21]. The present results generalize these
ideas by demonstrating that the stress across the silo base is

self-similar and is governed by a single scale, even in a forced
(time-dependent) discharge regime.

The value of β obtained from the experiments deviates
from the WW prediction. The disagreement seems to be
caused by simplifications such as not accounting for memory
effects and/or the presence of the orifice. Our result poses a
challenge for developing a general model to predict granular
flow and stress field, including forced systems. Recent ap-
proaches, like the local [32] and nonlocal [33] μ(I ) rheology,
could be particularly helpful in future developments.
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