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a b s t r a c t 

Modern financial systems are greatly entangled. They exhibit a complex interdependence, in- 

cluding a network of bilateral exposures in the interbank market. The most frequent inter- 

action consists in operations where institutions with surplus liquidity lend to those with a 

liquidity shortage. These loans may be interpreted as links between the banks and the links 

display features in some way representative of scale-free networks. While the interbank mar- 

ket is responsible for efficient liquidity allocation, it also introduces the possibility for systemic 

risk via financial contagion. Insolvency of one bank can propagate through links leading to in- 

solvency of other banks. In this paper, we explore the characteristics of financial contagion 

in interbank networks whose distribution of links approaches a power law, as well as we im- 

prove previous models by introducing a simple mechanism to describe banks’ balance sheets, 

that are obtained from information on network connectivity. By varying the parameters for 

the creation of the network, several interbank networks are built, in which the concentration 

of debt and credit comes from the distribution of links. The results suggest that more con- 

nected networks that have a high concentration of credit are more resilient to contagion than 

other types of networks analyzed. 

© 2015 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The financial crisis during 20 07–20 08 highlighted, once

again, the high degree of interdependence of financial sys-

tems. A combination of excessive borrowing, risky invest-

ments, lack of transparency and high interdependence led

the financial system to the worst financial meltdown since

the Great Depression. An increasing interest in financial

contagion, partially motivated by the crisis, gave rise to
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several works in this field in the last years (see, for example,

[1–4] ). 

The interdependence of financial systems is manifested in

multiple ways. Financial institutions are connected through

mutual exposure in the interbank market, through which in-

stitutions with surplus liquidity can lend to those with a liq-

uidity shortage. Equally important, financial institutions are

indirectly connected because they are exposed in the same

assets and share the same depositors. 

With respect to the direct connection from having mutual

exposure, the structure of interdependence can be easily

illustrated in a visual representation of a network, in which

the nodes of the network are financial institutions, while

the links are the loans–debts between nodes. The direction

of the link indicates the cash flow at the time of debt re-

payment (from debtor to creditor) as well as the direction
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of the impact or financial loss if borrowers default on their 

repayment. Theoretical works [5 , 6] have shown that the 

possibility of contagion via mutual exposure depends on the 

precise structure of the interbank market. In recent studies, 

different models have been used to generate artificial inter- 

bank networks, in order to identify whether a given network 

is more or less prone to contagion. 

Nier et al. [7] simulate contagion from the initial fail- 

ure of a bank in an Erdös–Rényi random network, finding a 

negative nonlinear relationship between contagion and bank 

connectivity. An increase in the amount of interbank expo- 

sure initially has no effect on contagion, since the losses 

are absorbed by each affected node. However, as the num- 

ber of connections rises, contagion increases to the point 

that a further increase in connectivity causes contagion to 

decline. Studying a similar model on a power-law network, 

Cont and Moussa [8] find results similar to those of Nier 

et al. [7] regarding the relation between connectivity, the 

level of capitalization, and contagion. Battiston et al. [9] sim- 

ulate contagion in a regular network and find a nonlinear re- 

lationship between connectivity and contagion, but with the 

opposite effect: initially, the increase in the number of con- 

nections decreases network contagion, while later additions 

cause contagion to increase. Ladley [10] evaluates the rela- 

tion between connectivity and contagion in a partial equilib- 

rium model of heterogeneous banks interacting in the inter- 

bank market. The author shows that, under small systemic 

shocks, higher connectivity increases resilience against con- 

tagion, while larger shocks have the opposite effect. The dif- 

ferences in the results indicate that the possibility and extent 

of contagion depend considerably on the structure of the net- 

work and the specific assumptions of each model. 

Empirical studies reveal that some interbank networks 

have features of scale-free networks: this means that the dis- 

tribution of connections among banks follows a power law 

[11 –14] . However, it is worth to note that other interbank 

networks do not present scale-free characteristics (on the 

e-MID electronic money market, see, e.g., ref. [15] ). Based 

on this stylized fact, Montagna and Lux [1] simulate net- 

works whose links distribution follows power laws in order 

to evaluate the relevance of some known quantities (like the 

size of the banks) for contagion measures. More recent stud- 

ies have emphasized core-periphery structures as relevant 

mechanisms in interbank network formation [2 , 15] . In such 

models, the idea is that banks organize themselves around a 

core of intermediaries, giving rise to a hierarchical structure 

(interbank tiering). 

In general terms, some of the most significant features re- 

ported in the literature can be summarized as follows: 

1. Networks have a low density of links, that is, they are 

far from complete. 

2. They exhibit asymmetrical in-degree and out-degree 

distributions. 

3. They exhibit approximate power law distributions 

for in- and out-degree distributions whose exponent 

varies between 2 and 3. 

A characteristic reported in ref. [12] in a study of the 

Brazilian network is also worth noting: there is a positive as- 

sociation between the size of the exposure (assets) and the 

number of debtors (in-degree) of an institution and a positive 
association between the size of liabilities and the number 

of creditors (out-degree) of an institution. More (less) con- 

nected financial institutions have a larger (smaller) exposure. 

The goal of this paper is to identify, through simulations 

of networks whose distributions approach power laws, how 

scale-free networks behave with regard to financial conta- 

gion via mutual exposure and which characteristics make a 

given network more or less prone to propagate crises. Our 

particular interest is in evaluating the role of the exponents 

that characterize a scale-free network, because these expo- 

nents determine the concentration of debt (out-degree) and 

credit (in-degree) in the financial network. We construct 

networks whose connectivity distribution approaches a 

power law using the algorithm introduced by Bollobás 

et al. [16] . In addition to consider the network structure, 

we have also developed a simple method to determine the 

banks’ balance sheets from the information of connectivity 

of the interbank network. By varying the parameters for 

the creation of the network, several interbank networks are 

built, in which the concentration of debt and credit comes 

from the distribution of links. Three main types of interbank 

network are analyzed for their resilience to contagion: (1) 

those where the concentration of debt is greater than the 

concentration of credit, (2) those where the concentration 

of credit is greater than the concentration of debt, and 

(3) those with similar concentrations of debt and credit. 

For all the networks that we have generated, the financial 

contagion starts with the failure of a single node, which 

affects neighboring nodes by defaulting on its obligations in 

the interbank lending market. Thus, this work focuses on the 

problem of credit risk, disregarding other equally important 

sources of contagion, as the risk of adverse shocks spreads to 

several institutions at the same time. 

The paper is structured as follows: Section 2 describes the 

model used in the simulation of financial networks and the 

balance sheet of each node. Section 3 introduces the method 

used to simulate financial contagion and presents impact in- 

dices, by which we evaluate the nodes with respect to their 

default effect. Section 4 presents the results of the various 

simulations performed, and Section 5 summarizes the main 

conclusions. 

2. Generating scale free bank networks 

In their study on scale free networks, Barabasi and Albert 

(BA) [17] propose a preferential attachment mechanism to 

explain the emergence of the power-law degree distribution 

in nondirected graphs. The algorithm proposed by Bollobás 

et al. [16] is a generalization for directed networks of the 

model developed by Barabasi and Albert [17] . The network 

is formed by preferential attachment that depends on the 

distribution of in-degree, k in , and out-degree, k out . This al- 

gorithm has the advantage of producing different exponents 

for the in and out degrees, which are necessary to reproduce 

the characteristics of real networks. The following procedure 

describes the steps for generating the network according to 

[16] . 

Let α, β , γ , δin and δout be non-negative real numbers 

such that α + β + γ = 1 . Let G 0 be an initial network, that

we assume as two nodes connected through two directed 

links, and let t be the number of links of G . At each step, t ,
0 0 
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starting with t = t 0 + 1 , we add a new link to the network, so

that in step t the network has t links and a random number

of nodes, n ( t ). At each step the addition of the new link may

be accompanied or not by adding a new node, according to

the following method [16] : 

• Adding a debtor node: With probability α, we create a

new node v with a link from v to an existing node, u , se-

lected with probability: 

p(u = u i ) = 

k in (u i ) + δin 

t + n (t) δin 

(1)

• Adding a link, with no new nodes: With probability β , we

select an existing node v with probability: 

p(v = v i ) = 

k out (v i ) + δout 

t + n (t) δout 
(2)

and add a link from v to an existing node u , chosen with

probability: 

p(u = u i ) = 

k in (u i ) + δin 

t + n (t) δin 

(3)

• Adding a creditor node: With probability γ , we add a new

node u with a link from an existing node v to u , where v is

selected with probability: 

p(v = v i ) = 

k out (v i ) + δout 

t + n (t) δout 
(4)

where k in ( u i ) is the in-degree of node u i and k out ( v i ) is the

out-degree of node v i . Since the probability β refers to the ad-

dition of a new link without the creation of a node, increasing

the value of β implies increasing the average network con-

nectivity. In turn, the parameters α and γ are related to the

addition of new nodes while increasing the connectivity of

existing nodes. On the other hand, δin and δout correspond to

a fraction of the probability independent of the degree of the

recipient node. So, in the limit of both δs going to zero and β
going to zero one recovers the original BA algorithm. 

Bollobás et al. [16] show that, when the number of nodes

goes to infinity and the connectivity grows, one obtains: 

p(k in ) ∼ C IN k 
−X IN 
in 

(5)

p(k out ) ∼ C OUT k 
−X OUT 

out (6)

where: 

X IN = 1 + 

1 + δin (α + γ ) 

α + β
(7)

X OUT = 1 + 

1 + δout (α + γ ) 

β + γ
(8)

The limit N → ∞ obviously can not be achieved, but the

result is valid when the number of nodes grows and we con-

sider the more connected ones, i.e., power laws for k in and

k out will emerge in the tail of the distribution of large net-

works. 

We want to compare networks with different values for

X IN and X OUT (featuring different concentrations of k in and

k out ), while keeping other characteristics similar, such as av-

erage connectivity and total concentration of links distribu-

tion. We are particularly interested in networks with values

of X and X around 2 and 3, in agreement with estimated
IN OUT 
empirical values (for example, [11 –13] ). We also restrict the

degrees of freedom of the model, imposing the following

constraints on the parameters: 

α + γ = 0 . 75 and δin + δout = 4 (9)

We consider δin and δout with ratios 1:3 or 3:1, in or-

der to accentuate the asymmetry of the network. In addition

to these constraints, we will cover the spaces of parameters

α × γ and δout × δin by sweeping the following radial lines: 

α = 

δout 

δin 

γ → α = 

4 − δin 

δin 

γ (10)

The intersection points of Eq. 10 with constraints 9 give us

the set ( α, γ , δin , δout ), which in turn define pairs ( X IN , X OUT )

as shown in Fig. 1 . 

Using the Eqs. 9 and 10 we restate the parameters α, β ,

γ and δout as functions of δin , and replacing such expressions

in the equations for X IN and X OUT respectively, we obtain two

parametric equations: 

X IN = 1 + 

16 + 12 δin 

16 − 3 δin 

and X OUT = 1 + 

68 − 9 δin 

4 + 3 δin 

(11)

from which we finally have: 

X OUT = 

X IN + 15 

X IN − 1 

(12)

The networks constructed using relationship 12 are there-

fore generated through variation of a single degree of free-

dom, having similar average connectivity and link concen-

tration (limited by the constraints 9 ), differing in the value

of pairs ( X IN , X OUT ). The exponent of a power law distribu-

tion reflects the concentration of the distribution: a smaller

absolute value of the exponent corresponds to a more con-

centrated distribution. Therefore, differences between expo-

nents X IN and X OUT represent differences between the con-

centrations of the in and out degree distributions. 

To study risk propagation we have selected three points

on the curve in Fig. 1 ( Eq. 12 ), representing three distinct net-

works, denominated as GD 0 , S 0 and GC 0 . The network GD 0 is

more concentrated in debtor side: with a higher concentra-

tion of debts than credits it is generated so that the largest

banks in the network are major debtors of the system. The

network GC 0 has higher concentration of credits: the biggest

banks are major creditors of the network. The network S 0 cor-

responds to the symmetric case, in which the concentration

of debts and credits are similar. 

One remarks that the choice of the parameters generates

values of the exponents between 5 and 8 which are much

higher than the observed in real networks. However, one

should take in consideration that we are going to simulate

small networks (10 0 0 nodes, in agreement with real finan-

cial networks, for example, [11 , 13 , 18] ), and in this case the

estimated exponents are well below the limit N → ∞ . In-

deed, generating networks of 10 0 0 nodes with the selected

parameters, we obtain exponents between 2.2 and 3.2. The

estimation of the exponents of the power law of each distri-

bution is done using the maximum likelihood estimator for

discrete power laws, according to [19] . 

In order to complete the information about an interbank

network, it is necessary to assign weights to the links, since

the weights represent the magnitude of exposures between
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Fig. 1. Parameter space and space of exponents: spaces α × γ and δout × δin are represented with origin in the upper right corner and the space of exponents 

X IN × X OUT with origin at the bottom left. 

 

 

 

 

banks. The sum of in-degree weights of a bank, i , represents 

its applications in other institutions of the financial system 

(loans to other banks), a variable that we define as bank as- 

sets, BA i . The sum of out-degrees weights represents the to- 

tal obligations of i to other financial institutions (loans from 

other banks), which we call bank liabilities, BL i . If there is a 

link from bank j to bank i , we define the exposure of bank i to 

j by w ji , such that: 

BA i = 

∑ 

j∈{ k i 
in 
} 
w ji (13) 

where { k i 
in 
} is the set of banks having obligations to the bank 

i . Similarly, if there is a link from bank i to bank j , we define

the obligation of bank i to bank j by w ij , such that: 

BL i = 

∑ 

j∈{ k i out } 
w i j (14) 

where { k i out } is the set of banks to which bank i has obliga- 

tions to pay. 

In a study on the Brazilian interbank network, [12] 

highlight the non-linear positive relationship between 

link weights and connectivity of nodes in line with the 

widespread notion that the size of balance sheets and con- 

nectivity of banks are positively related [20] . From this as- 

sumption we define the following expression for the weight 

of a link from i to j : 

w i j = 

k i out · k j 
in 

k max 
out · k max 

in 

(15) 

In Eq. 15 , k max 
in 

and k max 
out denote the maximum values of k in 

and k out found in the network. 

Once established the values of bank assets and bank 

liabilities, BA i and BL i , we define the other elements of the 

balance sheet: nonbank assets, NBA i (all applications except 

interbank ones), nonbank liabilities, NBL i (funding from 

outside the system) and equity, E . 
i 
For each bank, i , the balance sheet obey the identity: 

BA i + NBA i = BL i + NBL i + E i (16) 

Reflecting the minimum capital regulations of Basel Ac- 

cords we set equity of each bank as a proportion of its assets: 

E i = λi (BA i + NBA i ) (17) 

where λi represents the capital/assets ratio. 

For the simulations in this work we will adopt three val- 

ues of capital/assets ratio: the undercapitalized case, with 

λ = 0 . 01 , and values λ = 0 . 05 and λ = 0 . 1 , consistent with

the empirical values observed [21] . For each bank the cap- 

ital/asset ratio is extracted from a normal distribution λi ∼
N ( λ, σ ) subject to the constraint λi > λ, i.e., σ is a stochastic

positive deviation from the minimum λ, characterizing the 

heterogeneity of banks as regard to capitalization. The simu- 

lations are performed using σ = 0 . 01 . 

To represent the ratio of nonbank assets to total assets, 

we introduce the following relation that defines the nonbank 

assets for each bank, i , as: 

NBA i = ξ (BA i + BL i ) (18) 

Defined this way, nonbank assets are a function of bank 

connectivity (via BA i and BL i ), being consistent with the as- 

sumption that the balance size is related to connectivity. Let’s 

use ξ as calibration factor to control the NBA i to total assets 

ratio. 

The identities 16 –18 form a system of equations by which 

the value of NBL i can be determined: 

NBL i = (1 − λi )(1 + ξ ) BA i + [(1 − λi ) ξ − 1] BL i (19)

For the simulations in this work we fix ξ = 2 in order to 

obtain balance sheets in which nonbank assets and nonbank 

liabilities represent on average more than 50% of total assets 

and liabilities. 
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The banks’ size, measured as the magnitude of their total

assets ( NBA i + BA i ), presents a distribution with characteris-

tics similar to the distribution of links, but with estimated ex-

ponents ranging between 1.2 and 1.5, thereby having higher

concentration. In fact, the Gini coefficient for total asset con-

centration (Gini for the distribution of NBA i + BA i ) is 0.83 for

the network GC 0 , 0.80 for GD 0 and 0.78 for S 0 
1 . 

From the method described in this section we are able to

represent the balance sheet of each bank by using only in-

formation from the network and the parameters λ and ξ . In

the following section we will describe the cascade of failures

following the initial default of one bank of the network. 

3. Contagion in interbank networks: default cascade and 

default impact 

In this section we present the methodology used to eval-

uate the propagation of losses in the interbank network. We

simulate the insolvency of a single bank, exposed to an exter-

nal shock represented by the total loss of value of its nonbank

assets. Each bank is tested independently and the impact of

its default on the system evaluated. 

In a hypothetical scenario a bank, i , becomes insolvent,

being unable to completely fulfill its obligations. If at time t ,

bank j realizes that its counterparty i is unable to repay its

interbank liability w ij in full, then bank j must re-evaluate

its application in bank i , from w ij to w 

′ 
i j 

: (w 

′ 
i j 

− w i j ) < 0 .

This process adversely affect the capital of j , since the vari-

ation (w 

′ 
i j 

− w i j ) is incorporated as a loss. It happens that the

smaller value, w 

′ 
i j 
, the defaulting bank i can effectively afford,

depends on the financial conditions of other banks, banks for

which i had granted loans. Any further failure reduces the

value of assets, increasing the losses of banks that have al-

ready defaulted. 

Eisenberg and Noe [24] study the problem of calculating

the values w 

′ 
i j 

that banks would be able to pay at the time of

settlement of its multilateral obligations. Given the array of

mutual exposures, W , the problem is to determine the vector

of payments, p = (p 1 , p 2 , . . . , p n ) , where: 

p i = 

n ∑ 

j=1 

w 

′ 
i j (20)

The authors show that under mild regularity conditions,

there is a unique payment vector that settle the system, and

develop an iterative algorithm to solve the problem. In the

context of our work, where we have a single node initially

insolvent, the algorithm can be described as follows: 

1. Compute the losses to all banks resulting from the fail-

ure of bank i assuming that all other banks are able to

repay their liabilities. Stop if no other bank fails, oth-

erwise: 

2. Let j denote the bank or group of banks whose losses

exceed their equity. Compute the losses to all banks

resulting from the failure of banks i and j . Repeat step

2 until no further bank fails. 
1 The concentration of assets in real networks is also quite high, as re- 

ported in the literature. For example, [22] report a Gini of 0.88 for the Aus- 

trian network in 2002 and [23] reports a Gini of 0.90 for the United States in 

20 0 0. 

 

 

 

 

 

The algorithm described above allows us to calculate two

important measures to assess the impact of a bank failure

on the network: the Default Impact and Default Cascade . For

a bank i , the Default Impact, DI i , refers to the reduction in to-

tal assets of the financial system as a result of losses incurred

via contagion, as a proportion of total initial assets. If we de-

note the total assets of the system at the initial time as A 0

and at final time (after the external shock) as A t , the Default

Impact is given by: 

DI i = 

A 0 − A t − NBA i 

A 0 

(21)

The measure Default Cascade, DC i , refers to the number of

insolvent banks due to the failure of bank i , as a proportion of

the total number of banks of the network. Both Default Impact

and Default Cascade of a bank reveal how the network would

be affected by its failure, taking into account only the direct

effects of loss propagation through interbank exposures. 

4. Results 

In this section we present the results obtained in con-

tagion simulations for networks produced according to the

prescription presented in Section 2 . We consider three types

of networks as above defined: network GD 0 presenting a

higher concentration of debtors than creditors, network GC 0
with higher concentration of creditors and the symmetric S 0 ,

generated with equal concentrations. 

4.1. Default impact 

For each set of parameters that defines a network cate-

gory ( GD 0 , S 0 and GC 0 ) we performed 20 simulations, so that

the analysis is based on 20 realizations of networks of type

GD 0 , 20 realizations of S 0 networks and 20 realizations of GC 0
networks. For each generated network and for each bank, i ,

the Default Impact, DI i and Default Cascade, DC i , were calcu-

lated. The results presented in this section are for networks

with 10 0 0 nodes, with capital level λ = 0 . 05 . 

Fig. 2 shows the ranking of banks for the three networks,

in decreasing order of DI i . The values are average values for

each ranking position, for example, for each network type the

greater Default Impact (first ranking position) is the average

of greater impacts for 20 simulations. Equivalently, the sub-

sequent positions of the ranking are average values. 

Its possible to see that the difference between the three

types of networks is more pronounced in the first ranking

positions, although these positions show greater dispersion

around the mean value. 

The area under the ranking curve, which corresponds to

the sum of individual impacts, should be considered as a

measure of the network systemic risk. We then have for each

network an aggregate measure, DI , given by: 

DI = 

n ∑ 

i =1 

DI i (22)

The measure DI corresponds to a measure of central ten-

dency: in fact, if DI is divided by N (number of nodes) we

have the average value of individual default impact. Ordering

the three networks by the aggregate index, DI , we have GD 0

network with greater impact ( DI = 0.48), followed by S ( DI =
0 
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Fig. 2. Ranking of banks in decreasing order of DI i : The figure shows the values for the 20 banks causing major impact. Recall that, for each bank, i , the Default 

Impact, DI i refers to the losses suffered by the system via contagion (from the default of i ) as a proportion of total assets of the network. The inset graph presents 

the values of the coefficient of variation ( cv = σ/μ) at each ranking position for the 200 banks with greater impact. 

 

 

 

0.46), and finally the GC 0 network ( DI = 0.43) (see Fig 2 ). That 

means that a higher concentration of debt links corresponds 

to a greater impact. 

However, if the three networks are evaluated according to 

their principal banks (first banks in the ranking), the network 

GD 0 remains in the first position of impact, but the other 

two switch positions: banks of network GC 0 with higher DI i 
presents greater effect over the system than the big banks of 

network S 0 . This fact can be explained by differences in the 

asset concentrations of networks GD 0 , GC 0 and S 0 . It happens 

that banks with large balance sheets have a stronger effect on 

the system and although we have constructed the networks 

in a way that they present similar concentrations of connec- 

tivity, interbank exposures as defined by the model accen- 

tuates assets concentrations, also increasing the differences 

between them. With the highest Gini, the network GC 0 has 

a large bank whose total asset is 122 times greater than the 

average assets of the network, while the largest bank in the 

symmetric network S 0 possess a total asset 55 times greater 

than average. 

Comparison is more straightforward when the networks 

are evaluated by the default cascade of their nodes, because 

in this case the difference is more pronounced. For default 

cascade we also define as aggregate measure the area under 

the ranking curve: 

DC = 

n ∑ 

i =1 

DC i (23) 

Here (see Fig. 3 ) the ordering of networks is clear: the 

network GD 0 has greater potential to generate contagion in 

case of default of its nodes ( DC = 0.99). Secondly we have the 
symmetric network S 0 ( DC = 0.79), and finally the network 

GC 0 ( DC = 0.49). The size of the balance sheet has less influ-

ence on the Default Cascade than over the Default Impact , and 

the effect of concentrations of debt and credit links becomes 

more apparent. In fact, as expected, the Default Cascade in- 

crease towards increased concentration of debts. Although 

having similar sizes, the bank that leads to higher cascade in 

network GD 0 reaches about 6% nodes of the network, com- 

pared with less than 1% for GC 0 network. 

4.2. Effect of system size and capital level λ

In order to evaluate the effect of the size of the system 

on the Default Impact, DI , we have studied different sys- 

tem sizes: N = 500 , N = 10 0 0 , N = 50 0 0 and N = 10 , 0 0 0 .

We have verified (see Fig. 4 ) that the variation of size in the

interbank network does not affect the global behavior in the 

values of indexes DI . For all system sizes, we observe that 

in network GD 0 the impact is higher than GC 0 and S 0 net- 

works. However, results also show that the average values 

of individual impacts, DI , decrease when the networks size 

increases, minimizing the importance of each node as the 

system size increases. Thus, one can conclude that in large 

networks, nodes are less prone to contagion and then risk is 

“diluted”. 

The effect of leverage is more important as it is frequently 

argued that financial crises are the result of an excessively 

low ratio between bank capital and assets. In order to ana- 

lyze the effect of capital level λ on the system, Fig 5 shows 

the value of Default Impact DI for three different values of 

capital level λ. This figure shows that when the average 
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capitalization of the banks is higher, a decrease in contagion

occurs for all network categories. But this lower contagion

rate is not as important as expected, when λ goes from 0.01

to 0.1 the Default Impact decreases less than 10%. Obviously a

decrease of the average capital has the reverse effect. Testing

the network for low values of λ gives us an idea of possible

amplified contagion in the event of macroeconomic stress,

when much of the network may become less capitalized. 
5. Conclusions 

In this paper, we have analyzed the financial contagion

via mutual exposures in the interbank market through sim-

ulations of networks whose degree distributions approach

power laws. 

We have seen that among the measures of systemic im-

portance ( DI and DC ), Default Cascade ( DC ) is the one that
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most differentiates the categories of network analyzed. We 

also observe that, for all categories, both the Default Impact 

and Default Cascade of each node alone does not reach large 

percentage of the network assets and number of nodes, re- 

spectively. This result is in agreement with the results of 

stress tests on empirical networks [25] . 

Comparisons of the different types of network suggest 

that, for networks whose distributions are close to power 

laws and exposure is positively related to connectivity, the 

best scenario is one with a more connected network with a 

high concentration of credits, featuring large creditors nodes, 

which act as stabilizers of the network. These results sug- 

gest that the asymmetry observed in distributions of certain 

real networks is a positive factor, as long as the network are 

more concentrated in the distribution of credits ( in links). 

The results also suggest that the size of the balance sheet 

is the most important factor in determining the impact on 

assets resulting from the failure of a node, and should not 

be disregarded or replaced by topological measures that re- 

flect only information on network connectivity. At the same 

time, the network structure has important consequences on 

the Default Cascade . In some cases, the banks that trigger the 

largest cascades are not the ones with the bigger balance 

sheet. 
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