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Credit Risk in Interbank Networks
Vanessa Hoffmann De Quadros1, Juan Carlos González-Avella1, and
José Roberto Iglesias1,2

1Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; 2Programa
de Mestrado em Economia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil

ABSTRACT: One of the most striking characteristics of modern financial systems is their complex inter-
dependence, comprising a network of bilateral exposures in the interbank market, in which institutions
with surplus liquidity can lend to those with a liquidity shortage. Empirical studies reveal that some
interbank networks have features of scale-free networks. We explore the characteristics of financial
contagion in networks whose distribution of links approaches a power law, using a model that defines
banks’ balance sheets from information on network connectivity. By varying the parameters for the creation
of the network, several interbank networks are built, in which the concentration of debt and credit comes
from the distribution of links. The results suggest that networks that are more connected and have a high
concentration of credit are more resilient to contagion than other types of networks analyzed.

KEY WORDS: complex networks, contagion, financial crashes, interbank exposure, power laws,
systemic risk

Introduction

The 2007–08 financial crisis highlighted, once again, the high degree of interdependence in financial
systems. A combination of excessive borrowing, risky investments, lack of transparency, and high
interdependence led the financial system to its worst meltdown since the Great Depression. An
increasing interest in financial contagion, partially motivated by the crisis, gave rise to several
works in this field in the past few years (see, among others, Craig and von Peter 2014; Montagna
and Lux 2014).

The interdependence of financial systems is manifested in multiple ways. Financial institutions are
connected through mutual exposure created in the interbank market, through which institutions with
surplus liquidity can lend to those with a liquidity shortage. Equally important, financial institutions
are indirectly connected by having exposure in the same assets and by sharing the same depositors.

With respect to the direct connection from having mutual exposure, the structure of interdepen-
dence can be easily illustrated in a visual representation of a network, in which the nodes of the
network are financial institutions, while the links are the exposure between nodes. The direction of the
link indicates the cash flow at the time of debt repayment (from debtor to creditor) as well as the
direction of the effect or financial loss if borrowers default on their repayment.

Theoretical works (Allen and Gale 2000; Freixas, Parigi, and Rochet 2000) have shown that the
possibility of contagion via mutual exposure depends on the precise structure of the interbank market.
In recent studies, different models have been used to generate artificial interbank networks in order to
identify whether a given network is more or less prone to contagion.

Nier et al. (2007) simulate contagion from the initial failure of a bank in an Erdös-Rényi random
network, finding a negative nonlinear relationship between contagion and bank connectivity. An
increase in the amount of interbank exposure initially has no effect on contagion since the losses
are absorbed by each affected node. However, as the number of connections rises, contagion increases
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to the point that a further increase in connectivity causes contagion to decline. The nonmonotonic
relationship between connectivity and contagion found by the authors reflects two phenomena. The
addition of new links adds new channels through which contagion can occur. However, additional
links also represent the distribution of losses among a larger number of nodes, diluting the effect of the
failure and mitigating the effects of the contagion.

Studying a specific case of power-law network, Cont and Moussa (2010) find results similar to
those of Nier et al. (2007) regarding the relation between connectivity, the level of capitalization, and
contagion.

Battiston et al. (2012) simulate contagion in a regular network and find a nonlinear relationship
between connectivity and contagion, but with the opposite effect: Initially, the increase in the
number of connections decreases network contagion, while later additions cause contagion to
increase.

Ladley (2013) evaluates the relation between connectivity and contagion in a partial equilibrium
model of heterogeneous banks interacting in the interbank market. The author shows that, under small
systemic shocks, higher connectivity increases resilience against contagion; larger shocks have the
opposite effect.

The differences in the results indicate that the possibility and extent of contagion depend
considerably on the structure of the network and the specific assumptions of each model.

Empirical studies reveal that some interbank networks have features of scale-free networks. This
means that the distribution of connections among banks follows a power law, pðkÞ~k�X (Boss et al.
2004; Cont et al. 2010; Inaoka et al. 2004; Soramäki et al. 2007).1 Drawing on this stylized fact,
Montagna and Lux (2014) simulate networks whose link distribution follows power laws in order to
evaluate the relevance of some known quantities (like the size of the banks) for contagion
measures.2

In general terms, some of the most significant features reported in the literature can be summarized
as follows:

● Networks have a low density of links; that is, they are far from complete;
● They exhibit asymmetrical in-degree and out-degree distributions;
● They exhibit approximate power-law distributions for in- and out-degree distributions whose
exponent varies around 2–3.

A characteristic reported by Cont et al. (2010) in a study of the Brazilian network is also worth
noting: There is a positive association between the size of the exposure (assets) and the number of
debtors (in-degree) of an institution and a positive association between the size of liabilities and the
number of creditors (out-degree) of an institution. More (less) connected financial institutions have a
larger (smaller) exposure.

The goal of this article is to identify, through simulations of networks whose distributions approach
power laws, how scale-free networks behave with regard to financial contagion via mutual exposure
and which characteristics make a given network more or less prone to propagate crises. Our particular
interest is in evaluating the role of the exponents that characterize a scale-free network because these
exponents determine the concentration of debt (out-degree) and credit (in-degree) in the financial
network. We construct networks whose connectivity distribution approaches a power law using the
algorithm introduced by Bollobás et al. (2003). Using a simplified model that determines the banks’
balance sheets from information on network connectivity, we divide each balance sheet into bank
assets and bank liabilities and nonbank assets and nonbank liabilities.

By varying the parameters for the creation of the network, several interbank networks are
built, in which the concentration of debt and credit comes from the distribution of links. Three
main types of interbank network are analyzed for their resilience to contagion: (1) those where
the concentration of debt is greater than the concentration of credit, (2) those where the
concentration of credit is greater than the concentration of debt, and (3) those with similar
concentrations of debt and credit. For all the networks that we have generated, the financial
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contagion starts with the failure of a single node, which affects neighboring nodes by defaulting
on its obligations in the interbank lending market. Thus, this work focuses on the problem of
credit risk, disregarding other equally important sources of contagion, as the risk of adverse
shocks spreads to several institutions at the same time.

Generating Scale-Free Networks

In their study on scale-free networks, Barabasi and Albert (1999) propose a preferential attachment
mechanism to explain the emergence of the power-law degree distribution in nondirected graphs.
The algorithm proposed by Bollobás et al. (2003) is a generalization for directed networks of the
model developed by Barabasi and Albert (1999). The network is formed using a preferential
attachment that depends on the distribution of in-degree, kin, and out-degree, kout. This algorithm
has the advantage of producing different exponents for in and out degrees, which are necessary for
reproducing the characteristics of real networks. The following describes the steps for generating the
network according to Bollobás et al. (2003).

Let α, β, γ, δin, and δout be nonnegative real numbers such that α + β + γ = 1. Let G0 be any initial
network, and let t0 be the number of links of G0.

3 At each step t, starting with t = t0 + 1, we add a new
link to the network, so that in step t the network has t links and a random number of nodes, n(t). At
each step, the addition of the new link may or may not be accompanied by adding a new node,
according to the following method (Bollobás et al. 2003):

1. At probability α, we create a new node v with a link from v to an existing node, u, selected with
probability

pðu ¼ uiÞ ¼ kinðuiÞ þ δin
t þ nðtÞδin : (1)

2. At probability β, we select an existing node v with probability

pðv ¼ viÞ ¼ koutðviÞ þ δout
t þ nðtÞδout (2)

and add a link from v to an existing node u, chosen with probability

pðu ¼ uiÞ ¼ kinðuiÞ þ δin
t þ nðtÞδin : (3)

3. At probability γ, we add a new node u with a link from an existing node v to u, where v is
selected with probability

pðv ¼ viÞ ¼ koutðviÞ þ δout
t þ nðtÞδout ; (4)

where kin(ui) is the in-degree of node ui and kout(vi) is the out-degree of node vi. Because probability β
refers to the addition of a link without the creation of a node, increasing the value of β implies
increasing the average network connectivity. In turn, parameters α and γ are related to the addition of
new nodes while increasing the connectivity of existing nodes.

Bollobás et al. (2003) show that when the number of nodes goes to infinity and connectivity grows,
one obtains
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pðkinÞ ~ CINk
�XIN
in (5)

pðkoutÞ ~ COUTk
�XOUT
out ; (6)

where:

XIN ¼ 1þ 1þ δinðαþ γÞ
αþ β

(7)

XOUT ¼ 1þ 1þ δoutðαþ γÞ
β þ γ

(8)

The limit N →∞ obviously cannot be achieved, but the result is valid when the number of nodes
grows and we take the more connected ones; that is, power laws for kin and kout will emerge in the tail
of the distribution of large networks.

We want to compare networks with different values for XIN and XOUT (featuring different concen-
trations of kin and kout) while keeping other characteristics, such as average connectivity and total
concentration of links distribution, similar. We are particularly interested in networks with values of
XIN and XOUT around 2–3, in accordance with estimated empirical values (e.g., Boss et al. 2004; Cont
et al. 2010; Soramäki et al. 2007). We restrict the degrees of freedom of the model, imposing the
following constraints on the parameters:4

αþ γ ¼ 0:75 and δin þ δout ¼ 4 (9)

We consider δin and δout with ratios 1:3 or 3:1 in order to accentuate the asymmetry of the network. In
addition to these constraints, we will cover the spaces of parameters α × γ and δout × δin by sweeping
the following radial lines:

α ¼ δout
δin

γ ! α ¼ 4� δin
δin

γ (10)

The intersection points of Equation (10) with Equation (9) give us the set (α, γ, δin, δout), which in turn
define pairs (XIN, XOUT) as shown in Figure 1.

Using Equations (9) and (10) we restate parameters α, β, γ, and δout as functions of δin, and
replacing such expressions in the equations for XIN and XOUT, respectively, we obtain the two
parametric equations:

XIN ¼ 1þ 16þ 12δin
16� 3δin

and XOUT ¼ 1þ 68� 9δin
4þ 3δin

; (11)

from which we finally have

XOUT ¼ XIN þ 15

XIN � 1
: (12)

The networks constructed using Equation (12) are therefore generated through variation of a single
degree of freedom, with similar average connectivity and link concentration (limited by Equation (9)),
differing in the value of pairs (XIN, XOUT).

5

For our studies of contagion, we selected three points on the curve in Figure 1 (Equation (12)),
representing three distinct networks, denominated as GD0, S0, and GC0. The GD0 network is more
concentrated on the debtor side: With a higher concentration of debt than credit, it is generated so that
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the largest banks in the network are major debtors in the system. The GC0 network has a higher
concentration of credit: The biggest banks are major creditors in the network. The S0 network
corresponds to the symmetric case, in which the concentrations of debt and credit are similar. The
limit values (XIN, XOUT) for these networks are shown in Table 1.

Table 1 shows the limit values of the exponents XIN and XOUT, the values of the average
connectivity for the generated networks, < k >, the Gini coefficient of the distribution of links, G,
the Gini coefficient of the distribution of in-links (in-degree distribution), Gin, and the Gini coefficient
of the distribution of out-links (out-degree distribution). The values in the table are average values over
twenty simulations for networks with 1,000 nodes.

The choice of such values takes into account that we simulate small networks of 1,000 nodes (in
accordance with real financial networks; e.g., Boss et al. 2004; Mistrulli 2011; Soramäki et al. 2007),
for which the estimated exponents are below the limit values. Indeed, generating networks of 1,000
nodes with the selected parameters, we obtain exponents between 2.2 and 3.2. The estimation of the
exponents of the power law of each distribution is performed using the maximum likelihood estimator
for discrete power laws, according to Clauset et al. (2009).

To complete the information about an interbank network, it is necessary to assign weights to the links
because the weights represent the magnitude of exposure among banks. The sum of in-degree weights of

Figure 1. Parameter space and space of exponents: Spaces α × γ and δout×δin are represented with origin

in the upper-right corner and the space of exponents XIN × XOUT with origin at the bottom left.

Table 1. Limit values of the exponents XIN and XOUT, average connectivity, and Gini index for

three selected networks

XIN XOUT < k > G Gin Gout

GD0 network 8.4286 3.1538 2.646 (±0.039) 0.457 (±0.006) 0.418 (±0.013) 0.746 (±0.009)
S0 network 5.0000 5.0000 2.663 (±0.041) 0.429 (±0.006) 0.578 (±0.015) 0.576 (±0.012)
GC0 network 3.1538 8.4286 2.652 (±0.028) 0.456 (±0.008) 0.748 (±0.011) 0.410 (±0.008)
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a bank, i, represents its applications in other institutions in the financial system (loans to other banks), a
variable that we define as bank assets, BAi. The sum of out-degree weights represents the total
obligations of i to other financial institutions (loans from other banks), which we call bank liabilities,
BLi. If there is a link from bank j to bank i, we define the exposure of bank i to j by wji, such that

BAi ¼
X

j2 kiinf g
wji; (13)

where {kin
i} is the set of banks with obligations to bank i. Similarly, if there is a link from bank i to

bank j, we define the obligation of bank i to bank j by wij, such that

BLi ¼
X

j2 kioutf g
wij; (14)

where {kout
i} is the set of banks to which bank i has obligations to pay.

In a study on the Brazilian interbank network, Cont et al. (2010) highlight the nonlinear positive
relationship between link weights and connectivity of nodes in line with the widespread notion that the
size of balance sheets and the connectivity of banks are positively related (Arinaminpathy et al. 2012).
Drawing on this assumption, we define the following equation for the weight of a link from i to j:

wij ¼ kiout � kjin
kmax
out � kmax

in
(15)

In Equation (15), kin
max and k out

max denote the maximum values of kin and kout found in the network.
Having established values for bank assets and bank liabilities, BAi and BLi, we define the other

elements of the balance sheet: nonbank assets, NBAi (all applications except interbank ones), nonbank
liabilities, NBLi (funding from outside the system), and equity, Ei.

For each bank, i, the balance sheet obeys the identity

BAi þ NBAi ¼ BLi þ NBLi þ Ei: (16)

Reflecting the minimum capital regulations of the Basel accords, we set the equity of each bank as a
proportion of its assets:

Ei ¼ λiðBAi þ NBAiÞ; (17)

where λi represents the capital–asset ratio.
For the simulations in this work, we use three values for a capital–asset ratio: undercapitalization,

with λ = 0.01, and values λ = 0.05 and λ = 0.1, consistent with the empirical values observed (IMF
2013). For each bank, the capital–asset ratio is extracted from a normal distribution λi ~ N(λ, σ) subject
to the constraint λi > λ; that is, σ is a stochastic positive deviation from the minimum λ, characterizing
the heterogeneity of banks with regard to capitalization. The simulations are performed using σ = 0.01.

To represent the ratio of nonbank assets to total assets, we introduce the following relation that
defines nonbank assets for each bank, i, as

NBAi ¼ �ðBAi þ BLiÞ: (18)

Defined in this way, nonbank assets are a function of bank connectivity (via BAi and BLi), consistent
with the assumption that balance sheet size is related to connectivity. Let us use ξ as a calibration
factor to control the ratio of NBAi to total assets.

S32 V. HOFFMANN DE QUADROS ET AL.

D
ow

nl
oa

de
d 

by
 [

20
0.

0.
18

2.
46

] 
at

 0
7:

05
 0

2 
D

ec
em

be
r 

20
15

 



Equations (16), (17), and (18) form a system of equations by which the value of NBLi can be
determined:

NBLi ¼ ð1� λiÞð1þ �ÞBAi þ ½ð1� λiÞ� � 1�BLi (19)

For the simulations in this work, we set ξ = 2 in order to obtain balance sheets in which nonbank assets
and nonbank liabilities represent on average more than 50 percent of total assets and liabilities.

The banks’ size, measured as the magnitude of their total assets (NBAi + BAi), presents a
distribution with characteristics similar to that of the distribution of links but with estimated
exponents ranging between 1.2 and 1.5, thereby having a higher concentration. In fact, the Gini
coefficient for total asset concentration (Gini for the distribution NBAi + BAi) is 0.83 for the GC0

network, 0.80 for the GD0 network, and 0.78 for the S0 network.6

From the method described in this section, we are able to represent the balance sheet of each
bank by using only information from the network and the parameters λ and ξ. In the following
section, we will describe the cascade of failures following the initial default of one bank of the
network.

Contagion in Interbank Networks: Default Cascade and Default Effect

In this section, we present the methodology used to evaluate the propagation of losses in the interbank
network. We simulate the insolvency of a single bank exposed to an external shock represented by the
total loss of value of its nonbank assets. Each bank is tested independently and the effect of its default
on the system evaluated.

In a hypothetical scenario, a bank, i, becomes insolvent, being unable to completely fulfill its
obligations. If at time t, bank j realizes that its counterparty i is unable to repay its interbank liability
wij in full, then bank j must reevaluate its application in bank i, from wij to w′ij: (w′ij −wij) < 0. This
process adversely affects the capital of j, since variation (w′ij −wij) is incorporated as a loss. It happens
that the smaller value, w′ij, the defaulting bank i can effectively afford, depends on the financial
conditions of other banks, banks for which i had granted loans. Any further failure reduces the value of
assets, increasing the losses of banks that have already defaulted.

Eisenberg and Noe (2001) study the problem of calculating the values w′ij that banks would be able
to pay at the time of settlement of its multilateral obligations. Given the array of mutual exposures, W,
the problem is to determine the vector of payments, p = (p1,p2,. . .,pn), where

pi ¼
Xn

j¼1

w
0
ij (20)

The authors show that under mild regularity conditions, there is a unique payment vector that settle the
system, and they develop an iterative algorithm to solve the problem. In the context of our work,
where we have a single node initially insolvent, the algorithm can be described as follows:

● Compute the losses to all banks resulting from the failure of bank i assuming that all other banks
are able to repay their liabilities. Stop if no other bank fails, otherwise

● Let j denote the bank or group of banks whose losses exceed their equity. Compute the losses to
all banks resulting from the failure of banks i and j. Repeat step 2 until no further bank fails.

The algorithm described allows us to calculate two important measures for assessing the effect of a
bank failure: the Default Impact and the Default Cascade. For a bank, i, the Default Impact, DIi, refers
to the reduction in total assets of the financial system as a result of losses incurred via contagion, as a
proportion of total initial assets. If we denote the total assets of the system at the initial time as A0 and
at the final time (after the external shock) as At, the Default Impact is given by the following:7
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DIi ¼ A0 � At � NBAi

A0
(21)

The measure Default Cascade, DCi, refers to the number of insolvent banks due to the failure of bank i
as a proportion of the total number of banks in the network. Both the Default Impact and the Default
Cascade of a bank reveal how the network would be affected by its failure, taking into account only
the direct effects of loss propagation through interbank exposures.

Results

We present the results obtained from contagion simulations for networks produced according to the
prescription presented in the section “Generating Scale-Free Networks” of the present article. We
consider three types of networks as previously defined: the GD0 network, which has a higher
concentration of debtors than creditors; the GC0 network, which has a higher concentration of
creditors; and the S0 network, which has equal concentrations of creditors and debtors.

Default Impact and Default Cascade

For each set of parameters that defines a network category (GD0, S0, and GC0), we performed twenty
simulations, so that the analysis is based on twenty realizations of networks of type GD0 networks,
twenty realizations of S0 networks, and twenty realizations of GC0 networks. For each generated
network and for each bank, i, the Default Impact, DIi, and Default Cascade, DCi, were calculated. The
results presented in this section are for networks with 1,000 nodes, with capital level λ = 0.05.

Figure 2 shows the ranking of banks for the three networks, in decreasing order of DIi. The values
are average values for each ranking position; for example, for each network type the greater Default
Impact (first-ranking position) is the average of greater impacts for twenty simulations. Equivalently,
the subsequent positions of the ranking are average values.

The difference between the three types of networks is more pronounced in the first-ranking
positions, although these positions show greater dispersion around the mean value.

The area under the ranking curve, which corresponds to the sum of individual impacts, should be
considered as a measure of the network systemic risk. We then have for each network an aggregate
measure, DI, given by

DI ¼
Xn

i¼1

DIi: (22)

The measure DI corresponds to a measure of central tendency: In fact, if DI is divided by N (number of
nodes), we have the average value for individual default impact. Ordering the three networks by the
aggregate index, DI, we have the GD0 network with a greater impact (DI = 0.48), followed by S0
(DI = 0.46), and finally the GC0 network (DI = 0.43) (see Figure 2). That means that a higher
concentration of debt links corresponds to a greater impact.

However, if the three networks are evaluated according to their principal banks (first-ranking
banks in the ranking), the GD0 network remains in the first position of impact, but the other two
switch positions: banks in the GC0 network with a higher DIi have a greater effect on the system
than the big banks in the S0 network. This fact can be explained by differences in the asset
concentrations of the three networks GD0, GC0, and S0. It happens that banks with large balance
sheets have a stronger impact on the system, and although we have constructed the networks such
that they have similar concentrations of connectivity, interbank exposures as defined by the model
accentuate asset concentrations, which also increases the differences between them. The GC0

network, which has the highest Gini coefficient, has a large bank, whose total assets are 122
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times greater than the average assets in the network, while the largest bank in the symmetric S0
network has total assets 55 times larger than average.

Comparison is more straightforward when the networks are evaluated by the Default Cascade of
their nodes because in this case the difference is more pronounced. For the Default Cascade, we also
define the area under the ranking curve as an aggregate measure:

DC ¼
Xn

i¼1

DCi (23)

Here the ordering of the networks is clear. First, the GD0 network has greater potential to generate
contagion in case of the default of its nodes (DC = 0.99). Second, we have the symmetric S0 network
(DC = 0.79), and finally the GC0 network (DC = 0.49). The size of the balance sheet has less influence
on the Default Cascade than over the Default Impact, and the effect of concentrations of debt and
credit links becomes more apparent. In fact, as expected, the Default Cascade increases with the
increased concentration of debts. The bank that leads to a higher cascade in the GD0 network reaches
about 6 percent of the nodes in the network, compared with GC0 network, where it reaches less than 1
percent, although these banks have similar sizes.

Effect of Connectivity and Link Concentration

Previous studies that simulate contagion in different network topologies address the question of the
influence of connectivity on the propagation of losses. Conclusions differ, depending strongly on the
structure of the networks used in each work.

Figure 2. Ranking of banks in decreasing order of DIi.
Notes: The figure shows the values for the twenty banks causing a major impact. Recall that, for each bank, i, the Default
Impact, DIi, refers to the losses suffered by the system via contagion (from the default of i) as a proportion of total assets
in the network. The inset graph presents the values of the coefficient of variation (cv = σ∕μ) at each ranking position for
the 200 banks with a greater impact.
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If we simply increase network connectivity through the addition of new random links, the
distribution of connectivity becomes less concentrated, which also affects network performance in
the propagation of losses. We would like to propose separating these two effects: the effect of
connectivity variation and changes in concentration. Here the term “concentration” refers to the
distribution of links, in the sense that a more concentrated network is one in which a few nodes
have many links (hubs), while the majority of nodes have just a few. A less concentrated network has a
more egalitarian distribution of links.

In an attempt to understand how these two features affect financial contagion, we have tested new
types of networks that are variants of the three networks previously evaluated, with different levels of
connectivity and concentration. Thus, in addition to the original type, which we have named type 0
and consists of GD0, S0, and GC0, we have implemented four new types, each one detailed in the
following sections. The type 1 networks have greater connectivity and are more concentrated than the
original. Type 2 networks have greater connectivity than type 0 and similar concentration to type 0.
Type 3 networks have greater connectivity than type 0 but are less concentrated. Finally, type 4
networks have the same connectivity as the original type, but with less concentration. Table 2 shows
the parameters used in the construction of type 0, 1, 2, 3, and 4 networks.

Greater Connectivity and Greater Link Concentration

In this case, we have the GD1, S1, and GC1, networks constructed such that they have greater
connectivity and are more concentrated than the original ones. This is accomplished by increasing β
from 0.25 to 0.75. We maintain the ratio 1:3 between α and γ and the same values of δin and δout. As
the probability β refers to the addition of a new link without the creation of a new node, increasing β
implies increasing the average network connectivity. As the connection mechanism is preferential
attachment, an increase in β also increases the concentration of links. Table 3 shows the aggregate
measures, DI and DC, as well as the average connectivity, the Gini coefficient for link concentration
(G), the Gini coefficient for the distribution of credit links (Gin), and the Gini coefficient for the
distribution of debt links (Gout).

The concentration of links has different effects depending on the symmetry of the network. As
we move from the GC0 network to the GC1 network, we see a decrease in the contagion effect in
response to the increased number of connections and higher concentration of credits (concentration

Table 2. Parameter values used in the construction of networks of type 0, 1, 2, 3, and 4

α β γ δin δout

GC0 0.5625 0.2500 0.1875 1.00 3.00
S0 0.3750 0.2500 0.3750 2.00 2.00
GD0 0.1875 0.2500 0.5625 3.00 1.00
GC1 0.1875 0.7500 0.0625 1.00 3.00
S1 0.1250 0.7500 0.1250 2.00 2.00
GD1 0.0625 0.7500 0.1875 3.00 1.00
GC2 0.1875 0.7500 0.0625 25.00 75.00
S2 0.1250 0.7500 0.1250 50.00 50.00
GD2 0.0625 0.7500 0.1875 75.00 25.00
GC3 0.5625 0.2500 0.1875 1.00 3.00
S3 0.3750 0.2500 0.3750 2.00 2.00
GD3 0.1875 0.2500 0.5625 3.00 1.00
GC4 0.5625 0.2500 0.1875 10.00 30.00
S4 0.3750 0.2500 0.3750 20.00 20.00
GD4 0.1875 0.2500 0.5625 30.00 10.00
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of in-links). The aggregate Default Impact, DI, does not suffer large variations, varying from 0.43
in GC0 to 0.42 in GC1. By contrast, the aggregate DC (Default Cascade) has a significant decrease,
from 0.49 to 0.33.

We conclude that for GC networks, in which the credit concentration is larger than the debt
concentration, an increase in connectivity accompanied by an increase in the concentration of links
has the effect of increasing resistance to contagion. Increasing credit concentration in nodes that
become major creditors in the system is certainly the factor responsible for the improvement in
network resilience against contagion. Very connected creditors have many in-links, so that failure
spreads less, only through their few out-links. Moreover, when a neighboring bank of a big creditor
defaults, the transmitted loss represents a small fraction of the creditor bank’s total exposures because
it has many other counterparties. Here we see the positive results of having a major lender that has
diversified its risk among many counterparties.

Symmetric networks achieve only a small improvement in resilience when we go from S0 to S1. As
shown in Table 3, the values of DI and DC undergo a slight reduction (DI varying from 0.46 to 0.43
and DC varying from 0.79 to 0.73).

For GD networks, the situation is ambiguous: Increased connectivity accompanied by increased
link concentration causes a slight reduction in DI, from 0.48 to 0.44. At the same time, we see an
increase in Default Cascade, with DC varying from 0.99 to 1.11. For GD networks, the increase in link
concentration favors the appearance of large debtor banks. These banks have a great potential for
contagion because most of their links are directed to the system and thus have a destabilizing role in
the network. The fact that DC has increased with the increase in connectivity and link concentration is
a result of that effect. Even so, the concentration of links also increases the concentration of credit
links at creditor banks, which is a stabilizing factor that, with the increase in connectivity, causes a
decrease in DI.

Increased Connectivity and Link Concentration Similar to Type 0

In type 2, we consider networks in which the average connectivity is raised by increasing β (from 0.25
to 0.75), while we raise δin and δout in order to offset the trend of increasing concentration. We
maintain the 1:3 ratio between α and γ.

As we have seen in the section “Generating Scale-Free Networks” of the present article, the
parameters δin and δout represent probabilities distributed equally between nodes, giving every node
a chance of being selected in the attachment process. The preferential attachment concentrates links in
large connected nodes, while the parameters δin and δout can limit this tendency.

With β increased to 0.75, we raise δin and δout twenty-five times in order to maintain the Gini
coefficient of the links distribution the closest to the value it has in type 0, that is, around 0.45. The
best approach we get with β = 0.75 is a Gini coefficient of 0.47. Table 4 shows the aggregate measures
DI and DC and the values of average connectivity, concentration of links, and partial concentrations
(credit links and debt links).

Table 3. Aggregate measures, DI and DC, < k >, G, Gin and Gout, for network types 0 and 1

DI DC < k > G Gin Gout

GC0 0.433 (±0.001) 0.494 (±0.023) 2.652 (±0.028) 0.456 (±0.008) 0.748 (±0.011) 0.410 (±0.008)
S0 0.455 (±0.004) 0.792 (±0.024) 2.663 (±0.041) 0.429 (±0.006) 0.578 (±0.015) 0.576 (±0.012)
GD0 0.480 (±0.004) 0.988 (±0.015) 2.646 (±0.039) 0.457 (±0.006) 0.418 (±0.013) 0.746 (±0.009)
GC1 0.426 (±0.001) 0.331 (±0.028) 7.406 (±0.166) 0.630 (±0.008) 0.805 (±0.010) 0.561 (±0.010)
S1 0.429 (±0.001) 0.735 (±0.025) 7.484 (±0.227) 0.612 (±0.007) 0.669 (±0.009) 0.671 (±0.008)
GD1 0.437 (±0.002) 1.113 (±0.027) 7.425 (±0.165) 0.630 (±0.008) 0.560 (±0.010) 0.805 (±0.007)
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When we compare the GC0 and GC2 networks, we notice an increase in Default Cascade, DC, from
0.49 to 0.57. The default impact index, DI, remains stable at 0.43.

Despite our attempt to isolate the connectivity effect by fixing Gini closest to the original value
(0.45), we cannot attribute the rise in the DC index only to the increased connectivity because while
the concentration of links remains close to the original value, there is a variation in the partial
concentrations, Gin and Gout. Indeed, when we change δin and δout, we observe an increase in the
concentration of debt links in large debtors’ nodes (Gout varying from 0.41 to 0.46) and a reduction in
the concentration of credits (Gin from 0.75 to 0.55). These changes contribute to the worsening of the
DC index.

In the case of symmetric networks, we see a slight improvement in indexes: When we compare the
S0 and S2 networks, we can see the variation of DI from 0.46 to 0.43 and of DC from 0.79 to 0.72.

For the GD network, an increase in connectivity slightly improves measure DI, from 0.48 to 0.43,
and also improves the DC index, from 0.99 to 0.88. In addition to the increased connectivity, the
variation of the partial concentrations, toward a decreased concentration of debts and an increased
concentration of credit, is noteworthy.

Increased Connectivity and Lower Link Concentration

The type 3 repeats the experiment of Cont and Moussa (2010) to test increases in connectivity. The
type 3 network is built with the same parameter values as type 0. Subsequently, its connectivity is
increased by the addition of new links randomly distributed among its nodes. In this way, we have a
more connected and less concentrated network: The Gini coefficient goes from 0.45 to 0.24, and the
partial Gini coefficients also suffer a reduction. The data are presented in Table 5.

As in types 1 and 2, all three networks (GC, S, and GD) show a slight improvement in the
aggregate impact measure, DI, suggesting that the Default Impact, DI, decreases with increasing
connectivity regardless of whether it is accompanied by an increase or decrease in link concentration.
However, the Default Cascade, DC, certainly depends on concentrations, as can be seen from the data
presented. With increased connectivity and a reduction in the concentration of links (including the
partial concentrations), the GC network suffers an increase in Default Cascade, DC, with the aggregate

Table 4. Aggregate measures, DI and DC, < k >, G, Gin and Gout, for network types 0 and 2

DI DC < k > G Gin Gout

GC0 0.433 (±0.001) 0.494 (±0.023) 2.652 (±0.028) 0.456 (±0.008) 0.748 (±0.011) 0.410 (±0.008)
S0 0.455 (±0.004) 0.792 (±0.024) 2.663 (±0.041) 0.429 (±0.006) 0.578 (±0.015) 0.576 (±0.012)
GD0 0.480 (±0.004) 0.988 (±0.015) 2.646 (±0.039) 0.457 (±0.006) 0.418 (±0.013) 0.746 (±0.009)
GC2 0.428 (±0.001) 0.574 (±0.023) 7.813 (±0.200) 0.476 (±0.006) 0.555 (±0.008) 0.465 (±0.007)
S2 0.429 (±0.001) 0.723 (±0.021) 7.812 (±0.141) 0.471 (±0.008) 0.507 (±0.009) 0.506 (±0.008)
GD2 0.430 (±0.001) 0.884 (±0.020) 7.817 (±0.139) 0.475 (±0.007) 0.463 (±0.008) 0.554 (±0.007)

Table 5. Aggregate measures, DI and DC, < k >, G, Gin and Gout, for network types 0 and 3

DI DC < k > G Gin Gout

GC0 0.433 (±0.001) 0.494 (±0.023) 2.652 (±0.028) 0.456 (±0.008) 0.748 (±0.011) 0.410 (±0.008)
S0 0.455 (±0.004) 0.792 (±0.024) 2.663 (±0.041) 0.429 (±0.006) 0.578 (±0.015) 0.576 (±0.012)
GD0 0.480 (±0.004) 0.988 (±0.015) 2.646 (±0.039) 0.457 (±0.006) 0.418 (±0.013) 0.746 (±0.009)
GC3 0.429 (±0.001) 0.678 (±0.020) 7.789 (±0.040) 0.245 (±0.006) 0.378 (±0.010) 0.276 (±0.005)
S3 0.434 (±0.001) 0.860 (±0.027) 7.800 (±0.041) 0.233 (±0.004) 0.318 (±0.007) 0.317 (±0.005)
GD3 0.450 (±0.005) 1.007 (±0.017) 7.794 (±0.043) 0.256 (±0.005) 0.277 (±0.005) 0.374 (±0.007)
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measure DC varying from 0.49 to 0.68. The symmetric network also suffers deterioration in the DC
index, from 0.79 to 0.85. In turn, the GD network has the least change in the index, from 0.99 to 1.01.
Again the data suggest that changes in link concentrations are important in determining the Default
Cascade, DC.

Same Connectivity and Lower Link Concentration

Finally, we test the networks for a decrease in the concentration of links, maintaining the same
connectivity. We build type 4 networks by maintaining the same value of β as in the original networks
(β = 0.25) and increasing the values of δin and δout by a factor of ten.

The indexes of impact, as well as data connectivity and concentration, are shown in Table 6.
For the GC and S networks, the lowest concentration of links causes a worsening in the indexes of

contagion. For these networks, the negative effect of the reduction in concentration of credits is larger
than the positive effect of reducing the concentration of debts.

For GD networks, the DI index shows a slight improvement (from 0.48 to 0.46), whereas the DC
index worsens (0.99 to 1.01), indicating that in this case the two effects are balanced.

Figure 3 summarizes the results of this section, presenting the DC values for the five types of
networks analyzed.

Figure 3. Default Cascade (aggregate measure) for the five types of networks analyzed.

Table 6. Aggregate measures, DI and DC, < k >, G, Gin and Gout, for network types 0 and 4

DI DC < k > G Gin Gout

GC0 0.433 (±0.001) 0.494 (±0.023) 2.652 (±0.028) 0.456 (±0.008) 0.748 (±0.011) 0.410 (±0.008)
S0 0.455 (±0.004) 0.792 (±0.024) 2.663 (±0.041) 0.429 (±0.006) 0.578 (±0.015) 0.576 (±0.012)
GD0 0.480 (±0.004) 0.988 (±0.015) 2.646 (±0.039) 0.457 (±0.006) 0.418 (±0.013) 0.746 (±0.009)
GC4 0.446 (±0.001) 0.714 (±0.016) 2.644 (±0.048) 0.394 (±0.006) 0.608 (±0.009) 0.385 (±0.011)
S4 0.459 (±0.001) 0.871 (±0.022) 2.635 (±0.046) 0.388 (±0.007) 0.509 (±0.009) 0.509 (±0.011)
GD4 0.466 (±0.002) 1.016 (±0.018) 2.661 (±0.036) 0.394 (±0.007) 0.383 (±0.013) 0.607 (±0.010)
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The comparisons among these types suggest that for networks constructed with the algorithm of
Bollobás et al. (2003) and with exposures positively related to connectivity, the best scenario is one of
a more connected network with a high concentration of credits, featuring large creditor nodes, which
act as stabilizers of the network. In the comparisons among network types conducted in this work, we
do not consider differences among the nodes regarding their probability of default, differences that can
change the evaluation of each network type.

Conclusions

In this article, we have analyzed the financial contagion via mutual exposures in the interbank market
through simulations of networks whose degree distributions approach power laws.

We have seen that among the measures of systemic importance (Default Impact and Default
Cascade, DI and DC), Default Cascade (DC) is the one that most differentiates the categories of
networks analyzed. We also observe that, for all categories, neither the Default Impact nor the
Default Cascade of each node alone reaches a large percentage of the network assets and number of
nodes, respectively. This result is consistent with the results of stress tests on empirical networks
(Upper 2011).

Comparisons of the different types of networks suggest that, for networks whose distributions are
close to power laws and exposure is positively related to connectivity, the best scenario is one with a
more connected network with a high concentration of credits, featuring large creditor nodes, which act
as stabilizers of the network. These results suggest that the asymmetry observed in distributions of
certain real networks is a positive factor, as long as the networks are more concentrated in the
distribution of credits (in-links).

The results also suggest that the size of the balance sheet is the most important factor in determining
the impact on assets resulting from the failure of a node and should not be disregarded or replaced by
topological measures that reflect only information on network connectivity. At the same time, the
network structure has important consequences for the Default Cascade. In some cases, the banks that
trigger the largest cascades are not the ones with the bigger balance sheet.

Notes

1. Recall, however, that other interbank networks do not present scale-free characteristics (on the e-MID
electronic money market, see, e.g., Fricke and Lux 2015).

2. More recent studies have emphasized core-periphery structures as relevant mechanisms in interbank network
formation (Craig and Von Peter 2014; Fricke and Lux 2015). In such models, the idea is that banks organize
themselves around a core of intermediaries, giving rise to a hierarchical structure (interbank tiering).

3. In this work, the simulations performed use an initial network, G0, consisting of two nodes, 0 and 1,
connected by two directed links, 0 → 1 and 1 → 0.

4. For α + γ = 0.75, we have β = 0.25. Since β is the probability of creating a link without addition of a
new node, we cannot use a value of β that is too small, otherwise we will have a network with very low
average connectivity. However, we would like to have values of α and γ high enough to create asymmetry
between the distribution of in-degree and out-degree. The values α + γ = 0.75 and β = 0.25 satisfy those
requirements.

5. The exponent of a power-law distribution reflects the concentration of the distribution: A smaller absolute
value of the exponent corresponds to a more concentrated distribution. Therefore, differences between exponents
XIN and XOUT represent differences between the concentrations of the in- and out-degree distributions.

6. The concentration of assets in real networks is also quite high, as reported in the literature. For example,
Elsinger, Lehar, and Summer (2006) report a Gini coefficient of 0.88 for the Austrian network in 2002, and Ennis
(2001) reports a Gini coefficient of 0.90 for the United States in 2000.

7. The equation for DIi excludes from its computation the value of initial impact (NBAi), representing only the
losses due to contagion.
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