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1 Introduction

The interpretation of several sets of data (such as those obtained from type Ia supernovae,
large scale structure, baryon acoustic oscillations, and the cosmic microwave background)
in the framework of the Standard Cosmological Model (SCM) (based on General Relativity
(GR) and the Cosmological Principle) indicates that the universe is currently undergoing a
phase of accelerated expansion. The most commonly accepted candidates to source such an
expansion (namely, the cosmological constant, and some unknown type of matter dubbed
“dark energy”1) are not free of problems. While the energy density associated with the
cosmological constant that is inferred from astronomical observations is approximately 120
orders of magnitude lower than the value predicted by field theory (see for instance [4]), the
scalar field used to model dark energy has features that are alien to those displayed by the
scalar fields of particle physics [5]. An alternative way to describe the accelerated expansion
is to assume that it is produced by the dynamics of a theory which differs from GR after
matter domination. Among these, the so-called f(R) theories, with action given by

S =

∫ √−gf(R)d4x,

are the simplest generalization of the Einstein-Hilbert Lagrangian.2 The dependence of the
function f on the scalar curvature R is to be determined by several criteria (such as matter
stability [7], absence of ghost modes in the cosmological perturbations [8], correct succession
of cosmological eras [9], and the stability of cosmological perturbations [10]).3 Several forms
for f(R) have been constructed in order to successfully satisfy these constraints (for instance
those given in [1, 13]), allowing in principle (potentially small) deviations from GR, quantified
by some of the parameters of the f(R). We shall introduce here a method that can be used to
set limits on the parameters of a given f(R), which is based in the comparison of two series
expansions in terms of the redshift z. The first one is that of any observable quantity given in
terms of H(z) , and the second, the corresponding cosmographic expansion. While the former

1For a complete list of candidates see [3].
2A number of motivations of this and other generalizations of GR (such as the gauging of Poincarè trans-

formations, and quantum field theory in curved spacetimes) has been discussed in [6].
3For reviews about different aspects of f(R) theories, see [4, 5, 11, 12].

– 1 –



J
C
A
P
0
8
(
2
0
1
3
)
0
3
0

depends on the dynamics of the theory, the latter does not (see section 2).4 The order-by-
order comparison of these expansions yields relations among f , its derivatives w.r.t. R, and
the kinematical parameters (some of which are determined by observation), all at t = today.
By rewritting these relations in terms of the parameters of a given f , the abovementioned
limits can be obtained.

It is important to emphasize that the method does not rely on the actual measurement
of the observable: it only demands that the expression of the observable obtained using
the dynamics coincides with that obtained in a dynamic-independent way (namely, using
cosmography). Although it can be applied to any observable expressed in terms of H(z),
yielding for each observable different limits on the parameters of the f(R), the method is
more useful in the case of yet-to-be measured quantities, of which only the cosmographical
form has been determined.

Currently a lot of effort is devoted to the study of quantities and effects that have the
potential of discriminating between different f(R) models, and between these models and
GR. Among them, we can mention the growth rate of matter density perturbations (see for
instance [18]), the enhanced brightness of dwarf galaxies [19], the modifications of the 21cm
power spectrum at reionisation [20], the specific angular momentum of galactic halos [21],
and the number counts of peaks in weak lensing maps [22]. We shall apply our method to
the Redshift Drift (RD), that is, the time variation of the cosmological redshift caused by the
expansion of the Universe. The RD was first considered by [23], and the effects of a nonzero
cosmological constant on it were presented in [24]. As discussed in [25, 26], its measurement
is feasible in the near future. As soon as data related to the RD become available, they
could be compared with the prediction of a given f(R), adjusting the parameters of the
theory to describe the data. We propose here the alternative route presented above, namely
the comparison of the “cosmographical RD” with the “dynamical RD”, the results of which
must be compatible with those that will come from the actual measurements.5

When compared to other cosmological observables, the RD has the advantage that it
directly tests the dependence of the Hubble parameter with the redshift, hence probing the
dynamics of the scale factor. Another feature of this observable is that it does not depend
on details of the source (such as the absolute luminosity), or on the definition of a standard
ruler. As demonstrated in [27, 28], the RD would allow the test of the Copernican Princi-
ple, thus checking for any degree of radial inhomogeneity. This issue was further discussed
in [29], where it was shown that the RD is positive for sources with z < 2 in the ΛCDM,
while in Lemâitre-Tolman-Bondi models6 is negative for sources observed from the symme-
try center [31]. The RD can also be used to constrain phenomenological parametrizations of
dynamical dark energy models (see [32–34]). To use the RD as an example of our method, we
shall work out in section 2 the series expansion of this observable in terms of the cosmolog-
ical redshift z and the time derivatives of the scale factor (i.e. the kinematical parameters).
Since the RD depends on the explicit form of the Hubble parameter H(z), we shall show in
section 3 that its series expansion in z can be written in terms of f(R) and its derivatives,
using the equations of motion (EoM) of a yet unspecified f(R) theory in the metric version.

4The cosmographical approach has already led to interesting results in the framework of f(R) theories,
see [14–17].

5Note that are several effects (such as those coming from the peculiar acceleration in nearby clusters
and galaxies, and the peculiar velocity of the source) that should be taken into account when comparing a
theoretical prediction for the RD with observations. This is not the case for the method proposed here.

6See for instance [30].
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By comparing the two series, it will be shown that there exists relations between f(R), its
derivatives, and the kinematical parameters, which impose constraints on the parameters of
a given f(R). These constraints will be analyzed on two examples: that proposed by [1]
(see section 3.1), and the exponential gravity theory introduced by [2] (see section 3.2). In
both cases, we find limits on the parameters of these f(R) theories that are compatible with
or more stringent than the existing ones, as well as a limit for a previously unconstrained
parameter. We close in section 4 with some remarks.

2 A cosmographical approach to the redshift drift

Cosmography is a mathematical framework for the description of the universe, based entirely
on the Cosmological Principle, and on those parts of GR that follow directly from the Prin-
ciple of Equivalence [35]. It is inherently kinematic, in the sense that it is independent of the
dynamics obeyed by the scale factor a(t). In this section we shall present the calculation,
in the context of cosmography, that leads to the series expansion of the RD in terms of z,
assuming only that spacetime is homogeneous and isotropic.7

The redshift of a photon emitted by a source at time t that reaches the observer at time
tobs is given by

z(t) =
a(tobs)

a(t)
− 1. (2.1)

The time variation of the redshift is obtained by comparing this expression with the one
corresponding to a photon emitted at t′ = t + ∆t, that is ∆z = z(t + ∆t) − z(t). To first
order in ∆tobs and ∆t, it follows that [38]

∆z

∆tobs
=

[

ȧ(tobs)− ȧ(t)

a(t)

]

. (2.2)

Using the definition of z and H(z) in this equation we get the expression of the RD in terms
of z, namely

∆z

∆tobs
= (1 + z)Hobs −H(z). (2.3)

Next, an expansion of H in powers of z will be obtained, using the cosmographical approach,
while in the next section we will exhibit the analogous expansion using the form of H deter-
mined by a given f(R) theory. The series development of the scale factor around t0 = tobs is
given by

a(t) = a0

[

1 +H0(t− t0)−
1

2
q0H

2

0
(t− t0)

2 +
1

3!
j0H

3

0
(t− t0)

3 +
1

4!
s0H

4

0
(t− t0)

4 +O([t− t0]
5)

]

,

(2.4)

where the so-called kinematical parameters are defined by

H(t) ≡ +
1

a(t)

da

dt
, q(t) ≡ − 1

a(t)

d2a

dt2

[

1

a(t)

da

dt

]−2

,

j(t) ≡ +
1

a(t)

d3a

dt3

[

1

a(t)

da

dt

]−3

, s(t) ≡ +
1

a(t)

d4a

dt4

[

1

a(t)

da

dt

]−4

.

7For constraints on the ΛCDM model using cosmography see [36, 37].
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In order to use eq. (2.4) for the calculation of the RD, we need to express t in terms of known
quantities. This can be achieved through the physical distance travelled by a photon emitted
at t and observed at t0, given by

D = c

∫

dt = c(t0 − t). (2.5)

A relation between D and z can be obtained from eq. (2.1) [39]:

1 + z =
a(t0)

a(t)
=

a(t0)

a(t0 −D/c)
. (2.6)

Performing a Taylor series expansion, eq. (2.6) yields

z(D) =
H0D

c
+

2 + q0
2

H2
0D

2

c2
+

6(1 + q0) + j0
6

H3
0D

3

c3
+O

(

[

H0D

c

]4
)

, (2.7)

which can be inverted to

D(z) =
c z

H0

[

1−
(

1 +
q0
2

)

z +

(

1 + q0 +
q20
2

− j0
6

)

z2

−
(

1 +
3

2
q0(1 + q0) +

5

8
q30 −

1

2
j0 −

5

12
q0j0 −

s0
24

)

z3 +O(z4)

]

. (2.8)

Setting t = t0 −D/c, the Taylor expansion of expression (2.2) yields

∆z

∆t0
(D) = −q0H

2
0

D

c
− 1

2
H3

0 (j0 + 2q0)

(

D

c

)2

− 1

6
H4

0 [3q0(q0 + 2)− s0 + 3j0]

(

D

c

)3

+O(D4).

(2.9)
Lastly, using eq. (2.8) we can write the RD as a power series in z, with coefficients that are
functions of the kinematical parameters in the form

∆z

∆t0
(z) = −H0q0z +

1

2
H0

(

q20 − j0
)

z2 +
1

2
H0

[

1

3
(s0 + 4q0j0) + j0 − q20 − q30

]

z3 +O(z4).

(2.10)
This equation gives the cosmographical expression of the RD up to the third order in the
redshift of the source, in terms of the value of the kinematical parameters at the present epoch
(whose values are known from observation, see section 3.1). Let us remark that eq. (2.10)
is completely independent of the dynamics obeyed by the gravitational field. Hence, any
viable theory must yield a prediction for the RD compatible with it. In the next section,
this expression will be compared with that obtained using the dynamics of an arbitrary f(R)
theory.

3 The redshift drift in f(R) theories

Let us recall that the RD can be expressed in terms of H(z) as follows

∆z

∆t0
= (1 + z)H0 −H(z). (3.1)
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In the case of the SCM, the RD can be written as a function of the cosmological parameters
H0, Ωm,0, Ωr,0 and ΩΛ,0 using the exact expression for H(z) as follows [38]:

∆z

∆t0
= H0

[

(1 + z)−
(

Ωm,0(1 + z)3 +Ωr,0(1 + z)4 +ΩΛ,0

)1/2
]

, (3.2)

where the subindex 0 means that the corresponding quantity is evaluated at t = today. In
the case of f(R) theories, the expression for H that follows from the variation of the action

S =

∫

d4x
√−g [f(R) + Lmatter]

w.r.t. the metric must be used. For the FLRW metric and considering a pressureless cosmo-
logical fluid, these equations are (see for instance [40])

f ′R− 2f − 3f ′′

(

R̈+
3ȧṘ

a

)

− 3f ′′′Ṙ2 = T, (3.3)

f ′Rtt +
1

2
f + 3f ′′ ȧṘ

a
= Ttt, (3.4)

where dot and prime denote, respectively, derivative w.r.t. t and R, Rtt = 3ä/a, R = 6( äa+
ȧ2

a2
),

and T is the trace of the energy-momentum tensor. From these, the following relation can
be obtained [14]:

H =
1

6Ṙf ′′

(

6H2f ′ − 2ρm − f +Rf ′
)

, (3.5)

with ρm = ρm,0a
−3 = 3H2

0Ωm,0a
−3. Using this expression in eq. (3.1) we find

∆z

∆t0
(z) =

ȧ0 − ȧ(z)

a(z)
= H0

{

(z + 1)− 1

6

f(R)−Rf ′(R) + 6H2f ′(R)− 2ρm

H0Ṙ(t)f ′′(R)

}

, (3.6)

where f , R, H, and ρm are functions of z.8 We use df
dz = df

dR
dR
dt

dt
dz and analogous expressions

for other quantities to expand eq. (3.6) in powers of z. To first order,9 the result for an
arbitrary f(R) is given by

∆z

∆t0
(z) =

{

H0 +
1

6H0f ′′
0

[

1

Ṙ0

(

f ′′
0 Ṙ0(R0 − 6H2

0 ) + 2ρ̇m,0 − 12H0Ḣ0f
′
0

)

+

(

R̈0

Ṙ2
0

+
f ′′′
0

f ′′
0

)

(

f0 + f ′
0(6H

2
0 −R0)− 2ρm,0

)

]}

z +O(z2). (3.7)

Lastly, using that R0 = 6(Ḣ0+2H2
0 ), Ḣ0 = −H2

0 (1+ q0) and Ḧ0 = H3
0 (j0+3q0+2) together

with the definitions of the kinematical parameters, we obtain

∆z

∆t0
(z) =

{

[

6q0H
2

0
f ′

0
+ f0 − 6Ωm,0H

2

0

]

(j0 − q0 − 2)2
f ′′′

0

6f ′′

0

+ (3.8)

+H2

0
f ′′

0

[

(j0 − 2)2 − q0(3q0 + (q0 − j0)
2 − 2j0)

]

+ f ′

0
[q0(q

2

0
+ 6q0 + 2j0 + s0) + 2j0 + 4]

+
f0

36H2

0

(−s0 − q2
0
− 6− 8q0) +

Ωm,0

6
(s0 + 3j0 + 5q0 + q2

0
)

}

z

f ′′

0
H0(j0 − q0 − 2)2

+O(z2).

8Note that the presence of f ′′ in the denominator of this expression may lead to divergencies, since f ′′

is bound to be small if the theory is to yield an expansion close to that in GR +Λ today. In the examples
analyzed below, we checked that the product H0Ṙ(t)f ′′(R) does not cause any divergencies.

9The second order term involves derivatives of the scale factor higher than the fourth, denoted by ℓ0.
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The dependence of the RD with the given theory is manifest in eq. (3.8) through f and its
derivatives evaluated today. We can now compare the linear term in z of the kinematical
and dynamic approaches to the RD, given by eqs. (2.10) and (3.8), respectively. The result
is a relation between f(R), its derivatives and the kinematical parameters, all evaluated at
t = today:

{

[q0(q0(q0 + 6) + 2j0 + s0) + 2(j0 − 2)]f ′
0

+[s0 + q0(q0 + 8) + 6]f0 − [q0(q0 + 5) + s0 + 3j0]Ωm,0

}

f ′′
0

+
[

(q0 − j0)
2 + 4(1 + q0 − j0)

] {

f0f
′′′
0 + 6H2

0 [(q0f
′
0 − Ωm,0)f

′′′
0 + (f ′′

0 )
2]
}

= 0. (3.9)

Notice that the restriction to the first order in z is not related to actual measurements of
the RD for sources with z ≪ 1, but to the fact that the second order term depends on ℓ0,
for which there are no observational limits available. Note also that eq. (3.9) is a necessary
condition for any f(R) theory to describe the variation of the RD with z. By equating higher
orders of z from eqs. (2.10) and (3.8) we would obtain more (actually, an infinite number of)
necessary conditions on f(R) and its derivatives. If the theory under discussion is to describe
the RD at all orders in z, all these conditions should be satisfied.

We shall see next how eq. (3.9) constrains the value of the parameters of a given f(R),
by applying it to two examples.

3.1 Example 1: the theory of Hu and Sawicki

Let us start with the theory introduced by [1], which is given by

f(R) = R−m2 c1(R/m2)n

c2(R/m2)n + 1
, (3.10)

where n > 0, c1 and c2 are dimensionless parameters and the mass scale is m2 ≡ κ2ρ̄0/3,
with ρ̄0 the average density today.

For values of the curvature high compared with m2 (which is actually the case if the
current accelerated expansion is to be not very different today from that in GR+Λ, see [1]),
f(R) may be expanded as

lim
m2/R→0

f(R) ≃ R− c1
c2
m2 +

c1
c22
m2

(

m2

R

)n

(3.11)

and, at finite c1/c
2
2, the theory can approximate the expansion history of the ΛCDMmodel [1].

In this regime, the parameters c1 and c2 must satisfy the relation

c1
c2

≈ 6
Ω̃Λ

Ω̃m

. (3.12)

For the flat ΛCDM expansion history, eq. (3.11) yields

R ≃ 3m2

(

a−3 + 4
Ω̃Λ

Ω̃m

)

, (3.13)

f ′ ≃ 1− n
c1
c22

(

m2

R

)n+1

, (3.14)

– 6 –
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and at the present epoch,

R0 ≃ m2

(

12

Ω̃m,0

− 9

)

, (3.15)

f ′
0 ≃ 1− n

c1
c22

(

12

Ω̃m,0

− 9

)−n−1

. (3.16)

Using eq. (3.16), c1/c
2
2 can be expressed in terms of n, f ′

0 and Ω̃m,0. In addition, higher order
derivatives of f can also be written in terms of the same quantities. Hence from now on we
set Ω̃m,0 = 0.274±0.007 [41] and leave f ′

0 and n the only free parameters of the theory. With
these considerations, eq. (3.9) yields

f ′
0(n) =

1

A

{

[q0(5q0 − 6j0 + 8 + (q0 − j0)
2) + (j0 − 2)2]4n

+[j0(j0 − 8)− 2q0(j0 + q0 + 8)− 3(s0 + 2)]6Ω̃m,0

+[2(j0 + 1) + q0(q0 + 6) + s0]9Ω̃
2
m,0

+[q0(2(10 + 3q0 − 2j0) + (q0 − j0)
2) + 2(s0 + 6)]4

}

, (3.17)

with

A = [q0((q0 − j0)
2 − 6j0 + 8 + 5q0) + (j0 − 2)2]4n

−[3s0 + 18 + 22q0 − (j0 − 2)2 + (2q0 + 1)2)]6Ω̃m,0 + [s0 + q20 + 8q0 + 6]9Ω̃2
m,0

+[q0(2(5q0 + 16− 4j0) + (q0 − j0)
2) + 2(s0 + 10− 2j0)]4. (3.18)

Expression (3.17) gives a relation between the parameters f ′
0 and n in terms of Ω̃m and

the kinematical parameters H, q, j, and s, all evaluated today. We shall take the values
q0 = −0.669 ± 0.052, j0 = 0.284 ± 0.151 and s0 = −0.680 ± 0.456 [15]. In figure 1 we plot
the relation f ′

0(n) provided by our cosmographical approach to the RD combined with the
expansion of the expression of H(z) for f(R) theories.10 The curve tends asymptotically to
f ′
0 = 1, which corresponds to the GR limit. The plot also displays the limit obtained from
solar system tests, given by |f ′

0 − 1| < 0.1 [1]. We find that actually 1− f ′
0 < 0.1 and, from

this limit, values for n larger than approximately 3 are favoured, thus discarding low values
for n, and allowing for large values, in accordance with the findings of [42].

3.2 Example 2: exponential gravity

Next we shall analyze the restrictions that follow from eq. (3.9) on the choice of f(R) proposed
by [2]:

f(R) = R− cr(1− exp(−R/r)), (3.19)

where c and r are two (positive) parameters of the model. This f(R) was specifically de-
signed to (i) avoid the inclusion of an implicit cosmological constant (since it vanishes in the
low curvature limit), (ii) reduce to GR for high values of the curvature, (iii) incorporate a
transition scale (given by r) to be fitted from observations (instead of set equal to R0), and

10Due to the current observational limitations to measure accurately the kinematical parameters, an appro-
priate error propagation treatment was applied in the analysis.

– 7 –
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Figure 1. Constraints on the parameter space of the theory by Hu and Sawicki. The red line
corresponds to the relation between f ′

0
and n that follows from eq. (3.9). The dashed lines represent

the error propagation arising from the kinematical parameters and the density matter at the present
epoch. The shady region indicates the values of f ′

0
in agreement with solar system tests.

(iv) restore GR for locally high curvature systems such as the solar system or galaxies. As
shown in [2], the product cr is given in terms of Ωm,0 by

cr = 6m2(Ω−1
m,0 − 1). (3.20)

The use of eq. (3.9) for the current choice of f(R) yields a relation between the dimensionless
parameters c and r/m2 given by

c
( r

m2

)

=
1

B

{

[

(3 + s0 + 2j0(q0 + 1)− (q0 − 1)2)− (q0(q0 + 5) + s0 + q2
0
+ 3j0)Ωm,0

]

6Ωm,0

r

m2

+[4(1 + q0 − j0) + (q0 − j0)
2]36 (Ωm,0 − 1)

}

exp

(

6(1− q0)
r

m2Ωm,0

)

, (3.21)

with

B =

{

[q0(q0 + 8) + 6 + s0]Ωm,0

( r

m2

)

[

(exp

(

6(1− q0)
r
m2Ωm,0

)

− 1

]

−6[4(1 + q0 − j0) + (q0 − j0)
2] exp

(

6(1− q0)
r
m2Ωm,0

)

+6[q0(q0(q0 + 7) + 4 + s0) + (j0 − 1)2 − 1]

}

Ωm,0

( r

m2

)

−[(j0 − 2)2 + q0((q0 − j0)
2 + 8− 6j0 + 5q0)]36, (3.22)

which is plotted along with eq. (3.20) in figure 2.11 The strips formed by both curves and the
corresponding errors juxtapose for all values of c & 6, which imply that r/m2 . 2.7. Notice
that the range of possible values for the parameter c that follows from our method improves
the previous bound (c ≥ 1.27) obtained in [43].

11We have taken into account in the plot that the distance to the cosmic microwave background last
scattering surface in this theory agrees with the ΛCDM model with the same present matter density to 0.2%
if c ≥ 1.5.
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Figure 2. Constraints coming from our approach to the redshift drift (continuous line) and the
relation (3.20) between the parameters of the theory (dashed line). In both cases, the thin lines
represent the error propagation arising from the kinematical parameters and the matter density at
the present epoch.

4 Discussion

As discussed in [6], well-motivated alternatives to GR may help in solving some issues as-
sociated to Einstein’s theory both in the ultraviolet and the infrared regime. In particular,
a number of the so-called f(R) theories of gravitation yield a description of the accelerated
expansion of the universe without using a cosmological constant or dark energy, and satisfy
the galactic and solar-system constraints. Motivated by these features, we have presented a
method to set constraints on the parameters of any f(R) theory. It is based on the comparison
of two series expansions of any observable that depends on H(z). The first expansion is of the
cosmographical type (i.e. independent of the dynamics of the theory), while the second uses
the dependence of H with z furnished by any f(R). The comparison of the two expansions
yields relations between f , its derivatives, and the kinematical parameters, all evaluated at
z = 0. These relations must be satisfied by any f(R). We showed that when the observable
is the redshift drift, the method yielded limits on the n parameter of the f(R) introduced
in [1] that are in agreement with previous findings (obtained without using the redshift drift).
In the case of the exponential gravity theory introduced by [2], the bound we obtained in
the parameter c is stronger than previously obtained limits. We also presented for the first
time a bound on the parameter (r/m2). As a byproduct, the cosmographic expression for
the redshift drift given in eq. (2.10) was obtained, that must be obeyed by any theory. It is
worthwhile noting that the method we introduced is not restricted to f(R) theories: except
for algebraic problems in particular examples, it can be applied to any alternative theory of
gravity under the assumption of homogeneity and isotropy.

To close, we would like to emphasize that the bounds obtained by the method developed
here can be analyzed toghether with those coming from the observations mentioned in the
Introduction as well as other means (such as energy conditions [44]), with the aim of deciding
whether a given f(R) theory is consistent with the available data.
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