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Self-diffusion D in a system of particles that interact with a pseudo-hard-sphere or a Lennard-Jones potential
is analyzed. Coupling with a solvent is represented by a Langevin thermostat, characterized by the damping
time td . The hypotheses that D = D0ϕ is proposed, where D0 is the small concentration diffusivity and ϕ is
a thermodynamic function that represents the effects of interactions as concentration is increased. Molecular
dynamics simulations show that different values of the noise intensity modify D0, but do not have an effect on ϕ.
This result is consistent with the assumption that ϕ is a thermodynamic function since the thermodynamic state
is not altered by the presence of damping and noise.
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I. INTRODUCTION

The Chapman-Enskog transport theory [1] predicts self-
diffusivity of a general system of interacting particles at small
concentration; it reduces to the Boltzmann theory for dilute
gases when particles are hard spheres. Several approximate
theories were proposed to extend the description to moderate
and large concentrations, such as free volume or excess en-
tropy theories. They were successfully applied to fluid models
and real substances for the description of transport properties,
usually requiring around 2–4 adjustable parameters.

In particular, free-volume theories propose relationships
between transport coefficients of a dense fluid and the free
volume defined as Vf = V − Vi, where V is the volume and
Vi is an intrinsic molar volume. The equations are simple
and can usually be applied over wide ranges of pressure
and temperature. We mention a few examples and focus at-
tention on the expressions for the self-diffusion coefficient.
The Dymond-Hildebrand-Batschinski [2–4] model consid-
ers the self-diffusion coefficient as proportional to the free
volume, D ∝ Vf ; this simple proposal can describe systems
with small attractive forces at small or moderate densi-
ties. The Doolittle-Cohen-Turnbull [5,6] model, with D ∝
exp(−C/Vf ), incorporates the behavior at a glass transition;
an improvement was proposed by Turnbull and Cohen [7],
where D ∝ (C + Vf ) exp(−C′/Vf ). The proposal of Macedo
and Litovitz [8], D ∝ exp(−C/Vf − C′/kBT ), has been im-
portant in the description of polymer fluids. In all cases, C
and C′ are constants of the models that have to be adjusted
for each substance. In the van der Waals theory of transport
properties, self-diffusivity at large concentrations is calculated
using hard-sphere expressions at low concentration with a
variable core size σ [2,9–11].

Following the works of Rosenfeld [12,13], several semiem-
pirical formulas of the form D ∝ exp(Csex/kB), where sex is
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the excess entropy per particle, have been proposed for models
and real systems; see Dzugutov [14] (again, we focus on the
diffusivity, but equivalent formulas also apply to viscosity and
thermal conductivity). The excess entropy can be computed
from the equation of state, usually represented by the com-
pressibility factor. Although successful in describing transport
properties at large and moderate concentration in different
fluids, Rosenfeld observed that based on hard-sphere results,
the analytical form of transport coefficients in the whole con-
centration range is probably not an exponential of the excess
entropy; he extended the analysis to small concentrations (or
the Enskog domain) and obtained a different dependence for
transport coefficients [15]. Despite its simplicity, the thermo-
dynamic and transport properties of the hard-sphere model do
not yet have exact solutions in the whole range of concentra-
tion. Accurate mathematical representations of self-diffusivity
for hard spheres are, in general, obtained from the interpola-
tion of molecular dynamics results; see Sec. 9.4 in [16] for a
review and see Pieprzyk et al. [17] for more recent numerical
simulations.

The purpose of this paper is to elucidate qualitative as-
pects of self-diffusion of hard spheres in three dimensions
assuming, as a starting point, the following hypotheses: the
self-diffusion coefficient D can be written as the product of
two terms, one including the dependence on factors such
as mass of particles, size of particles, or mean velocity (or
temperature), and the other corresponding to macroscopic or
thermodynamic aspects associated to the presence of inter-
actions. It is assumed that the effects of interactions, that
manifest themselves when the concentration is increased, are
represented by the second term. For brevity, we refer to the
“self-diffusion coefficient” as “diffusivity.” We identify the
first term with the diffusivity at small concentration, D0, so
that

D = D0ϕ, (1)

where ϕ is the factor representing the effects of interactions
as concentration is increased. According to the hypotheses,
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whose justification is given in Sec. II, only the information of
interactions at the thermodynamic level is needed to describe
diffusivity in the whole concentration range.

The proposal is similar to Rosenfeld’s since the excess
entropy exponential is, of course, a thermodynamic function.
The question that we wish to address is, however, if it is
possible to express the diffusivity in terms of a thermody-
namic function, without knowing it in advance. We developed
a method to answer this question, in which no specific form
is provided for ϕ (as Rosenfeld observed, the excess en-
tropy exponential does not hold for small concentration in
the hard-sphere system). Moreover, we wish to know if the
proportionality of the diffusivity with a thermodynamic func-
tion also holds in the presence of noise and when the noise
intensity is modified.

The method proposed to check the hypothesis is as follows.
Noise corresponding to a Langevin thermostat is added; the
system can be seen as a colloidal suspension of hard spheres
where hydrodynamic forces are neglected [18]. The noise
modifies D0, but not the thermodynamic state. Molecular
dynamics simulations are carried out using the continuous
pseudo-hard-sphere potential proposed in Ref. [19] that ac-
curately reproduces results of the hard-sphere potential; see
Sec. III. Simulations are performed, using LAMMPS software
[20], to verify that the equation of state does not change
with the noise intensity (represented by the damping time td );
see Sec. IV. This means that the presence of noise does not
modify the thermodynamic state and, therefore, it should not
modify ϕ which is supposed to be a thermodynamic function.
The Stoermer-Verlet time integration algorithm for constant
particle number, volume, and energy (NVE ensemble) is used;
the fluctuation dissipation theorem determines the relationship
between the stochastic force amplitude and damping time.
In Sec. V, the form of diffusivity at small concentration is
determined as a combination of Einstein and Boltzmann diffu-
sion coefficients. Simulation results of D/D0 for hard spheres
against concentration for different values of the noise intensity
are presented in Sec. VI. The results show that as expected,
ϕ does not change for different noise intensities. Simulation
results for the Lennard-Jones potential are shown in Sec. VII.
Summary and conclusions are presented in Sec. VIII.

II. THE HYPOTHESES

Let us suppose that the system of particles is divided into
cubic cells of size a. Two neighboring cells, labeled 1 and 2,
have n1 and n2 particles, respectively. In this coarse-grained
picture, a general expression for the transition rate, Wn1,n2 ,
from cell 1 to cell 2, as a function of the the excess chemical
potential has been recently derived [21],

Wn1,n2 = ν ψn1,n2 , (2)

where ν is the jump attempt frequency and

ψn1,n2 = e−β(μex,n2 −μex,n1 )/2√
�n1�n2

(3)

represents the effects of interactions at the thermodynamic
level, where μex,ni is the excess chemical potential for ni

particles and �ni = 1 + βni
∂μex,ni

∂ni
is the thermodynamic factor,

with β = 1/(kBT ); T is the temperature and kB is the Boltz-
mann’s constant. Wn1,n2 is the average transition rate for any
of the n1 particles in cell 1.

In the limit of small concentration interactions can be ne-
glected, μex,ni � 0, �ni � 1, and

W 0
n1,n2

= ν, (4)

where superindex 0 indicates small concentration. In this case,
a tagged particle performs a random walk between cells of
size a, with constant transition rate ν, and the tracer diffu-
sion coefficient is D0 = νa2. If, for example, the system is
a dilute gas, then D0 is obtained with the Boltzmann theory
and, besides temperature and concentration, ν depends on
microscopic properties such as the mass and size of particles.
If, instead, the system is composed of Brownian particles, ν

depends on the particle’s mass and on the damping time (or
the friction coefficient).

Then, Eq. (2) consists of two parts: one, represented by ν,
contains microscopic details, while the other, given by ψn1,n2 ,
represents the thermodynamic aspects. Interactions usually
include a repulsive part at short distances; this repulsion is
reflected in an increase of the thermodynamic factor as con-
centration is increased, resulting in a decrease of the transition
rate (and the diffusivity). This behavior of the transition rate is
represented by ψn1,n2 . In contrast, the jump attempt frequency
ν is obtained, as mentioned before, from the tracer diffusivity
at small concentration D0; the expression for ν obtained in this
way holds for any concentration.

An important difficulty appears when the transition rate
is used to obtain the tracer diffusivity for any concentration.
In general, spatial correlations must be taken into account
as concentration is increased. The transition rate of a tagged
particle may not be equal to the average transition rate of all
particles in the cell, but may depend on its position before
its last jump. If this dependence can be neglected, a mean-
field approximation can be applied; see Ref. [21] for some
examples. Nevertheless, in general, a correlation factor has to
be included.

We can still assume that the separation between micro-
scopic and thermodynamic aspects that holds for the transition
rate, given by Eq. (2), also holds for the tracer diffusivity. This
assumption leads to the hypotheses given by Eq. (1) in Sec. I.
Then, the hypothesis is based on the structure of the transition
rate; it says that this structure should also be present in the
tracer diffusivity. In Eq. (1), D0 plays the role of ν and ϕ plays
the role of ψn1,n2 . In this expression, the form of D0 is relevant
for the whole range of concentration (although it is derived at
small concentration), and the effects of interactions are only
present in ϕ.

III. PSEUDO-HARD-SPHERE POTENTIAL

The Mie potential, as the Lennard-Jones potential, is re-
pulsive at short radial distance r and has an attractive well of
energy ε at intermediate distances. It generalizes the Lennard-
Jones potential by considering exponents λr and λa of the
repulsive and attractive terms,

uMie(r) = λr

λr − λa

(
λr

λa

) λa
λr −λa

ε

[(σ

r

)λr −
(σ

r

)λa
]
, (5)
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FIG. 1. Comparison between Lennard-Jones (dashed), hard-core
(dash-dotted), and WCA (λr = 50, λa = 49) (solid) potentials.

where the size parameter σ is related to the diameter of the
spherically symmetric particles. Weeks, Chandler and Ander-
sen (WCA) [22] proposed a cut and shifted version of the
Lennard-Jones potential in order to consider a purely repulsive
core. The same procedure applied to the Mie potential, with
λr = 50 and λa = 49, results in

u(r) =
{

50( 50
49 )49ε

[
( σ

r )50 − ( σ
r )49

] + ε, r < σ 50
49

0, r � σ 50
49 .

(6)

This potential is known as the WCA potential.
This is the continuous potential used in Ref. [19] to repro-

duce the results of hard spheres. They have shown that the
correspondence with hard spheres is fulfilled for a reduced
temperature, T ∗ = kBT/ε = 1.5. The particle mass m, the en-
ergy ε, and the size σ are combined to cancel units in reduced
quantities identified with an asterisk. In Fig. 1, we show a
comparison between Lennard-Jones, WCA, and hard-sphere
potentials.

IV. EQUATION OF STATE

Carnahan and Starling [23] obtained an approximate equa-
tion of state (EOS) for the hard-sphere fluid that is widely used
due to its simplicity and accuracy. It is an expression for the
compressibility factor, defined as

Z = PV

NkBT
, (7)

where P is the pressure, V is the volume, N is the number of
particles, and the particle density is ρ = N/V . The Carnahan
and Starling EOS is

Z = 1 + η + η2 − η3

(1 − η)3
, (8)

where η is the packing fraction; the equation holds for η <

0.55. The hard-sphere EOS does not depend on temperature.
However, the EOS for the pseudo-hard-sphere potential (6)
is not athermal. Therefore, in order to reproduce the hard-

sphere behavior, temperature has to be fixed at T ∗ = 1.5, as
mentioned in the previous section.

We consider that the hard-sphere system is immersed in a
background solvent modeled by a Langevin thermostat. Two
forces are introduced by the thermostat: a friction force given
by −mv/td , where v is the particle’s velocity and td is the
damping time, and a stochastic force represented by white
noise of intensity, 2mkBT/td . Since temperature is fixed, both
forces are determined by the value of the damping time (equal
to the inverse of the friction coefficient). The reduced damping
time is t∗

d = td σ−1√ε/m.
Temperature, number of particles, and volume are pre-

served when the thermostat is introduced. The pressure may,
in principle, change, giving a different EOS, but this is not
the case. According to the virial equation, the pressure in
three dimensions can be written as (see [24, Sec. 3.7] or [25,
Sec. 2.2])

P = ρkBT − 1

3V

〈
N∑

i=1

ri · Fi

〉
, (9)

where ri is the position of particle number i and Fi is the force
applied to it. The force is given by

Fi = fi − mvi/td + ξi, (10)

where fi is the interaction with other particles; the other two
terms are produced by the thermostat: friction, −mvi/td , and
a stochastic force ξi. The contribution of the thermostat to the
pressure is given by

− 1

3V

(〈
N∑

i=1

ri · ξi

〉
− m

td

〈
N∑

i=1

ri · vi

〉)
= 0. (11)

Both terms are zero. In the first term, the stochastic force ξi
and the position ri, evaluated at the same time, are uncorre-
lated and 〈ξi〉 = 0. On the other hand, for the second term, the
equilibrium probability distributions of position and velocity
are independent, and 〈vi〉 = 0 due to isotropy. The indepen-
dence between position and velocity is a consequence of the
form of the Boltzmann distribution; if v = (v1, . . . , vN ) and
r = (r1, . . . , rN ), the equilibrium probability distribution is
P(r, v) ∝ e−β[K (v)+U (r)], where K (v) and U (r) are the kinetic
and potential energies; then, P(r, v) is written as the product
of the probability distributions for position and velocity.

Therefore, the final result for the pressure,

P = ρkBT − 1

3V

〈
N∑

i=1

ri · fi

〉
, (12)

is independent of the presence of the thermostat and the EOS
is not modified.

The pressure was numerically calculated to obtain the com-
pressibility factor for concentrations in the fluid range and for
different values of t∗

d ; see Fig. 2. The figure shows that the
EOS is not altered by the presence of damping and noise. This
result means that according to our hypotheses, the value of ϕ

in (1), being a thermodynamic function, should not change
with t∗

d .
The connection between the compressibility factor Z =

βP/ρ and the thermodynamic factor � is as follows. The
thermodynamic factor in terms of the chemical potential μ
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FIG. 2. Compressibility factor Z against packing fraction η for
pseudo-hard-spheres (T ∗ = 1.5). The symbols represent different
values of the damping time t∗

d : 0.01, 0.1, 1, and 10 (dots for each
t∗
d overlap almost exactly). The curve corresponds to the Carnahan

and Starling EOS, given by Eq. (8).

and the density ρ is � = βρ
∂μ

∂ρ
or, in terms of the excess

chemical potential, � = 1 + βρ
∂μex

∂ρ
. The pressure P and the

chemical potential can be written in terms of the free energy
per particle, f (a function of ρ and T ), as P = ρ2 ∂ f

∂ρ
and

μ = f + P/ρ. Then,

� = βρ

(
∂ f

∂ρ
+ ∂ (P/ρ)

∂ρ

)

= βP/ρ + ρ
∂ (βP/ρ)

∂ρ
= Z + ρ

∂Z

∂ρ
. (13)

The excess chemical potential can also be written in terms of
Z . The chemical potential and the free energy per particle for
the ideal fluid are μid = μ◦ + β−1 ln N and fid = μid − β−1,
and the residual or excess quantities are μex = μ − μid and
fex = f − fid. Then,

P = ρ2 ∂ fex

∂ρ
+ ρβ−1, (14)

μex = fex + P/ρ − β−1. (15)

(See, for example, Eqs. (9) and (11) in [26].) Rewriting the
previous expressions in terms of the compressibility factor,
we get

β
∂ fex

∂ρ
= (Z − 1)/ρ, (16)

βμex = β fex + Z − 1, (17)

and, combining these equations, we obtain

βμex =
∫

Z − 1

ρ
dρ + Z − 1, (18)

where an integration constant is set with the condition μex = 0
in the small concentration limit.

V. DIFFUSIVITY AT SMALL CONCENTRATION

In order to numerically determine the behavior of ϕ, we
need to calculate the ratio D/D0. The diffusivity at small
concentration, D0, is well known for the two extreme values of
the damping time. If t∗

d → ∞, noise and damping are absent
and, according to Boltzmann’s theory, the diffusivity at small
concentration is given by

DB = 3

8ρσ 2

√
kBT

πm
. (19)

The reduced diffusivity is D∗ = Dσ−1√m/ε, then

D∗
B =

√
πT ∗

16 η
. (20)

At the other end, for small t∗
d , noise and damping dominate

the hard-sphere behavior and, according to Einstein’s theory,
the diffusivity is

DE = kBT td
m

(21)

or

D∗
E = T ∗t∗

d . (22)

For intermediate values of t∗
d , D0 is given by a combination of

DE and DB. We formulate a functional form for D0(DB, DE )
by establishing an analogy between the particle current given
by Fick’s law, j = −D ∂n

∂x , and the current I in an electric cir-
cuit with a potential V = IR, with R the resistance; V → − ∂n

∂x
and I → j, hence R → 1/D. When collisions between hard
spheres and interactions with the background solvent are both
relevant, the analogy corresponds to a series circuit in which
the associated resistances are added. The small concentration
diffusivity is

1

D∗
0

= 1

D∗
B

+ 1

D∗
E

(23)

or

D∗
0 = T ∗t∗

d

16ηt∗
d

√
T ∗/π + 1

. (24)

For the two extreme values of the damping time, we have
D∗

0 � D∗
E (small t∗

d ) and D∗
0 � D∗

B (large t∗
d ).

The validity of Eq. (23) was checked with numerical sim-
ulations at small concentration for 500 000 particles. Figure 3
shows D∗

0 against the damping time t∗
d for η = 0.0052. Nu-

merical values of D∗
0 agree with Eq. (23).

VI. NUMERICAL RESULTS OF D/D0

According to our hypotheses, the diffusivity D is propor-
tional to D0 for the whole concentration range; see Eq. (1).
The correction factor ϕ is equal to 1 for small concentra-
tion. As the concentration increases, diffusion decreases and
ϕ decays to zero due to clogging of the system. The point
that we wish to verify is that this decay, characterized by ϕ,
depends on the thermodynamic state, which is unchanged by
the presence of noise. Therefore, ϕ should not depend on t∗

d .
Simulation results of D against concentration were ob-

tained for different values of the damping time. The particles
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FIG. 3. Reduced diffusivity at small concentration for pseudo-
hard-spheres, D∗

0, against damping time t∗
d for η = 0.0052. Crosses

are numerical results and the curve corresponds to Eq. (23). Param-
eters of the simulations: Number of samples = 10, number of time
steps (after thermalization) = 100, time step = 0.001, and number of
particles per sample = 500 000.

number was fixed at 500 000. The method used to calculate
diffusivity was the integration of the velocity autocorrelation
(Green-Kubo formula); the mean-square displacement (MSD)
was also used to check the results. Self-diffusion D∗ against
packing fraction η is shown in Fig. 4 for different values of
t∗
d ; as expected, an increase of t∗

d (or a decrease in the friction
coefficient) produces an increase in the diffusivity. But this
increase is restricted only to the small concentration diffu-
sivity D0 (which is consistent with Fig. 3). Figure 5 shows
values of D/D0 against the packing fraction. It can be seen that
the behavior is not modified by changing noise and damping;
values of D/D0 for different t∗

d agree within numerical errors.
Numerical results of Pieprzyk et al. [17] for hard spheres
(without noise) are also plotted for comparison.

FIG. 4. Diffusivity for pseudo-hard-spheres, D∗, against packing
fraction η for different values of the damping time t∗

d : red for 0.1, blue
for 1, and green for 10. See Fig. 5 for the details of the simulation.

FIG. 5. D/D0 against packing fraction η for different values of
the damping time t∗

d : red for 0.1, blue for 1, yellow for 5, and
green for 10. The superimposed curve corresponds to the numerical
results of Pieprzyk et al. [17] for hard spheres. Parameters of the
simulations: Number of samples = 10, number of time steps (after
thermalization) = 100, time step = 0.001, and number of particles
per sample = 500 000. For η greater than 0.35, the time step was
changed to 0.0001.

Figure 5 shows that the diffusivity decay is slower for the
intermediate packing fraction. When D is plotted relative to
the Enskog diffusion coefficient (see, for example, Fig. 9.17
in Ref. [16]), the effect is enhanced since the diffusivity is
actually larger than the theoretical prediction of Enskog, a
result that can be attributed to the long-time tail of the velocity
autocorrelation function, first reported by Alder and Wain-
wright [27,28].

VII. LENNARD-JONES POTENTIAL

Following the same line of thought as in Secs. V and VI,
we can now work on the case where the particles interact via
the Lennard-Jones potential,

uLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (25)

where σ is the radius where the potential becomes zero and ε

is the potential well depth. We wish to verify, as in the previ-
ous sections, that the functional form of D/D0, characterized
by φ, only depends on the thermodynamic state, which is not
modified by the presence of noise.

According to the Chapman-Enskog theory [1,29], the
small concentration diffusivity of particles interacting via the
Lennard-Jones potential, DLJ, is as in Eq. (19), but including
the correction factor of the reduced collision integral �11; see,
also, [30]. The equation, using dimensionless quantities, is

D∗
LJ =

√
T ∗π

16 η �11(T ∗)
, (26)
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FIG. 6. Reduced diffusivity at small concentration for the
Lennard-Jones potential, D∗

0, against damping time t∗
d for η = 0.0052

and temperature T ∗ = 4. Crosses are numerical results and the curve
corresponds to Eq. (29). Parameters of the simulations: Number of
samples = 100, number of time steps (after thermalization) = 200,
time step = 0.001, and number of particles per sample = 108 000.

where η = ρ∗π/6 and ρ∗ = ρσ 3; see Eq. (20). Using the
approximation of Ref. [31], the collision integral is

�11(T ∗) = exp

(
−1

6
ln(T ∗) +

5∑
i=0

aiT
∗−i/2

)
, (27)

with a0 = 0.125431, a1 = −0.167256, a2 = −0.265865,
a3 = 1.59760, a4 = −1.19088, and a5 = 0.264833.

We propose again that the diffusivity at small concentra-
tions, D0, is a function of both DLJ and DE (Einstein’s theory
diffusivity),

1

D∗
0

= 1

D∗
LJ

+ 1

D∗
E

(28)

or

D∗
0 = T ∗t∗

d

16ηt∗
d �11

√
T ∗/π + 1

. (29)

The velocity autocorrelation integration method was used
to calculate the diffusivity with the Lennard-Jones potential,
and these results were verified with the MSD method. MD
simulations were carried out using 108 000 particles.

In Fig. 6, we compare Eq. (29) with numerical simulations
at small concentration and observe that there is a good agree-
ment for all values of the damping time.

Moreover, in Fig. 7, we show φ = D/D0 as a function of η

and for different values of the damping time. The collapse of
the curves suggests that φ only depends on the thermodynamic
state, as it does not seem to depend on the noise intensity.

VIII. CONCLUSIONS

Self-diffusion in a system of particles that interact through
pseudo-hard-sphere and Lennard-Jones (LJ) potentials is ana-
lyzed. Particles are in a solvent whose effects are represented
by a Langevin thermostat. The thermodynamic state is in-
dependent of the coupling with the thermostat, given by the

FIG. 7. D/D0 against packing fraction η for different values of
the damping time t∗

d : red for 0.1, blue for 1, and green for 10. The
solid line corresponds to numerical simulations from Meier [30] for
the Lennard-Jones potential, all with temperature T ∗ = 4 and cutoff
radius rc = 3. Parameters of the simulations: Number of samples =
100, number of time steps (after thermalization) = 200, time step =
0.001, and number of particles per sample = 108 000. For η greater
than 0.35, the time step was changed to 0.0001, and for η greater than
0.5, the number of steps was changed to 500.

damping time t∗
d . Numerical simulations were performed to

verify that the equation of state is independent of t∗
d and also

to verify that the small concentration diffusivity D0 can be
written as a combination of the diffusivities from Boltzmann
(or Chapman-Enskog) and Einstein theories, for pseudo-hard-
spheres and also for the LJ potential. We obtained the
connection between D0 and the diffusivities from Boltzmann
and Einstein theories using a general argument based on an
analogy with an electric circuit; Figs. 3 and 6 show a very
good agreement with the numerical simulations for pseudo-
hard-spheres and LJ potential, respectively.

It is proposed, as a hypothesis, that the self-diffusion coef-
ficient is proportional to D0 and that the proportionality factor
ϕ is a thermodynamic function; see Eq. (1). In the limit of
small concentration, ϕ goes to one. Numerical simulations
are consistent with this hypothesis. Values obtained for D/D0

against the packing fraction are independent of the damping
time t∗

d . This result is compatible with the assumption that ϕ

is a thermodynamic function.
We have considered the Langevin thermostat as an intrinsic

part of the system. It is frequently used as an artificial method
for temperature control in molecular dynamics simulations; in
these cases, it cannot be used to calculate transport properties,
such as the diffusion coefficient, since it interferes in the
momentum transport (the same problem occurs with other
thermostats, such as Andersen’s, [32, p. 146]). Nevertheless,
we have shown that for pseudo-hard-spheres, the ratio D/D0

remains independent of the thermostat (within numerical
errors).

Knowing that ϕ is a thermodynamic function is a useful
guide for the development of a theory for the diffusion of hard
spheres. As mentioned in Sec. I, the concentration dependence
of ϕ is an open problem. Factor ϕ contains information about
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the influence of interactions on diffusion, but microscopic
details of the interaction potential are not needed. We can
expect that the interaction information contained in the excess
chemical potential is important for the determination of ϕ for
hard spheres and for the LJ potential.
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