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Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services
remain uncertain because pervasive interactions between grazing pressure, climate, soil properties,
and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey
at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil,
and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands
worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-
poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas.
Considering interactions between grazing and local abiotic and biotic factors is key for understanding
the fate of dryland ecosystems under climate change and increasing human pressure.

G
razing accounts for 77% of global agri-
cultural land (1), sustains billions of
people worldwide, and is closely linked
to 10 of 17 United Nations (UN) Sus-
tainable Development Goals (2). Despite

its importance, there is no consensus on how
grazing affects ecosystem services (3–6), which
may depend on the coevolutionary history
between vegetation and herbivores (3), graz-
ing pressure (4), and local climatic, edaphic,
and biodiversity conditions (7, 8). Most field
assessments have focused on local to regional
scales (3, 4, 6, 8), have studied a limited num-
ber of taxa—mostly plants—and single ecosys-
tem services (3, 4, 9), and have not considered
domestic and wild herbivores simultaneously.
Another major source of uncertainty relates to

interactions between grazing pressure and
abiotic and biotic features, which results in
strong context-dependent ecological impacts
of grazing (3, 4, 10, 11). Large-scale, stan-
dardized field surveys that explore how such
impacts depend on above- and belowground
biodiversity, soils, and climate to drive multi-
ple ecosystem services across contrasting re-
gions and environmental contexts are lacking
at present but are sorely needed to evaluate
whether general patterns emerge beyond these
context dependencies (12).
Investigating the effects of grazing pressure

across global abiotic and biotic gradients is
particularly important in drylands [areas with
an aridity index (precipitation divided by po-
tential evapotranspiration) <0.65 (13)] because

they constitute 78% of rangelands worldwide
(14) and support ~1 billion people who rely on
grazing by livestock as a critical source of pro-
tein and income (15). Although grazing may
have beneficial effects by reducing fuel loads
and enhancing primary production and plant
diversity under certain conditions (3, 16), in-
creasing grazing pressure is also considered
a major driver of rangeland degradation and
desertification across drylands worldwide (17).
These contrasting effects of grazing likely de-
pend on local climate, soil conditions, and both
plant and soil diversity, which largely influence
dryland functioning (18, 19). However, the in-
teractions of these factors with grazing pres-
sure have never, to our knowledge, been
assessed. Identifying environmental conditions
and biodiversity levels under which increasing
grazing pressure will favor or detract ecosys-
tem service delivery is a crucial step toward
achieving multiple UN Sustainable Develop-
ment Goals (2) and other international initia-
tives related to dryland desertification and
restoration (20).
Here, we used a standardized field survey

(13) carried out at 98 sites across 25 countries
and six continents (Fig. 1 and movie S1) to
assess how the effects of grazing pressure on
nine essential ecosystem services depend on
biodiversity, climate, and soil conditions across
global drylands. Each site included a collection
of three or four 45-m–by–45-m plots repre-
senting local gradients of grazing pressure
[from ungrazed or low grazing pressure to
high grazing pressure (13)], resulting in a total
of 326 plots. These gradients were mostly
driven by livestock (fig. S1), although wild
herbivores were also present in each site and
taken into account. In each plot, we assessed
vascular plant, mammalian herbivore (ac-
counting for domestic and wild herbivores),
and belowground (soil bacteria, fungi, pro-
tists, and invertebrates) diversity as well as
multiple regulating (water regulation, soil
carbon storage, organic matter decomposi-
tion, and erosion control), supporting (soil
fertility and aboveground plant biomass and
its temporal stability), and provisioning (wood
quantity, forage quantity, and quality) eco-
system services (table S1). Our survey captured
most climatic conditions supporting livestock
grazing in drylands, as well as a wide range
of ecosystem types; soil properties; plant, soil,
and mammalian diversities; and grazing pres-
sure levels (figs. S2 to S9 and table S2). These
distinctive features of our global study rendered
grazing pressure largely independent of cli-
mate, soil, and biodiversity attributes [table S3
and (13)] and allowed us to (i) evaluate the
main and interactive effects of grazing pres-
sure, climate, soil properties, and biodiversity
on ecosystem service delivery across global
drylands; (ii) identify the environmental and
biodiversity conditions under which the effects
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of grazing pressure on ecosystem services are
positive or negative; and (iii) simultaneously
assess relationships between plant, soil, and
mammalian herbivore diversity and multiple
ecosystem services.
We fitted linear mixed models to data from

all sites and grazing pressure levels and ap-
plied a multimodel inference procedure based
on Akaike information criterion (AIC) to select
the set of best-fitting models [i.e., those with a
DAIC <2 (13)]. We also considered potential in-
direct effects of grazing through the modification
of local biodiversity and soil parameters using
confirmatory path analyses (13). We found
that increasing grazing pressure affects eco-

system services through direct effects (no
significant indirect effects through changes in
soil properties or biodiversity were found;
figs. S10 and S11 and tables S4 to S12) and in-
teractive effects (interactions between grazing
and climate, grazing and soil properties, or
grazing and biodiversity were selected in 86%
of the best-fittingmodels; Fig. 2 and tables S13
to S28).
Interactions between grazing and climate

were selected in 48% of the best-fittingmodels
(fig. S12), with grazing primarily interacting
with mean annual temperature (40% of the
best-fitting models) and rainfall seasonality
(20% of the best-fittingmodels) and, to a lesser

extent, with mean annual precipitation (9% of
the best-fitting models). A negative relation-
ship between mean annual temperature and
soil carbon storage, organic matter decompo-
sition, and erosion control was found under
high, but not under low, grazing pressure (Fig.
3, A to C). Our results provide an empirical
validation of the importance of interactions
between climate change drivers, grazing, and
soil carbon storage that are predicted by glob-
al modeling studies (21). They also indicate
that considering grazing pressure can improve
our capacity to assess soil carbon–temperature
feedbacks, a key process involved in climate
warming (22).
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Soil texture also regulated grazing pressure
effects on multiple ecosystem services, which
include soil fertility, wood quantity, and for-
age quality (interactions between grazing and
sand content were selected in 37% of the best-
fitting models; fig. S12). As sand content in-
creased, soil fertility declined more steeply
under high grazing pressure (Fig. 3E), wood
quantity increased under high but declined
under low grazing pressure (Fig. 3G), and
forage quality declined under high but in-
creased under low grazing pressure (Fig. 3I).
These findings illustrate how increases in
grazing pressure interact with soil properties
to either increase or reduce the delivery of
multiple ecosystem services.
Biodiversity impacts on ecosystem func-

tioning and services are typically examined
in isolation from other drivers in experimen-
tal and observational studies (23). However,
we found interactions between grazing and
biodiversity in 44% of the best-fittingmodels
(fig. S12). For instance, increasing grazing
pressure shifted the relationships between
plant species richness and water regulation
from positive to negative (Fig. 3D) and those
between plant species richness and both wood
quantity and aboveground plant biomass and
its temporal stability from negative to posi-
tive (Fig. 3, F and G). We also found positive
relationships between plant species richness
and soil carbon storage, organic matter de-
composition, erosion control, and both forage
quality andquantity (Fig. 3, A toC,H, and I) and
between belowground diversity and organic
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Fig. 2. Relative importance of predictors of ecosystem services selected in the best-fitting models.
Importance is quantified as the sum of the Akaike weights of all models that included the predictor (grazing pressure,
climate, biodiversity, and soil variables, and their interactions) of interest, considering the number of models in
which each predictor appears. It is proportional to the number of times that a given predictor (and its interactions
with other predictors) was selected in the final set of best-fitting models (13). Interactions include all interactions
between grazing pressure and climate, biodiversity, and soil variables; the importance of each interaction type
is shown in fig. S12. In the case of biodiversity, predictor importance considers the number of models that include at
least one biodiversity proxy (plant species richness, mammalian herbivore richness, or belowground diversity).
Separate results for each biodiversity proxy are shown in fig. S12. Full details on model results, including the number
of best-fitting models, are available in tables S13 to S15. “Plant biomass and stability” represents aboveground
plant biomass and its temporal stability, and “grazing” represents grazing pressure. MAT, mean annual temperature;
RASE, rainfall seasonality; MAP, mean annual precipitation.

Fig. 1. Locations of the 98 study sites with examples of the local grazing
gradients surveyed at each site. Each black dot represents a site with multiple
45-m–by–45-m plots (white dots) surveyed in situ; a total of 326 plots were
surveyed across the 98 study sites. The inset graphics [(A) to (G)] highlight
examples of the local gradients surveyed at each site. Watering points are ponds,
impoundments, or drinking troughs that provide permanent sources of water

for livestock in drylands; they were used in this study to create local grazing
gradients (13). The background of the map indicates the extent of dryland
rangeland areas. The aridity index is calculated as precipitation divided by
potential evapotranspiration and is strongly related to mean annual precipitation
in our dataset [coefficient of determination (R2) = 0.82]. See (13) for the
aridity index and rangeland area data sources that were used.
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matter decomposition (fig. S13), irrespective
of grazing pressure. These results broaden and
validate previous findings on the relationship
between biodiversity and ecosystem functioning
(18, 19) and support arguments for conserving
and restoring diverse plant communities to
prevent land degradation, increase forage pro-
duction, and mitigate climate change in grazed
drylands (20).
Mammalian herbivore richness, which was

selected in 33% of the best-fitting models
(fig. S12), was positively related to multiple
ecosystem services. Greater herbivore rich-
ness positively correlated with soil carbon
storage regardless of grazing pressure (fig.

S13), with aboveground plant biomass and
its temporal stability under high grazing pres-
sure (fig. S14), and with forage quality under
low grazing pressure (fig. S15). Both domestic
and wild herbivore species can exhibit strong
feeding niche differences (24, 25); thus, in-
creasing their diversity can enhance ecosys-
tem functioning (25). Despite a renewed in-
terest in mixed-species grazing, studies have
been conducted at only a handful of sites or
with a limited suite of herbivores (25–27). Our
findings provide empirical evidence of the po-
tential benefits of increasing herbivore rich-
ness to enhance the delivery of key ecosystem
services across contrasting environmental and

biodiversity conditions. They also suggest that
efforts to promote diverse grazing systems
may enhance soil carbon storage and reduce
negative impacts of increased grazing pres-
sure. To date, such results have only been
modeled or observed locally (26, 27).
Themultiple interactions we observed high-

light that the effect of grazing pressure on eco-
system services can be positive or negative
depending on local climate, soil, and biodi-
versity conditions (Fig. 4). On average, in-
creasing grazing pressure had positive effects
on ecosystem services in colder sites with high
plant species richness but negative effects in
warmer sites with high rainfall seasonality
and low plant species richness (Fig. 4, E and I).
When sets of ecosystem services were consid-
ered separately, responses to grazing pres-
sure ranged from mostly neutral to positive
(regulating and supporting services; Fig. 4, B
and C) and from negative to neutral (provi-
sioning services; Fig. 4D). These results allow
us to identify ecological conditions under which
ecosystem services are positively or negatively
associated with changes in grazing pressure
(Fig. 4 and figs. S16 to S18) and to frame new
hypotheses that explore the local context de-
pendencies of grazing impacts. For instance,
we observed negative effects of increasing
grazing pressure on ecosystem services in
plant species–poor drylands, as reported in
recent local-scale studies [e.g., (11)], whereas posi-
tive effects of grazing were mostly observed
in species-rich drylands. Thus, protecting
biodiversity in species-rich areas or restor-
ing it in species-poor areas could minimize
some of the negative effects of increasing
grazing pressure on ecosystem service delivery
(fig. S19).
The effects of increasing grazing pressure on

ecosystem services were mostly negative in
warmer drylands (Fig. 4 and fig. S17), where
a large proportion of the human population
relies heavily on livestock for subsistence (15).
Limiting grazing pressure through livestock
removal is neither socially nor economically
feasible in these areas (2), yet they are ex-
pected to experience high warming rates and
water shortages under most climate change
scenarios (17). Our results thus suggest that
grazing pressure may interact with climate
change to reduce ecosystem service delivery
in warmer drylands, with potentially devastat-
ing implications for the fate of these ecosys-
tems [e.g., increased land degradation and
desertification (17)] and their inhabitants [e.g.,
greater poverty, migration, and/or social un-
rest (28)]. Although dryland pastoralists have
historically adopted strategies to cope with
environmental uncertainty (e.g., nomadism,
transhumance), benefits of these strategies
will wane if livestock concentrates in partic-
ular areas as a result of resource scarcity or
droughts (29).
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Fig. 3. Predicted responses of ecosystem services to changes in climate, sand content, and plant
species richness at low and high grazing pressure levels. (A to I) Predicted responses of regulating
[(A) to (D)], supporting [(E) and (F)], and provisioning [(G) to (I)] ecosystem services. The lines in each panel
show model fits (using partial residuals) for each predictor selected in the final best-fitting models at low
(dashed lines) and high (solid lines) grazing pressures for each service. Shading around each line represents
the 95% confidence interval. Panels surrounded by a border denote significant interactions between
grazing and other predictors. Predicted responses of ecosystem services to all grazing pressure levels
(ungrazed, low, medium, and high) and to other model predictors are presented in figs. S13 to S15. The
complete set of statistical results and model fits are available in tables S13 to S15. “Sand” represents sand
content. PR, plant species richness.
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Our findings underscore the importance of
accounting for interactions between grazing
and local abiotic and biotic factorswhen assess-
ing ecosystem service delivery in drylands.
They also illustrate those climate change and
biodiversity loss drivers that are the most
likely to interact with increases in grazing pres-
sure. Understanding these drivers is critical to
predict the fate of dryland ecosystems under
increasing temperature, biodiversity loss, and
demand for animal products. Our study also
allowed us to overcome uncertainties in graz-
ing assessments that arise from the use of
unstandardized data (30) and provides abun-
dant ground data to validate remote-sensing
products that are used when mapping and
modeling grazing impacts at the global scale
(5). Finally, we deliver empirical evidence of
the positive links between mammalian her-

bivore richness and the provision of multiple
ecosystem services across contrasting environ-
mental conditions, plant and soil diversities,
and grazing pressure levels. Our work ad-
dresses a key knowledge gap that can lead to
better management of drylands, the largest
rangeland area on Earth.
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