

Morphological and molecular diversity of the wild carrot Daucus pusillus: implications for classification and *ex-situ* conservation

Journal:	Botany
Manuscript ID:	cjb-2013-0241.R2
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Ibañez, Maria; UNMdP-INTA Balcarce, Camadro, Elsa Lucila; Unidad Integrada Balcarce Sala, Carlos; Nidera S.A., Biotecnology Masuelli, Ricardo
Keyword:	wild carrots, genetic resources, molecular diversity, morphological diversity, ITS sequence
	-

1	
2	
3	
4	
5	
0 7	
8	
9	
10	
11	
12	
13	
15	
16	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27	
20 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47 18	
40	
50	
51	
52	
53	
54 55	
56	
57	
58	
59	
60	

1	Morphological and molecular diversity of the wild
2	carrot Daucus pusillus: implications for
3	classification and ex-situ conservation
4	
5	Maria S. Ibañez, Elsa L. Camadro, Carlos A. Sala†, Ricardo W. Masuelli
6	
7	Maria S. Ibañez ¹ and Elsa L. Camadro ² Facultad de Ciencias Agrarias (FCA), Universidad Nacional de Mar del Plata
8	(UNMdP) and Instituto Nacional de Tecnología Agropecuaria (INTA), E.E.A. Balcarce, Laboratorio de Genética. Ruta 226
9	Km 73,5 (7620), Balcarce, Buenos Aires, Argentina.
10	Carlos A. Sala ⁺ Departamento de Biotecnología, Nidera S.A., Ruta 8, Km 376.5 (2600), Venado Tuerto, Santa Fe,
11	Argentina.
12	Ricardo W. Masuelli Facultad de Ciencias Agrarias (FCA), Universidad Nacional de Cuyo (UNCuyo) e Instituto Nacional
13	de Tecnología Agropecuaria (INTA), E.E.A. La Consulta, INTA-FCA UNCuyo A. Brown 500 (M5528AHB) Chacras de
14	Coria, Mendoza. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. (e-mail:
15	rmasuelli@fca.uncu.edu.ar)
16	
17	¹ Present address: Departamento de Biotecnología, Nidera S.A., Ruta 8 Km 376,5 (2600), Venado Tuerto, Santa Fé,
18	Argentina. (e-mail: silvinaibanez@yahoo.com.ar)
19	
20	² Corresponding author (e-mail: camadro.elsa@inta.gob.ar; phone: 54 2266 43910 extension 401, fax: 54 2266 439101)
21	

Abstract: Daucus pusillus and D. montevidensis are wild carrots from the Americas with unresolved taxonomic status. An investigation was carried out with accessions of D. pusillus/D. montevidensis from Argentina for a) morphological and molecular (AFLP and ISSR) characterization, b) analysis of congruence of morphological and molecular variation, and c) comparison of diversity for the ITS region with that reported for a North American accession of D. pusillus. Twelve accessions of D. pusillus/montevidensis -representing their geographical distribution in Argentina-, and one accession of each wild D. carota and D. montanus -as outgroups- were included. In the multivariate analysis of morphological diversity, two accessions were clearly differentiated; this result is not sustained by multivariate analysis of molecular diversity. Based on multivariate and AMOVA analyses, D. pusillus/montevidensis accessions were separated at the molecular level into two groups, associated with geographical origin. Since this result is not supported by morphology, the segregation into two taxa seems unjustified. In all accessions, ITS and 5.8S rDNA regions had identical sequences, which differ in one nucleotide from the corresponding sequence of the North American accession. According to the combined results, D. pusillus would be a single taxon distributed from North to South America, and D. montevidensis a nomenclatural synonym. Autogamy of D. pusillus and its highly structured genetic diversity (F_{st} =0.86) allows the application of a geographically targeted approach for germplasm exploration, conservation and eventual use in pre-breeding.

Key words: wild carrots, genetic resources, molecular diversity, morphological diversity, ITS sequence.

Botany

1 Introduction

Wild and cultivated carrots are included in genus *Daucus* L. (Apiaceae), which comprises approximately 20
(Sáenz Laín 1981) to 60 (Thellung 1926*a*; Zohari 1987) taxonomic species. The center of diversity of the
genus is the Mediterranean Region, particularly North Africa, where strong speciation has taken place (Sáenz
Laín 1981). In fact, there are four species that have been reported as occurring only outside this region: *D. glochidiatus* (Labill.) Fisch., C.A.Mey. & Avé-Lall. in Australia, *D. montanus* Humb. et Bonpl. ex Schult, *D. pusillus* Michx. and *D. montevidensis* Link ex Sprengel in America (Sáenz Laín 1981).

According to Saénz Laín (1981), Daucus pusillus is an annual species distributed in USA, Mexico and Chile, whereas Daucus montevidensis is a biennial species distributed in Uruguay, Chile and Argentina. Sáenz Laín (1981) considered that both species could be recognized on the basis of several attributes such as bract morphology, fruit features (especially, number of spines) and flower color. Nevertheless, the taxonomic status of D. montevidensis remains in dispute. Heywood and Dakshini (1971) differentiated D. pusillus from D. montevidensis on the basis of geographical distribution (North and South America, respectively) and overlapping of the primary hair with the spine base in the fruit. Okeke (1978) considered that both species were merely synonyms, and did not accept Heywood and Dakshini's (1971) classification arguing that hair length could be influenced by the developmental stage of the fruits. Heywood (1982) recognized D. montevidensis as a synonym of *D. pusillus*.

Interestingly, both taxa have been cited for the Argentinean Flora, but there is no formal taxonomic revision of genus Daucus for this country. According to various regional floristic works, D. montevidensis is common in sandy soils of Buenos Aires province (Cabrera 1953; Stutz and Prieto 2003), and also in the provinces of Córdoba, Entre Ríos, Corrientes (Marzocca 1957) and Mendoza (Méndez 2011). D. pusillus, on the other hand, has been reported as growing in the same type of soil in the provinces of Buenos Aires (Cabrera and Zardini 1978) and Entre Ríos (Burkart and Bacigalupo 2005) as well, and also in Patagonia (Lincoln Constance, in Correa Maevia 1988). However, in several regional floristic works carried out by Cabrera (1965), Constance (in Correa Maevia 1988), Zuloaga and Morrone (1999) and Burkart and Bacigalupo (2005) D. pusillus has

1 been listed as a synonym of *D. montevidensis*, although no evidence has been presented to support this claim.

2 The loss of the *D. montevidensis* type specimen has added to the taxonomic confusion (Hiepko 1987).

More recently, Camadro et al. (2007) sampled 30 *Daucus* populations in the pampas grasslands of two Argentinean provinces, Buenos Aires and Entre Ríos. These populations were distinguishable by their morphological characters, chromosome numbers and adaptation to characteristic habitats. Thus, accessions (population samples) were assigned to one of two groups according to chromosome number and morphological phenotypes: the first, with 2n = 2x = 18, were classified as wild *D. carota* whereas the second, with 2n = 2x =22 and 2n = 2x = 22 and 20 due to aneusomaty, were tentatively classified as *D. pusillus* until molecular studies could be carried out (Camadro et al. 2007).

During the last decade, there has been much progress regarding the infra-familiar systematics of Apiaceae. Recently, Downie et al. (2010) summarized the current state of knowledge and compiled the literature on Apiaceae systematics based on phylogenetic analysis of DNA data, including chloroplast gene and intron sequences, cpDNA restriction site variation, and ITS sequences. Notwithstanding, these authors noted that there are still uncertainties regarding Daucus taxonomy. The main papers dealing with the taxonomy of Daucus at a general level are those of Calestani (1905), Thellung (1926a and 1926b), Onno (1936), Nehou (1961), Heywood (1968) and Saénz Laín (1981), the latter being the latest taxonomic revision of the genus based on morphology and anatomy. According to Hand (2011), the phylogeny of genus Daucus is not completely understood, and changes are to be expected in the near future. In fact, additional data from both molecular and morphological markers are necessary before any workable classification system of *Daucus* can be proposed (Grzebelus 2011). Considering the infra-generic classification of Daucus, the current status of D. montevidensis as a taxonomic species different from D. pusillus is one of the issues to be solved. Due to its wide adaptation, D. pusillus could be a valuable source of genes of interest for carrot breeding, including resistance/tolerance to adverse biotic and abiotic factors as well as male sterility for hybrid seed production (Camadro et al. 2008). As D. carota and D. pusillus appear to be separated mainly by incomplete pre-zygotic barriers, it would be apparently feasible to obtain hybrid seed in controlled crosses between compatible genotypes (Camadro et al 2008; Ibañez MS and Camadro EL unpublished results).

Botany

1	
2	For all the above, the objectives of this work in accessions of Argentinean populations of D. pusillus/D.
3	montevidensis were to a) carry out their characterization at the morphological and molecular levels, b) analyse
4	the structure and congruence of the diversity evaluated at both levels, and c) compare the diversity of the ITS
5	region with data of a North America population of <i>D. pusillus</i> available in Genbank.
6	
7	Material and methods
8	Plant material
9	Twelve accessions (ex situ conserved population samples) of D. pusillus/montevidensis were included in this
10	study (Table 1). Accessions were chosen as representative samples of natural populations growing in different
11	—some of them contrasting— macroenvironments, including locations where D. pusillus and D. montevidensis
12	had been reported to occur together (Fig. 1). One accession of D. montanus and one of wild D. carota were
13	used as outgroups. Seeds of all accessions were deposited at the Laboratory of Genetics, EEA Balcarce, INTA,
14	Argentina.
15	
16	Ten to 20 mericarps per accession were germinated in Petri dishes under controlled conditions (12 h
17	photoperiod at 21° C). At the 2-4 leaves stage, seedlings of D. pusillus/montevidensis were transplanted into
18	0.5 l pots and those of <i>D. montanus</i> and <i>D. carota</i> seedlings into 3 l pots containing a sand:soil (2:1) mixture.
19	Plants were grown in a screenhouse without supplementary light.
20	
21	Chromosome numbers
22	Chromosome counts were carried out in three plants per accession following the standard technique of pre-
23	treatment with 8-hydroxiquinoline solution (0.29 g/l) for 2 h, fixation in 3 ethanol: 1 glacial acetic acid (v/v),
24	hydrolysis in 1 N HCl at 60° C for 12 min and staining with leucobasic fuchsin (Coleman 1938).
25	
26	Morphological characterization
27	Twenty-one quantitative and nine qualitative characters were recorded (Table 2). Measurements were
28	performed at three different phenological stages: stage 1 - closed flowers in primary umbel, stage 2 - mostly
	http://mc06.manuscriptcentral.com/botany-pubs
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ \end{array} $

opened flowers in primary umbel, and *stage 3* - mature fruits (Fig. 2). Stem and leaf measurements were taken,
respectively, at the first internode counting from the base of the plant and on the leaf above that internode.
Width of petiole insertion was measured at the union of the petiole with the stem. Spines of vallecular ribs
were not considered in measuring length and width of mericarps. Length and number of spines were measured
in the dorsal right vallecular ribs. Voucher specimens were deposited in the Herbarium BAL.

7 Molecular characterization

8 Young leaves of individual plants were frozen at -20° C. Genomic DNA was extracted using a slightly
9 modified CTAB method (Haymes 1996). DNA concentration was quantified by using a fluorometer (BIO10 RAD SmartSpect TM 3000).

Multipoint markers, AFLP and ISSR, were used. AFLP analysis was performed as described by Vos et al. (1995). A total of 250 ng of genomic DNA was double-digested with two restriction enzymes (MseI and EcoRI). DNA fragments were ligated to EcoRI and MseI adaptors with T4 ligase. Preamplification reactions were performed with a primer mix (+1 primers, M-A and E-C), and subject to 20 cycles of 94° C for 30 s, 56° C for 60 s, and 72° C for 60 s using Mastercycle Gradient (Eppendorf®) thermocycler. Selective AFLP amplification was performed with three primer pairs (Table 3), with the following polymerase chain reaction (PCR) conditions: one cycle at 94° C for 30 s, 65° C for 30 s, and 72° C for 60 s; then the annealing temperature was lowered 0.7° C for each of 12 cycles, that were followed by 23 cycles at 94° C for 30 s, 56° C for 30 s, and 72° C for 60 s.

For ISSR analysis, three primers were used (Table 3). PCR amplifications were performed in a Multigene gradient (Labnet) thermocycler, in 25 μ l volumes containing 30 ng template DNA, 2.5 mM MgCl₂, 1X buffer (50 mM KCL, 20 mM Tris-HCL, ph 8.4), 125 μ M of each dNTP, 1 μ M of a single primer, 1 mg/ml BSA and 2.5 U of *Taq* polymerase. PCR programmed conditions were 95° C for 1 min, 35 cycles at 94° C for 30 s, 45° C for 45 s, and 72° C for 90 s, and final extension at 72° C for 5 min. Amplification products were electrophoresed in 6% polyacrylamide gels and silver stained, following the protocol described by Bassam et

Botany

al. (1991). Individual molecular marker fragments (bands) were scored for each genotype as either present or
 absent.

4 Data analyses

For the morphological analysis, two types of matrices were generated, one considering each individual and the other using population means. Euclidean distance was used to generate distance matrices for cluster analysis. For the molecular analysis based on each individual, the Dice coefficient was used to calculate a similarity matrix, which was visualized by principal coordinate analysis (PCO). Dendrograms were generated using the Unweighted Pair Group Method Arithmetic mean (UPGMA) method. Morphological matrices were subjected to principal components analysis (PCA). Correlation between the morphological and molecular distance matrices was determined using the Mantel test (1967). The molecular distance matrix was obtained from the corresponding Dice similarity matrix by transforming each similarity value into a distance value (d = 1-s). All analyses were performed using the NTSYS-pc version 2.10t program (Rohlf 1992). For bootstrapping analysis, the FreeTree software, version 0.9.1.50 was used (Pavlicek et al. 1999) (250 bootstraps involving random fragment sampling with replacement).

17 Combined analysis of morphological and molecular diversity was carried out with *D. pusillus/montevidensis* 18 accessions and, as outgroups, *D. montanus* and wild *D. carota* accessions. Euclidean coefficient was used to 19 obtain similarity matrices for cluster analysis, and correlation matrices were obtained and subjected to PCA. 20 Dendrogram of cluster analysis was generated using the UPGMA method. Data analyses were carried out 21 using NTSYS-c version 2.10t program (Rohlf 1992).

To analyse the distribution of the genetic variation, an AMOVA was carried out with a hierarchical structure [geographical regions, accessions within geographical regions and individuals within accessions]. For assessment of population genetic diversity, the Fixation index of Wright (Fst) was estimated. All analyses were performed using Arlequin 3.1 software package (Excoffier et al. 2005).

28 Sequence diversity of internal transcribed spacer (ITS) regions

ITS regions of six D. pusillus/montevidenis accessions from different geographic regions and macroenvironments were PCR-amplified using ITS5 and ITS4 primers (White et al. 1990) in an equimolar ratio. PCR amplification conditions were modified from Downie et al. (1996). Amplifications were carried out in 25 µl reaction mixture containing 30 ng template DNA, 1.5 mM MgCl₂, 1X buffer (50 mM KCL, 20mM Tris-HCL, ph 8.4), 0.2 mM of each dNTP, 1µM of forward and reverse primers, and 1.5 U of Tag polymerase, in a Multigene gradient (Labnet) thermocycler as followed: 94° C for 60 s, 35 cycles of 94° C for 60 s, 53° C for 60 s, and 72° C for 60 s; and a final extension at 72° C for 5 m. Successful PCR amplifications resulted in a single DNA band corresponding to approximately 700 bp in size. Each amplified DNA fragment was electrophoresed in a 1% agarose gel, visualized with Sybr® Safe DNA Gel Stain (Invitrogen) under Safe Imager[™] 2.0 Blue Light Transilluminator (Invitrogen, Life Technologies), and then excised with a sterilized scalpel. PCR fragments were isolated from agarose using IllustraTM GFXTM DNA and a gel Band Purification Kit (GE). DNA fragments were submitted for direct sequencing (Macrogen, USA). Sequences were assembled and edited using Contig Express (Invitrogen). Boundaries of coding and spacer regions were determined by sequence comparison with the respective boundaries in Daucus carota (Yokota et al. 1989). DNA sequences were aligned using Clustal W conducted in MEGA 5 (Tamura et al. 2011) and compared among them and with sequences AF077788.2 and AF077103.2, available in GenBank, from a North America D. pusillus population. A combined sequence of the three fragments of each accession was deposited in Genbank as contiguous data: KF467154 (ECpus1), KF467155 (ECpus2), KF467156 (ECpus11), KF467157 (ECMCpus2), KF467158 (ECMCpus11), KF467159 (SIMacpus1).

21 Results

22 Chromosome numbers

Plants of the *D. carota* accession were 2n = 2x = 18, whereas those of the *D. montanus* accession were polyploid, with 2n = 6x = 66. Accessions classified as *D. pusillus/montevidensis* were 2n = 2x = 22, although cells with 2n = 2x = 20 were also observed at a low frequency (less than 10%).

27 Characterization of wild *Daucus* accessions

Botany

The three taxonomic species were clearly distinguished by the morphology of leaves, inflorescences and mericarps (Table 4, Fig. 3). Cluster and PCO analysis of morphological and molecular data revealed three groups corresponding to Daucus pusillus/montevidensis, D. montanus and D. carota (Fig. 4). In the dendogram, D. pusillus/montevidensis accessions were clustered together in a large group that was close to the D. montanus accession, whereas the D. carota accession was separated from the other accessions at a larger dissimilarity distance. The first two components of the PCA analysis (PC1 and PC2) accounted for 72% of the variation, which was mainly explained by the molecular characters. Nevertheless, one morphological character, involucral bract petiole membrane, contributed to PC1 (Table 4, Fig. 3: g, h) and three other morphological characters, umbel area, largest ray of umbel, and stem pubescence (Table 4, Fig.3: c, d, e, f), contributed to PC2.

12 Morphological characterization of Daucus pusillus/montevidensis

Daucus pusillus/montevidensis accessions presented high morphological diversity. The characters which exhibited more variability were plant height, branching (Fig. 3: a, b); umbel arrangement, loosely to strongly compacted (Fig. 3: i, j, k, l, m); and involucral bract number (Table 4). Stems and leaves were always pubescent but in different degree (Table 4, Fig. 3: d, e, f). Involucral bracts were 2-3 pinnatisect and shorter than -or as long as- the umbel. Mericarp appearance and endosperm median transverse section were also very variable (Fig. 3: p, q, r, s, v, w, x, y). When mericarps with more than one shape were present in the same inflorescence, the character was considered as variable (1). Spine length in relation to fruit width was also variable: from slightly short to slightly long. On the other hand, some characters were monomorphic: all plants were annuals, with alternate and 2-3 pinnatisect leaves, umbels with straight rays, fruits with glochidiate spines dilated and slightly confluent at the base, and vittae triangular in transverse section.

Cluster analysis for both type of matrices and PCA of morphological characters separated accessions into two groups. Those from Patagonia, ECpus1 and ECpus2, were grouped together and separated from the other accessions (Fig. 5). In PCA, the first two components accounted for 60% of the variation. PC1 contributed about 40%, and had the highest contribution from the following characters: involucral bract number, stem length 2, secondary branches and umbel arrangement. PC2 represented 20% of the variation, with length of

largest and smallest involucral bracts and primary branches contributing the most. Patagonian accessions could be differentiated from the others on the basis of PC1. Molecular diversity For individual plants of *Daucus pusillus/montevidensis* accessions, 77 polymorphic bands were produced by AFLP and ISSR (Table 3). Cluster analysis and PCO showed a clear grouping of accessions according to geographical origin, with one exception (Fig. 6). Two groups were differentiated in the dendrogram: one (I) with accessions from Patagonia and Pampa regions and one accession from Mesopotamia (ECpus11), and the second (II) with accessions from Mesopotamia (Entre Ríos and Isla Martín García). This grouping was sustained by bootstrap value of 100%. Clustering of individuals in the principal coordinate analysis was similar to the dendrogram grouping. Individuals of each accessions and geographic origin tended to group together, except for genotypes of ECpus11 from Mesopotamia, which was closer to those from Patagonia and Pampa. An AMOVA was performed to analyse the partitioning of the genetic variance among accessions which had been previously clustered according to the results of the morphological and the molecular studies. Two comparisons were carried out: 1) accessions from Patagonia vs. the rest, and 2) accessions from Patagonia and Pampa vs. accessions from Mesopotamia. In both comparisons, the largest variation was detected among accessions from the same geographical region ($\alpha = 0.05$). In the first comparison, accessions from Patagonia were not significantly different from the rest whereas both groups of accessions differed significantly in the second (Table 5). Additionally, the Wright's fixation index was significantly high (Fst= 0.86) in the second comparison. Mantel test of the correlation between the distance matrices for morphological and molecular characters based on individual plant values was low (r = 0.2270, p = 0.001). These results indicate that the morphological variability was weakly associated with the molecular diversity observed among plants of Daucus pusillus/montevidensis.

Internal transcribed Spacer

http://mc06.manuscriptcentral.com/botany-pubs

Botany

1 Complete fragments of ITS1 spacer region, 5.8S rDNA coding region, and ITS2 spacer region of six 2 accessions of *D. pusillus/montevidensis* from different geographical origins were sequenced and examined. 3 Sequences were identical for all accessions, with a size of 602 bp: ITS1 contributed with 216 bp, the coding 4 5.8S rDNA region with 164 bp and ITS2 with 222 bp. This sequence of ITS1 and ITS2 was aligned and 5 compared to a sequence of an accession of *D. pusillus* from North America (California, USA). Both sequences 6 differed in just one nucleotide changing a T for an A in the position 391 corresponding to the ITS2 fragment.

Discussion

9 There are discrepancies among authors about the distinctive characters and geographical dispersion of 10 populations that allow the differentiation of *Daucus pusillus* from *D. montevidensis*. At the present, in 11 Argentina, these two taxonomic species have been cited both as distinct species and synonyms.

The somatic chromosome numbers determined in the studied *D. pusillus/montevidensis* accessions was coincident with the reported in previous works, n = x = 11 (Constance et al. 1976; Iovene et al. 2008) and also aneusomaty, n = x and x-1 = 11, 10 (Correa Maevia 1988; Camadro et al. 2007).

Individual plants of the evaluated accessions exhibited a wide and continuous range of variation for morphological characters (Table 1S). Some characters such as life cycle, presence of 2-3 pinnatisect leaves, and glochidiate spine in the fruit were constant and matched the description of D. pusillus by Sáenz Laín (1981). However, following the same author, the studied accessions should be recognized as D. montevidensis because of the length of the mericarps and their geographical distribution. On the other hand, the range of variation observed for some characters such as length of stem, umbel peduncle, bract length in relation to umbels, and spines, exceeded the description given by Sáenz Laín (1981) for both D. pusillus and D. montevidensis. In her key to Daucus species, Sáenz Laín (1981) used the shape of the blade bract to differentiate D. montevidensis from D. pusillus and D. carota but, on describing them separately, she reported the number of spines as eight in D. pusillus and 12 in D. montevidensis, and the flower color as white in the first and yellowish in the second taxonomic species. She also reported differences in life cycle and stem length, among other characters. This author worked on a few herbarium specimens, which were not representative of

the morphological variation of natural populations as our results indicate. Camadro et al. (2007), who worked with accessions from the Argentinean pampas, reported differences in plant height and number of branches in natural populations, but did not carry out a detailed morphological evaluation of individual plants, as was done in the present study. The main difference, then, between previous works and the present is that we worked with live materials (143 individual plants) that were cultivated in a screenhouse under similar conditions to minimize environmental variation.

Multivariate analysis of morphological diversity of D. pusillus/montevidensis accessions showed a clear differentiation of Patagonian accessions from the other populations studied. However, these results were not sustained by the genetic diversity analysis. In fact, at the molecular level, cluster analysis and PCO revealed that D. pusillus accessions could be separated into two groups associated with geographical origin: one conformed by those from Patagonia and Pampa and the other by those from Mesopotamia. In this context, also the Mantel test clearly indicated that the results obtained with morphological and molecular tools were not congruent. Since the molecular markers that were used in the characterization are neutral, it can then be hypothesized that morphological differences between accessions from Patagonia versus accessions from Pampa and Mesopotamia are controlled by few major genes whose polymorphism was undetectable by the type of markers used. Phenotypic variation alone, without congruent molecular diversity, precludes the segregation of two taxa from the diversity observed among D. pusillus/D. montevidensis accessions.

Baldwin et al. (1995) reported that ITS data play a useful role in angiosperm systematics, offering independent assessment of lower-level phylogenetic hypotheses based on morphological evidence. Numerous phylogenetic works in Apiaceae were carried out with ITS regions (Lee and Downie 1999, 2000; Lee et al. 2001; Spalik and Downie 2007). The ITS and 5.8S rDNA regions analysis in this study showed identical sequences for all evaluated accessions. This observation, in addition to the comparison of ITS sequences with the sequence of a North American accession which only differs in one nucleotide, does not allow us to reject the hypothesis that D. pusillus is a single taxon distributed from North to South America and that D. montevidensis is just a nomenclatural synonym.

Page 13 of 32

Botany

Camadro et al. (2008) and Ibañez MS and Camadro EL (unpublished results) reported that D. pusillus is an autogamous species, a fact that explains why the largest variation was detected among populations and the lowest within populations (Table 1S). Moreover, AMOVA corroborated the existence of a highly structured molecular diversity. Furthermore, and considering Wright's (1978) scale, the high Fst value obtained (0.86) is indicative of substantial genetic differentiation among accessions. This evidence supports the existence of a genetic structure among the D. pusillus populations under study. In carrot germplasm, on the other hand, and by using various biochemical and molecular markers such as isozymes (St. Pierre et al. 1990; St. Pierre and Bayer 1991), RAPD (Grzebelus et al. 2002), AFLP and ISSR (Bradeen et al. 2002), population genetic structures could not be detected. Recent results of Clotault et al. (2010), based on carotenoid biosynthesis gene sequences and SSR, demonstrated a genetic structure according to geographical origin or root color within the cultivated carrot germplasm. Moreover, Baranski et al. (2012) by using SSR and supported by morphological characters, provided evidence for the divergence of Eastern and Western genetic pools. Recently, Iorizzo et al. (2013) observed a clear separation between wild and cultivated accessions as well as between eastern and western cultivated carrots using 3326 SNP markers. The autogamous condition of D. pusillus and its highly structured genetic diversity allows the use of a geographically targeted approach for germplasm exploration, conservation, evaluation and eventual use of this species in pre-breeding.

18 Acknowledgements

This research was carried out with the financial support of INTA, CONICET, UNMdP and Nidera S.A., aspart of the Doctoral thesis of the first author. Thanks are due to the staff of the Biotechnology Departament,

21 Nidera S.A., Venado Tuerto, Argentina, and Patricia Suarez for assistance in part of the molecular work.

007-9462-y.

1 References

Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C.S., and Donoghue, M.J. 1995. The ITS
region of nuclear ribosomal DNA-A valuable source of evidence on Angiosperm phylogeny. Ann. Missouri Bot. Gard.
82: 247–277.

Baranski, R., Maksylewicz-Kaul, A., Nothnagel, T., Cavagnaro, P.F., Simon, P.W., and Grzebelus, D. 2012. Genetic diversity of carrot (*Daucus carota* L.) cultivars revealed by analysis of SSR loci. Genet. Resour. Crop Evol. 59: 163– 170. doi:10.1007/s10722-011-9777-3.

- Bassam, B.J., Anollés, G.C., and Gresshoff, P.M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels.
 Anal. Biochem. 196: 80–83. Available from http://dx.doi.org/10.1016/0003-2697(91)90120-I [accessed 28 April 2013].
- Bradeen, J.M., Bach, I.C., Briard, M., Le Clerc, V., Grzebelus, D., Senalik, D.A., and Simon, P.W. 2002. Molecular
 diversity analysis of cultivated carrot (*Daucus carota* L.) and wild *Daucus* populations reveals a genetically
 nonstructured composition. J. Am. Soc. Hort. Sci. 127: 383–391.
- Burkart, A., and Bacigalupo, N.M. 2005. Flora de la provincia de Entre Ríos, Parte IV. Tomo VI. Colección Científica del
 INTA, Buenos Aires.
- 15 Cabrera, A.L. 1953. Manual de la flora de alrededor de la provincia de Buenos Aires. ACME, Buenos Aires.
- 16 Cabrera, A.L. 1965. Flora de la provincia de Buenos Aires, Parte IV. Colección Científica del INTA, Buenos Aires.
- 17 Cabrera, A.L., and Zandini, E.M. 1978. Manual de la flora de alrededor de la provincia de Buenos Aires. 2nd edn. ACME,
 18 Buenos Aires.
- 19 Calestani, V. 1905. Contributo alía sistematica delle Ombellifere d'Europa. Webbia 1: 259–264.
- Camadro, E.L., Cauhépé, M.A., and Simon, P.W. 2007. Geographical distribution of wild *Daucus* species in the natural
 grasslands of the Argentinean pampas. Genet. Resour. Crop Evol. 54: 855–863. doi:10.1007/s10722-006-9162-9.
- Camadro, E.L., Cauhépé, M.A., and Simon, P.W. 2008. Compatibility relations between the edible carrot *Daucus carota* and *D. pusillus*, a related wild species from the Argentinean Pampas. Euphytica 159: 103–109. doi:10.1007/s10681-
- Clotault, J., Geoffriau, E., Linneton, E., Briard, M., and Peltier, D. 2010. Carotenoid biosynthesis genes provide evidence
 - of geographical subdivision and extensive linkage disequilibrium in the carrot. Theor. Appl. Genet. **121**: 659–672.
 - 27 Coleman, L.C. 1938. Preparation of leucobasic fuchsin foruse in the Feulgen reaction. Stain Techn. 13: 123–124.
 - 28 Constance, L., Chuang, T-I., and Ritchie Bell, C. 1976. Chromosome numbers in Umbelliferae. Amer. J. Bot. 63: 608-625.
 - 29 Correa Maevia, N. 1988. Flora Patagónica, Parte IV. Colección Científica del INTA, Buenos Aires.
 - 30 Downie, S.R., and Katz-Downie, D.S. 1996. A molecular phylogeny of Apiaceae subfamily Apioideae: evidence from
 - 31 nuclear ribosomal DNA internal transcribed spacer sequences. Am. J. Bot. 83: 234–251.

Page 15 of 32

1

Botany

2 3	1	Downie S.R. Snalik K. Katz-Downie D.S. and Reduron J.P. 2010 Major clades within Apjaceae subfamily Apjoideae
4 5	2	as inferred by phylogenetic analysis of prDNA ITS sequences. Plant Divers. Evol. 128 : 111–136. doi:10.1127/1869-
6	- 3	6155/2010/0128-0005.
8	4	Excoffier L. Laval G and Schneider S 2005 Arlequin ver 3.0. An integrated software package for population genetics
9 10	5	data analysis Evol Bioinform Online 1: 47–50
11 12	6	Grzebelus D. Baranski, R. Kotlinska, T. and Michalik, B. 2002. Assessment of genetic diversity in a carrot (Daucus
13	7	carota L) germalasm collection Plant Genetic Resources Newsletter 130 : 51_53
14 15	, 8	Grzebelus D. Baranski, R. Snalik, K. Allender, C. and Simon P. 2011. Chapter 7. Daucus. In Wild Cron Relatives:
16 17	9	Genomic and Breeding Resources Vegatables Edited by C Kole Spring Verlang Berlin Heidelberg, pp. 91–113
18 19	10	doi:10.1007/078.2.642.20450.0.7
20	10	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
21 22	11	doi:http://dx.doi.org/10.3372/wi.41.41205
23 24	12	Havmes K M 1996 A DNA mini-prep method suitable for a plant breeding program Plant Mol Biol Rep 14:280-284
25 26	14	Heverood VH (1968) Daucus L. In Flora Europaea 2. Edited by Tutin TG. Heverood V et al. Cambridge University Press
27 28	15	Cambridge np 373-375
29	16	Herwood V H 1982 Multivariate taxonomic synthesis of the tribu Caucalideae Monogr Syst Bot 6: 727–736
30 31	17	Heywood, V.H. Dakshini, K.M. 1971. Eruit structure in the Umbelliferae Caucalideae. In The biology and chemistry of the
32 33	18	Limbelliferae Supplement 1 Edited by Heywood V H Bot 1 Linn Soc 64: 215–232
34 35	19	Hiepko, P. 1987. The collections of the Botanical Museum Berlin-Dahlem (B) and their history. Englera 7: 219–252.
36 37	20	Iorizzo M Senalik D Ellison S Grzebelus D Cavagnaro P F Allender C Brunet I Spooner D Van Devnze A
38	21	and Simon, P.W. 2013. Genetic structure and domestication of carrot (<i>Daucus carota</i> subsp. <i>sativus</i>) (Apiaceae). Amer.
39 40	22	J. Bot. 100 : 930–938.
41 42	23	Iovene, M., Grzebelus, E., Carputo, D., Jiang, J., and Simon, P.W. 2008. Major Cytogenetic Landmarkes and Karyotype
43 44	24	analysis in Daucus carota and other Apiaceae. Amer. J. Bot. 95: 793-804.
45 46	25	Lee, B.Y., and Downie, S.R. 1999. A molecular phylogeny of Apiaceae tribe Caucalideae and related taxa: inferences
47 48	26	based on ITS sequence data. Syst. Bot. 24: 461–479.
49 50	27	Lee, B.Y., and Downie, S.R. 2000. Phylogenetic analysis of cpDNA restriction sites and rps16 intron sequences reveals
50 51	28	relationships among Apiaceae tribes Caucalideae, Scandiceae and related taxa. Plant Syst. Evol. 221: 35-60.
52 53	29	Lee, B.Y., Levin, G.A., and Downie, S.R. 2001. Relationships within the spiny-fruited umbellifers (Scandiceae subtribes
54 55	30	Daucinae and Torilidinae) as assessed by phylogenetic analysis of morphological characters. Syst. Bot. 26: 622-642.
56 57	31	Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220.
58 58	32	Marzocca, A. 1957. Manual de malezas. 1st edn. CONI, Buenos Aires.
59 60		

Méndez, E. 2011. La vegetación de los altos Andes: El flanco oriental del Cordón del Portillo (Tunuyán, Mendoza,
 Argentina). Bol. Soc. Argent. Bot. 46: 317–353. Available from http://www.scielo.org.ar/pdf/bsab/v46n3-4/v46n3 4a12.pdf [accessed 2 May 2013].

- 4 Nehou, J. 1961. Recherches sur la Taxonomie du genre *Daucus* (Ombelliferes) en Bretagne. Bull. Soc. Sci. Bretagne 36:
 5 81–107.
- Okeke, S.E. 1978. Systematic studies in *Daucus* L. (Umbelliferae). Ph. D. thesis of the University of Reading, Reading,
 England.
- 8 Onno, M. 1936. Die Willd forme von *Daucus* sect. *carota*. Beih. Bot. Centralbt **56**: 83–136.
- 9 Pavlicek, A., Hrda, S., and Flegr, J. 1999. FreeTree Freeware program for construction of phylogenetic trees on the basis
 10 of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus
- *Frenkelia*. Folia Biol., Prague 45: 97–99.

Rohlf, F.J. 1992. NTSYS-PC: numerical taxonomy and multivariate analysis system, Version 2.10t. Exeter Software. New York.

- 14 Sáenz Laín, C. 1981. Research on *Daucus* (Umbelliferae). Anal. Jard. Bot. Madrid **37**: 481–533.
- Spalik, K., and Downie, S.R. 2007. Intercontinental disjunctions in Cryptotaenia (Apiaceae, Oenantheae): an appraisal
 using molecular data. J. Biogeogr. 34: 2039–2054.
- St. Pierre, M.D., and Bayer, R.J. 1991. The impact of domestication on the genetic variability in the orange carrot,
 cultivated *Daucus carota* ssp. *sativus* and the genetic homogeneity of various cultivars. Theor. Appl. Genet. 82: 249–
 253.
- St. Pierre, M.D., Bayer, R.J., and Weis, I.M. 1990. An isozyme-based assessment of the genetic variability within the
 Daucus carota L. complex (Apiaceae: Caucalideae). Can. J. Bot. 68: 2449–2457.
- Stutz, S., and Prieto, A.R. 2003. Modern pollen and vegetation relationships in Mar Chiquita coastal lagoon area,
 southeastern Pampa grasslands, Argentina. Rev. Palaeobot. Palyno. 126: 183–195.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular Evolutionary
 Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol.
 Evol. 28: 2731–2739. doi:10.1093/molbev/msr121.

 - 27 Thellung, A. 1926a. Daucus Studien. Feddes. Repert. 23: 147–159.
 - 28 Thellung, A. 1926b. Die Linneschen *Daucus* Arten im Lichte der original Herbarexemplare. Feddes. Repert. 22: 305–315.

Vos, P., Hoger, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and
 Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res. 23: 4407–4414.
 doi:10.1093/nar/23.21.4407.

Page 17 of 32

1 2

Botany

3	
4	
5	
6	
7	
ģ	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
5Z	
53	
54	
55	
56	
57	
58	
59	
60	

White, T.J., Bruns, T., Lee, S., and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes
 for phylogenetics. *In* PCR Protocols: A Guide to Methods and Applications. *Edited by* Innis, M.A., Gelfand, D.H.,
 Sninsky, J.J., and White, T.J. Academic Press, Inc., New York. pp. 315–322.

- Wright, S. 1978. Evolution and Genetics of Populations: Variability within and among Natural Populations. University of
 Chicago Press, Chicago. pp. 465.
- Yokota, Y., Kawata, T., Iida, Y., Kato, A., and Tanifuji, S. 1989. Nucleotide sequences of the 5.8S rRNA gene and internal
 transcribed spacer regions in carrot and broad bean ribosomal DNA. J. Mol. Evol. 29: 294–301.
- 8 Zohari, M. 1987. Flora palaestina, Vol 2. 2nd edn. The Israel Academy of Sciences and Humanities, Jerusalem.
- 9 Zuloaga, F.O., and Morrone, O. 1999. Catálogo de las plantas vasculares de la República Argentina, II. Monogr. Syst. Bot.
- 10 Missouri Bot. Gard. 74. Missouri Botanical Garden Press, St. Louis, Missouri.

2	
2	
3	
4	
5	
ê	
-	
1	
8	
a	
10	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
20	
20	
27	
28	
20	
29	
30	
31	
22	
32	
33	
34	
25	
30	
36	
37	
20	
30	
39	
40	
<u></u>	
40	
42	
43	
44	
15	
40	
46	
47	
48	
40	
49	
50	
51	
50	
52	
53	
54	
55	
22	
56	
57	
50 50	
00	
59	
60	

1

1	Tables captions
2	Table 1. Argentinean accessions of wild Daucus species, geographic location of the originally sampled
3	populations, and number of plants evaluated per accession.
4	
5	Table 2. Morphological characters used to evaluate wild Daucus accessions from Argentina, including
6	phenological stage at measurement, complete character name, abbreviations and character state description
7	(units and scales).
8	
9	Table 3. Primers sequences and number of polymorphic AFLP and ISSR bands.
10	
11	Table 4. Quantitative and qualitative morphological characters evaluated in 14 accessions of wild Daucus
12	from Argentina, grouped according to species, geographical origin and morphological differences. Accessions
13	grouping: D. montanus (ECmon1), D. carota (ECMCcar16), D. pusillus/montevidensis from Patagonia
14	(ECpus1 and ECpus2), and from Pampa and Mesopotamia regions together (ECpus7, ECpus9, ECpus11,
15	ECpus12, ECMCpus2, ECMCpus3, ECMCpus11, ECMCpus12, SIMacpus1 and SIMacpus2).
16	
17	Table 5. Results of AMOVA based on AFLP and ISSR data of 12 accessions of Daucus

18 *pusillus/montevidensis.*

Botany

1 Figure captions

2 Fig. 1. Geographical distribution of wild *Daucus* accessions from Argentina used in this study.

Fig. 2. Phenological stages for morphological characterization: A. *stage 1*- closed flowers in primary umbel, B.

stage 2- mostly opened flowers in primary umbel, and C. *stage 3-* mature fruits. *i*) complete plant, detail of
primary umbel in *ii*) upper and *iii*) lateral view. Scale bars: 10 cm (*i*), 1 cm (*ii*, *iii*).

Fig. 3. Distinctive morphological qualitative characters evaluated in accessions of three wild *Daucus* species
from Argentina. Plant aspect: (a) short and branched and (b) tall and little branched, and scales of characters
described in Table 2: stem and leaf pubescence (c) 0, (d) 1, (e) 2, (f) 3, involucral bract petiole membrane (g) 0,
(h) 1, umbel arrangement (i) 1, (j) 2, (k) 3, (l) 4, (m) 5, (n) 6, (o) 7, endosperm median transverse section (p-s)
1, (t) 2, (u) 3, and mericarp appearance (v-x) 1, (y)2, (z) 3, (a) 4. Specific characters of each species: D. *pusillus* (a-g, *i-m*, p-s, v-y), D. carota (h, o, t, z), and D. montanus (n, u, a). Scale bars: 10 cm (a, b), 4 cm (n),
1 cm (o), 0.5 cm (g-m), 0.3 cm (c-f), 0.1 cm (v-a), 0.05 cm (p-u).

16 Fig. 4. Combined analysis based on individual values for 30 morphological characters and 339 polymorphic 17 bands of molecular markers (AFLP, ISSR), in 14 accessions of wild *Daucus* from Argentina. A. Dendrogram 18 based on Euclidean similarity coefficient by the UPGMA method. B. Principal component analysis accounting 19 for 72% of the variation.

Fig. 5. Analysis of 30 morphological characters based on mean values in 12 *Daucus pusillus/montevidensis*accessions from Argentina. A. Phenogram based on Euclidean similarity coefficient by the UPGMA method.
B. Principal component analysis accounting for 60% of variation. Accessions origin: Patagonia (black), Pampa
(grey) and Mesopotamia (white).

Fig. 6. Molecular analysis of 12 *Daucus pusillus/montevidensis* accessions from Argentina based on individual
 observations of 77 polymorphic bands of AFLP and ISSR markers using Dice coefficient. A. Dendrogram by
 UPGMA method, (I) accessions from Patagonia, Pampa, and one from Mesopotamia, ECpus11; and (II)

1 accessions from Mesopotamia (Entre Ríos and Isla Martín García). The numbers above the branches are

2 bootstrap support values (%). B. Principal coordinate analysis. Accessions origin: Patagonia (black), Pampa

3 (grey) and Mesopotamia (white).

Botany

Species	Accession	Region	Province/ Locality	Latitude/ Longitude	Altitude (m.a.s.l.)	Nº evalua plants
	ECpus1	Patagonia	Río Negro/ Choele Choel	39° 16' 36.73" S/ 65° 37' 08.70" W	196	4
	ECpus2	Patagonia	Chubut / Península de Valdes	42° 26' 53.76" S/ 64° 32' 27.86 "W	50	6
	ECpus7	Pampa	Buenos Aires / San Bernardo	36° 42' 27.12" S/ 56° 41' 14.20" W	7	13
	ECpus9	Mesopotamia	Entre Ríos/ Médanos - Route 11	33° 06' 01.46" S/ 59° 22' 19.97" W	15	12
	ECpus11	Mesopotamia	Entre Ríos/ Victoria	32° 37' 35.24" S/ 60° 11' 54.07" W	5	12
Daucus pusillus/	ECpus12	Mesopotamia	Entre Ríos/ Concepción del Uruguay	32° 25' 01.32" S/ 58° 14' 20.14" W	18	13
montevidensis	ECMCpus2	Pampa	Buenos Aires/ Abra El Pantanoso	38° 07' 20.47" S/ 61° 45' 33.68" W	261	14
	ECMCpus3	Pampa	Buenos Aires/ Cerro Bahía Blanca	38° 09' 35.13" S/ 61° 54' 44.81" W	660	15
	ECMCpus11	Mesopotamia	Other/ Isla Martín García	34° 10' 55.92" S/ 58° 15' 02.88" W	16	11
	ECMCpus12	Mesopotamia	Entre Ríos/ Médanos	33° 25' 37.91" S/ 59° 04' 46.66" W	6	11
	SIMacpus1	Pampa	Buenos Aires/ Mar Azul	37° 19' 51.39" S/ 57° 03' 36.77" W	9	14
	SIMacpus2	Pampa	Buenos Aires/ Punta Rasa	36° 18' 03.60" S/ 56° 46' 11.36" W	1	14
Daucus montanus	ECmon1	Patagonia	Neuquén/ Villa Traful	40° 39' 43.80" S/ 71° 24' 05.84" W	944	8
Daucus carota	ECMCcar16	Pampa	Buenos Aires/ General Lavalle	36° 24' 09.18" S/ 56° 57' 05.00" W	2	6

Stage Morphological Character Abbrev. Units and scales 1 Icarl blade width probasal segment L1 cm 1 Larl blade width probasal segment L1.Wp mm 1 Rachis percentage Rp % rachis between basal and probasal segment/ leaf length 1 Rachis percentage Rp 00 glabrous, (1) slightly, (2) densely, (3) very dense 1 Leaf pubsecnce Sp 00 glabrous, (1) slightly, (2) densely, (3) very dense 1 Leaf terminal foliole L1f 0) saymmetric trifoliolate, (2) symmetric trifoliolate, (3) asymmetric trifoliolate, (3)	Stage Morphological Character Abbrev. Units and scales 1 Lear Blade width bosal segment LL m 1 Lear Blade width bosal segment LDwp mm 1 Lear Blade width probasal segment LDwp mm 1 Lear Blade width probasal segment LDwp % rachis between basal and probasal segment / leaf length 1 Retroit is estimated width Pive mm (i) glabrous (i) sightly (2) densely (3) very dense 1 Leaf terminal foliole L1 ft (i) sommerite tritoliolate, (2) symmetric tritoliolate, (3) asymmetric tritoliolate, (3) asymmetric tritoliolate, (3) asymmetric tritoliolate, (3) isymetric tritoliolate, (3) asymmetric tritoliolate, (3) and (3) ang dimetric tritoliolate, (3) asymmetric tritoliolate, (3) ang dimetric tritoliolate, (3) ang				Bolally
1 Sten length SI cm 1 Laf blade width basal segment Lbwp mm 1 Laf blade width prebasal segment Lbwp mm 1 Laf blade width prebasal segment Lbwp mm 1 Rachis percentage Rp % rachis between basal and prebasal segment/ leaf length 1 Rachis percentage Rp % rachis between basal and prebasal segment/ leaf length 1 Leaf pubsecence Lp (0) glabrous, (1) slightly, (2) densely, (3) very dense 1 Leaf terminal foliole Lift (1) short, (2) medium, (3) long 1 Leaf terminal foliole shape Ltfs (1) short, (2) medium, (3) long-thin, (4) wide 1 Largest involucar lbract length Libu mm 2 Inrovberral bract length Libu mm 3 Smallest involucar lbract width Unwerral mm 4 Unbel area Unbel area Unbel area Unbel area 1 Largest involucar lbract length Sibu mm 2 Incolucar lbract heads Bp mmber 3 Largest involucar lbract le	1 Stem length SI cm 1 Laf loadk width basal segment Llowb mm 1 Laf bladk width probasal segment Llowb mm 1 Laf pubsecence Lp (0) glabrous, (1) slightly, (2) densely, (3) very dense 1 Laf terminal foliole Lift (1) short, (2) medium, (3) long-thin, (4) wide 1 Laf terminal foliole Lift (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 1 Largest involucar bact sudth Libu mm 2 Largest involucar bact width Sibu mm 3 Smallest involucar bact width Libu mm 3 Stem length 2 Sibu mm mm 3 Stem length 2 Sibu mm mm 3 Stem length 2 Sibu mm mm 3 Terminal tonole fourthemethane No mm	Stage	Morphological Character	Abbrev.	Units and scales
1 Leaf blade width bradseal segment Lbwp mm 1 Leaf blade width bradseal segment Lbwp mm 1 Rachis percentage Rp %rachis between basal and prebasal segment/ leaf length 1 Rachis percentage Rp %rachis between basal and prebasal segment/ leaf length 1 Step plassence Sp (0) glabrous, (1) slightly, (2) densely, (3) very dense 1 Leaf terminal foliole Lf (1) asymmetric trifoliolate, (2) symmetric trifoliolate, (3) symmetri 1 Leaf terminal foliole shape Lf (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 1 Leaf terminal foliole shape Lf (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 2 Involueral bract sight Lib number 2 Largest involucral bract length Lib 3 Smallest involucral bract width Libw mm 2 Involueral bract petiole membrane Ibp (0) absence, (1) presence major radius. minor radius 2 Involueral bracts Pb number Iargest ray of umbel Lra 3 Stem length Marcapi peduncle Tru	1 Loaf bade width basis segment Live mm 1 Leaf blade width prebasal segment Live mm 1 Rachis precentage Privale insertion width Privale insertion width Privale insertion width 1 Stem photescence Sp (0) glabrous, (1) sliphtly, (2) densely, (3) very dense 1 Leaf pubsescence Sp (0) glabrous, (1) sliphtly, (2) densely, (3) very dense 1 Leaf terminal foliole Lift (1) sopmetric trifoliolate, (2) symmetric trifoliolate, (3) asymmetric 1 Leaf terminal foliole shape Lift (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 1 Largest involucral bract width Libve mm 2 Smallest involucral bract width Sibve mm 2 Unbd area Da Sibil mm Sibil mm 2 Smallest involucral bract width Sibve mm Sibil mm 2 Smallest involucral bract width Da Sibve mm 2 Smallest involucral bract width Sibve mm Sibil mm 2 Smallest involucral bract width Da annet Sibil mm	1	Stem length	SI	cm
1 Leaf blade width prebasal segment Lbwb mm 1 Leaf blade width prebasal segment Rp % rachis between basal and prebasal segment/ leaf length 1 Rachis percentage Rp % rachis between basal and prebasal segment/ leaf length 1 Retroits insertion width Piv mm 1 Leaf pubescence Lp (0) glabrous, (1) slightly, (2) densely, (3) very dense 1 Leaf terminal foliole Ltf (1) short, (2) medium, (3) long 1 Leaf terminal foliole shape Ltf (1) short, (2) medium-thin, (3) long-thin, (4) wide 1 Leaf terminal foliole shape Ltf (1) short, (2) medium-thin, (3) long-thin, (4) wide 2 Largest involucar labrat length Libl mm 2 Largest involucar labrat length Libl mm 2 Smallest involucar labrat length Sibl mm 2 Involucar labrat length Sibl mm 3 Smallest involucar labrat length Sibl mm 4 Largest involucar labrat length Sibl mm 3 Smallest involucar labrat length Sibl mm 4 Largest involucar labrat length Sibl mm 5 Sinclast Ua cm ⁻¹ <td>1 Leaf black width prebass segment Lbwp mm 1 Leaf black width prebass segment Rp % rachis between basal and prebasal segment/ leaf length 1 Petiole insertion width Piv mm 1 Laaf pubsecence Sp (0) glabrous, (1) sliphty, (2) densely, (3) very dense 1 Laaf pubsecence Lp (0) glabrous, (1) sliphty, (2) densely, (3) very dense 1 Leaf terminal foliole Ltf (1) short, (2) medium, (3) long, thin, (4) wide 1 Leaf terminal foliole shape Ltfs (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 1 Largest involucral bract tength Lib mm 2 Largest involucral bract vidth Lib mm 2 Smallest involucral bract width Sibit mm 3 Smallest involucral bract width Lib mm 3 Stem length 2 Si2 cm 3 Stem length 2 Si2 cm 4 media Trap eradius minor radius 5 Pironary praches Sb number 6 Stem length 2 Si2</td> <td>1</td> <td>Leaf length</td> <td>Ll</td> <td>cm</td>	1 Leaf black width prebass segment Lbwp mm 1 Leaf black width prebass segment Rp % rachis between basal and prebasal segment/ leaf length 1 Petiole insertion width Piv mm 1 Laaf pubsecence Sp (0) glabrous, (1) sliphty, (2) densely, (3) very dense 1 Laaf pubsecence Lp (0) glabrous, (1) sliphty, (2) densely, (3) very dense 1 Leaf terminal foliole Ltf (1) short, (2) medium, (3) long, thin, (4) wide 1 Leaf terminal foliole shape Ltfs (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 1 Largest involucral bract tength Lib mm 2 Largest involucral bract vidth Lib mm 2 Smallest involucral bract width Sibit mm 3 Smallest involucral bract width Lib mm 3 Stem length 2 Si2 cm 3 Stem length 2 Si2 cm 4 media Trap eradius minor radius 5 Pironary praches Sb number 6 Stem length 2 Si2	1	Leaf length	Ll	cm
1 Leaf blade width prebasal segment/ leaf length 1 Rachis percentage Rp 1 Periole insertion width Piw 1 Stem pubescence Sp 1 Leaf pubescence Sp 1 Leaf reminal foliole Ltf 1 Laf terminal foliole Ltf 1 Laf terminal foliole Ltf 1 Laf terminal foliole shape Ltf 1 Laf terminal foliole shape Ltfs 1 Laf terminal foliole shape Ltfs 2 Involucral bract length Libb 2 Largest involucral bract length Libb 2 Smallest involucral bract width Sibb 3 Smallest involucral bract width Sibw 2 Involucral bract petiole membrane Ipm 3 Umbel area Ua Cern 4 Involucral bract petiole membrane Bpm Number 3 Secondary branches Pb number 3 Secondary branches Sb number 3 Secondary branches	1 Lach blade width prebasal segment Lbwp mm 1 Recht spretrentage Rp % rachis between basal and prebasal segment/ leaf length 1 Petiole insertion width Piw mm 1 Stem pubsecence Lp (0) glabrous, (1) slightly, (2) densely, (3) very dense 1 Leaf pubsecence Lp (0) glabrous, (1) slightly, (2) densely, (3) very dense 1 Leaf terminal foliole Ltf (1) short, 2) medium, (3) long. 1 Leaf terminal foliole shape Ltfs (1) short, 2) medium, (3) long-thin, (4) wide 1 Leaf terminal foliole shape Ltfs (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 2 Involueral bract length Libu mm 2 Largest involueral bract length Sibil mm 2 Smallest involueral bract width Sibu mm 3 Stem length Sibil mm 4 Involueral bract peicle membrane Bpm (0) absence, (1) presence 3 Bractap width Mi mm 3 Stem length Sib number 3 Largest involueral bract frequencie Tum mm 3 Bractap width Mi mm 4 Notare <td>1</td> <td>Leaf blade width basal segment</td> <td>Lbwb</td> <td>mm</td>	1	Leaf blade width basal segment	Lbwb	mm
1 Rachis percentage Rp % rachis between basal and prebasal segment/ leaf length 1 Petiole insertion width Piw mm 1 Stem pubsecence Sp (0) glabrous, (1) slighty, (2) densely, (3) very dense 1 Laaf pubsecence Lp (0) glabrous, (1) slighty, (2) densely, (3) very dense 1 Laaf terminal foliole Lift (1) short, (2) medium-thin, (3) long-thin, (4) wide 1 Laaf terminal foliole shape Lift (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 2 largest involucral bract length Liby mm 2 largest involucral bract length Sibi mm 2 Smallest involucral bract length Sibi mm 2 Smallest involucral bract length Sibi mm 2 Smallest involucral bract bract length Sibi mm 3 Smallest involucral bract petiole membrane Ua mm mm 4 Involucral bract petiole membrane Bip Min Min Sibi mm 3 Involucral bract petiole membrane Bip Gip Sibi min <td< td=""><td>1 Rachis percentage Rp % rachis between basal and prebasal segment/ leaf length 1 Petiole insertion with Piw mm 1 Stem pubescence Sp (0) glabrous, (1) slighty, (2) densely, (3) very dense 1 Laf pubescence Lp (0) glabrous, (1) slighty, (2) densely, (3) very dense 1 Laf terminal foliole Ltf (1) short, (2) medium-thin, (3) long-thin, (4) wide 1 Laf terminal foliole shape Ltfs (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 2 largest involucral bract length Libb mm 2 largest involucral bract width Libw mm 2 Smallest involucral bract width Libw mm 2 Smallest involucral bract width Libw mm 2 Smallest involucral bract width Libw mm 3 Smallest involucral bract bract width Libw mm 4 Unbel area Ua cm⁻⁴. major radius, minor radius (0) absence, (1) presence 3 Bradest width Libw mm mm Terminal theorem theorem theorem theorem 3 Spine</td><td>1</td><td>Leaf blade width prebasal segment</td><td>Lbwp</td><td>mm</td></td<>	1 Rachis percentage Rp % rachis between basal and prebasal segment/ leaf length 1 Petiole insertion with Piw mm 1 Stem pubescence Sp (0) glabrous, (1) slighty, (2) densely, (3) very dense 1 Laf pubescence Lp (0) glabrous, (1) slighty, (2) densely, (3) very dense 1 Laf terminal foliole Ltf (1) short, (2) medium-thin, (3) long-thin, (4) wide 1 Laf terminal foliole shape Ltfs (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 2 largest involucral bract length Libb mm 2 largest involucral bract width Libw mm 2 Smallest involucral bract width Libw mm 2 Smallest involucral bract width Libw mm 2 Smallest involucral bract width Libw mm 3 Smallest involucral bract bract width Libw mm 4 Unbel area Ua cm ⁻⁴ . major radius, minor radius (0) absence, (1) presence 3 Bradest width Libw mm mm Terminal theorem theorem theorem theorem 3 Spine	1	Leaf blade width prebasal segment	Lbwp	mm
1 Stem pubsecence Sp 1 Stem hair length Shi 1 Leaf pubsecence Lp 1 Leaf turbescence Lift 1 asymmetric trifoliolate, (2) symmetric trifoliolate, (3) asymmetric trifoliolate, (3) symmetric trifoliolate, (3) uncleaf symmetric trifoliolate, (3) uncleaf symmetric trifoliolate, (3) uncleaf symmetric trifoliolate, (3) uncleaf symmetric trifoliolate, (3) unumber 1 Stem lengt	1 Stem pubsecnec Sp (0) glabrous, (1) slightly, (2) densely, (3) very dense 1 Laaf pubsecnec Lp (0) glabrous, (1) slightly, (2) densely, (3) very dense 1 Stem hair length Shl (1) short, (2) medium, (3) long 1 Laaf terminal foliole shape Lrfs (1) short, (2) medium-thin, (3) long-thin, (4) wide 1 Laaf terminal foliole shape Lrfs (1) short, (2) medium-thin, (3) long-thin, (4) wide 2 Largest involucral bract length Libl mm 2 Largest involucral bract length Libl mm 2 Smallest involucral bract length Libl mm 2 Involucral bract length Libl mm 2 Involucral bract length Sibl mm 3 Smallest involucral bract length Sibl mm 4 Unbel area Uaa Uapset involucral bract width Sibw 5 Involucral bract petiole membrane Ibpm (0) absence, (1) presence maior 3 Stem length Sibl number Largest involucral bract width Sibw 1 Largest involucral bract p	1	Rachis percentage	Rp	% rachis between basal and prebasal segment/ leaf length
1 Lact pubescence Lp (0) glabrous, (1) slightly, (2) densely, (3) very dense 1 Lact remninal foliole Lift (1) short, (2) medium, (3) long 1 Leaf terminal foliole shape Lift (1) short, (2) medium, (3) long-thin, (4) wide 2 Involucral bracts Ib number 2 Largest involucral bract length Libl mm 2 Smallest involucral bract width Libl mm 2 Smallest involucral bract width Sibl mm 2 Involucral bract periole membrane Bpm mm 3 Stem length 2 Si2 cn 3 Stem length 2 Si2 cn 3 Beriolary branches Sb number 3 Stern length 2 Si2 cn 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cn 3 Mericary length Mi cm 3 Umbel arrangement Um cm 3 Umbel arrangement Uar cm 3	1 Laf pubsecnce Sp (0) glabrous, (1) slighty, (2) densely, (3) very dense 1 Laf terminal foliole Lif (1) short, (2) medium, (3) long 1 Laf terminal foliole Lif 1 Laf terminal foliole Lif 1 Laf terminal foliole shape Lifs 1 Laf terminal foliole shape Lifs 2 Involucral bract length Lib 2 Largest involucral bract length Lib 2 Smallest involucral bract length Sibb 2 Smallest involucral bract length Sibb 2 Involucral bract vidth Sibw 2 Involucral bract vidth Sibw 2 Involucral bract vidth Sibw 2 Involucral bract patiole membrane Ippn 3 Stem length 2 Sib 3 Stem length 2 Sib 3 Stem length 2 Sib 4 Involucral bract patiole membrane Ippn 1 Involucral bract set length Sib 3 Stem length 2 Sib 4 Involucral bract patiole membrane Ippn 5 Sib number 3 Largest moducene Sib	1	Petiole insertion width	Piw	mm
1 Leaf jubsecence Lp (0) glabrous, (1) signify, (2) density, (3) very dense 1 Stem have length Shl (1) short, (2) medium, (3) long 1 Leaf terminal foliole Lff (1) short, (1) medium, (3) long, (4) wide 1 Leaf terminal foliole shape Lfs (1) short, (1) medium-thin, (3) long, thin, (4) wide 1 Largest involucral bract length Libl mm 2 Largest involucral bract width Libw mm 2 Smallest involucral bract width Sibl mm 2 Smallest involucral bract width Sibl mm 2 Smallest involucral bract width Sibl mm 3 Smallest involucral bract width Sibl mm 2 Involucral bract petiole membrane Bpm (0) absence, (1) presence 3 Stem length Sb number 3 Stem length Sb number 3 Largest ray of unbel Lru mm 3 Terminal unbel peduncle Tup cm 4 Grap width Mw cm 3 Mericarp length MI cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) short	1 Leaf publescence Lp (D) glabrois, (1) signity, (2) density, (3) very dense 1 Stem hair length Lif (1) short, (2) medium, (3) long 1 Leaf terminal foliole Lif (1) short, (2) medium, (3) long, thin, (4) wide 1 Leaf terminal foliole shape Ltf (1) short, thin, (2) medium, (3) long, thin, (4) wide 1 Largest involucral bract length Libl mm 2 Largest involucral bract length Sibl mm 2 Smallest involucral bract length Sibl mm 2 Smallest involucral bract width Libw mm 2 Involucral bract ength Sibl mm 3 Smallest involucral bract width Libw mm 2 Involucral bract petiole membrane Bpm (0) absence, (1) presence 3 Stem length 2 Size Size 4 Largest ray of number Luru mm 3 Stem length Luru mm 3 Spines S number 3 Largest ray of number Largest ray of number Spines 3 Largest ray of number Lingth (2) compacted, (2) compacted, (3) intermediate, (4) half loc 4 Mericarp engetance (based on spine mor	1	Stem pubescence	Sp	(0) glabrous, (1) slightly, (2) densely, (3) very dense
1 Leaf terminal foliole Ltf 1 Leaf terminal foliole Ltf 2 Involucral bracts Ib 2 Largest involucral bract length Ltfs 2 Smallest involucral bract length Lib 2 Smallest involucral bract length Lib 2 Smallest involucral bract length Sibil 2 Involucral bract elength Sibil 2 Involucral bract length Sibil 2 Involucral bract length Sibil 2 Involucral bract length Sibil 3 Stem length 2 Size 4 Involucral bract petiole membrane Bpm 3 Stem length 2 Size 4 Involucral bract petiole membrane Bpm 3 Stem length Multicral brack 4 Involucral brack set Sb 5 Number Innolucral brack set 6 Number Size 3 Secondary branches Sb 4 Intermediation Multicral brack 5 Intermedi	1 Leaf terminal foliole Ltf (1) sort, (2) medium, (3) long. 1 Leaf terminal foliole Ltf (1) sort-thin, (2) medium-thin, (3) long-thin, (4) wide 2 Involucral bracts Ib number 2 Largest involucral bract length Lib 2 Smallest involucral bract length Sibl 2 Smallest involucral bract length Sibl 2 Smallest involucral bract length Sibl 2 Involucral bract ength Sibl 2 Involucral bract length Sibl 2 Involucral bract width Sibw 3 Stem length 2 Si2 4 Involucral bract petiole membrane Ibym 1 Terminal umbel peduncle Tup 3 Stem length 2 Si2 4 Terminal umbel peduncle Tup 5 Spines S 3 Mericary length Mu 4 Mericary length Spin 5 Spines S 3 Mericary appearance (based on spine morphology) Ma 3	1	Leaf pubescence	Lp	(0) glabrous, (1) slightly, (2) densely, (3) very dense
1 Leaf terminal foliole Lu (1) asymmetric unoutate, (2) symmetric unoutate, (3) asymmetric 1 Leaf terminal foliole shape Ltfs (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 1 Largest involucral bract length Libl mm 2 Largest involucral bract length Sibl mm 2 Smallest involucral bract width Libw mm 2 Smallest involucral bract length Sibl mm 2 Involucral bract oracid Ua cm ² = π. major radius. minor radius 1 Unrobel area Ua cm ² = π. major radius. minor radius 2 Involucral bract petiole membrane Ibpm (0) absence, (1) presence 3 Breinagh 2 Size cm 3 Stem length 2 Size cm 3 Stem length 4 Mu cm 3 Stem length 5 Summber mm 4 Gradary branches Sb number 5 number cm cm 6 Mericap width Mw cm 6 Mericap width Spi	1 Leaf terminal foliole shape Ltf (1) synimetric thronome, (2) synimetric thronome, (3) Single for thronome, (4) short thronome, (3) sprinter synine (based on sprine morphology) 1 Largest appearance (based on sprine synine	1	Stem hair length	Shi L +f	(1) short, (2) medium, (3) long (1) symmetric trifeliolete (2) symmetric trifeliolete (3) symmetric
1 Leaf terminal foliole shape Ltfs (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 2 Involucral bracts Ib number 1 Largest involucral bract length Lib mm 2 Smallest involucral bract length Sibl mm 2 Smallest involucral bract length Sibl mm 2 Smallest involucral bract length Sibl mm 2 Umbel area Ua cm ² =major radius. minor radius 2 Involucral bract petiole membrane Ibpm (0) absence, (1) presence 3 Stem length 2 Sl2 cm 3 Stem length 2 Sl2 cm 3 Secondary branches Sb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Mericarp length MI cm 4 Mericarp length MI cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) short the morphology) 3 Endosperm median transvers	1 Leaf terminal foliole shape Lfs (1) short-thin, (2) medium-thin, (3) long-thin, (4) wide 2 Involueral bracts Ib number 1 Largest involueral bract length Lib mm 2 Smallest involueral bract width Libw mm 2 Smallest involueral bract width Sibw mm 2 Smallest involueral bract width Sibw mm 2 Involueral bract periole membrane Ibpm (0) absence, (1) presence Immersion 3 Stem length 2 Crn mm Terminal umbel peduncles Fb 3 Largest ray of umbel Tup cm cm mm 3 Terminal umbel peduncle Tup cm mm 3 Spine length Mu cm cm 3 Umbel arrangement Uar Umber (1) storigly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericary appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short distribution of the spines, (4) short distribution of the spines, (2) short triangle spines (3) long thin spines, (4) short distribut	1	Lear terminar fonole	Lu	(1) asymmetric unonotate, (2) symmetric unonotate, (3) asymmetric
2 Involucal bracts Ib number 2 Largest involucral bract length Libl mm 2 Smallest involucral bract width Libw mm 2 Smallest involucral bract width Sibb mm 2 Marcial bract strate width Sibb mm 2 Umbel area Ua cm ² = x. major radius. minor radius 2 Umbel area Ua cm ² = x. major radius. minor radius 3 Stem length 2 Si2 cm 3 Stem length 2 Si2 cm 3 Stem length 2 Si2 cm 4 Largest my of umbel Lru mm 3 Stem length 2 Si2 cm 3 Stem length 2 Si2 cm 4 Carciap vianth Mu cm 3 Spines S number 4 Terminal umbel peduncle Tup cm 5 number mo cm 4 Mericap length Ml cm 5 June (1) strongly co	2 Involucral bracts Ib number 2 Largest involucral bract length Libb mm 2 Smallest involucral bract width Libw mm 2 Smallest involucral bract width Sibb mm 2 Involucral bract struct Umbel area Ua cm ² = x. major radius. minor radius 2 Involucral bract periode membrane Up (0) absence, (1) presence 1 3 Stem length 2 Si2 cm mmber 3 Stem length 2 Si2 cm mmber 3 Stem length 2 Si2 cm mmber 3 Secondary branches Pb number mmber 3 Largest my of unbel Lru nm mmer 3 Spines S number mm 3 Mericap length Ml cm cm 3 Mericap and with Mw cm cm cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's next (3) endosperm median	1	Leaf terminal foliole shape	Ltfs	(1) short-thin, (2) medium-thin, (3) long-thin, (4) wide
2 Largest involueral bract length Libl mm 2 Largest involueral bract width Libw mm 2 Smallest involueral bract vidth Sibl mm 2 Smallest involueral bract vidth Sibl mm 2 Smallest involueral bract periole membrane Ibpm (0) absence, (1) presence 3 Involueral bract periole membrane Ibpm (0) absence, (1) presence 3 Stem length 2 Sl2 cm 3 Primary branches Sb number 3 Secondary branches Sb number 3 Secondary branches Sb number 3 Largest ray of umbel Lu mm 3 Terminal umbel peduncle Tup cm 3 Mericap width Mw cm 3 Mericap length Mu cm 3 Umbel arrangement Uar C1 istrongly compacted, (2) compacted, (3) intermediate, (4) half loc 3 Endosperm median transverse section Emts (1) trapezoid, (2) erscent, (3) arcuate	2 Largest involucral bract length Lable mm 2 Snallest involucral bract width Sibu mm 2 Snallest involucral bract width Sibu mm 2 Snallest involucral bract width Sibu mm 2 Snallest involucral bract periole membrane Ibpm (0) absence, (1) presence 3 Involucral bract periole membrane Ibpm (0) absence, (1) presence 3 Stem length 2 Si 3 Stem length 2 Si 3 Stem length 2 Si 3 Secondary branches Pb 1 Largest ray of umbel Lru 1 Terminal umbel peduncle Tup 3 Spines S number 3 Mericara length MI cm 3 Mericara plength MI cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc lose, (6) kax, (7) bird's nest 3 Endosperm median transverse section Emts (1) variable, (2) short triangle spines (3) long thin spines, (4) short triangle spines (3) long thin spines, (4) short triangle spines (3) arcuate	2	Involucral bracts	Ib	number
2 Largest involucral bract length Sibl mm 2 Smallest involucral bract length Sibl mm 2 Umbel area Ua cm ² = π. major radius. minor radius 2 Umbel area Ua cm ² = π. major radius. minor radius 3 Stem length 2 Sl2 cm 3 Stem length 2 Sl2 cm 3 Secondary branches Pb number 3 Secondary branches Sb number 3 Spines S number 3 Spines S number 3 Mericarp length MI cm 3 Mericarp length MI cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines of the spines spines (1) trapezoid, (2) crescent, (3) arcuate 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	2 Largest involucral bract length Sibl mm 2 Smallest involucral bract width Sibw mm 2 Smallest involucral bract width Sibw mm 2 Umbel area Ua cm ² = π. major radius. minor radius 3 Stem length 2 Sl2 cm 3 Stem length 2 Sl2 cm 3 Primary branches Pb number 3 Secondary branches Sb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Spines S number 3 Mericap vidth Mw cm 3 Spine length MI cm 3 Mericap vidth Mw cm 3 Mericap appearance (based on spine morphology) morphology morphology 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the morphology 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	2	Largest involucral bract length	Libl	mm
2 Smallest involucral bract length Sible mm 2 Smallest involucral bract width Sibw mm 2 Umbel area Ua cm ² = π. major radius. minor radius 2 Involucral bract petiole membrane Ibpm (0) absence, (1) presence 3 Brein length 2 Size cm 3 Primary branches Pb number 3 Scondary branches Sb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Spine S number 3 Mericap width Mw cm 3 Mericap length MI cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Endosperm median transverse section Emts (1) variable, (2) short triangle spines (3) long thin spines, (4) short the morphology 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	2 Smallest involucral bract width Sible mm 2 Umbel area Ua cm ² = π. major radius. minor radius 2 Involucral bract petiole membrane Ibpm (0) absence, (1) presence 3 Brein length 2 Size cm 3 Primary branches Pb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Trup cm 3 Mericarp length MI cm 3 Mericarp length MI cm 3 Spine length Spl umber 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	2	Largest involucral bract width	Libw	mm
2 Smallest involucral bract width Sibw mm 2 Umbel area Ua cm ² π. major radius. minor radius 2 Involucral bract petiole membrane Ibpm (0) absence, (1) presence 3 Stem length 2 SI2 cm 3 Primary branches Pb number 3 Secondary branches Sb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Spines S number 3 Mericarp width Mw cm 4 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the morphology 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	2 Smallest involucral bract width Sibw mm 2 Umbel area Ua cm ² π. major radius. minor radius 3 Involucral bract petiole membrane lbpm (0) absence, (1) presence 3 Stem length 2 Sl2 cm 3 Stem length 2 Sl2 cm 3 Stem length 2 Sl2 cm 3 Secondary branches Pb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Spines S number 3 Mericap width Mw cm 3 Mericap width Mw cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	2	Smallest involucral bract length	Sibl	mm
2 Umbel area Ua cm ⁻ π. major radius. minor radius 3 Stem length 2 Sl2 cm 3 Stem length 2 Sl2 cm 3 Primary branches Pb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Spines S number 3 Mericap width Mw cm 3 Mericarp length Ml cm 3 Spine length Spi cm 3 Umbel arrangement Uar cm 4 Unreap ength Ml cm 4 Umbel arrangement Uar cm 5 Endosperm median transverse section Emts (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines (3) arcuate	2 Umbel area Ua $\operatorname{cm}^{-\pi} \pi$ major radius. minor radius $\operatorname{cm}^{-\pi} \pi$ major radius	2	Smallest involucral bract width	Sibw	mm
2 Involucial pract petiole membrane lopm (0) absence, (1) presence 3 Stein length 2 Sl2 cm 3 Primary branches Pb number 3 Secondary branches Sb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Spines S number 3 Mericap width Mu cm 3 Mericap length Spl cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines of the spines, (4) short the spines of the spines, (4) short the spines of the spines, (2) crescent, (3) arcuate	2 Involucial pract petiole membrane Ippm (U) absence, (1) presence 3 Stein length 2 S12 cm 3 Primary branches Pb number 3 Secondary branches Sb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Mericap width Mw cm 3 Mericarp length MI cm 3 Spines S number 4 Orne (and the second condition of the second conditis and the second condition of the second cond	2	Umbel area	Ua	$cm^2 = \pi$. major radius. minor radius
3 Stein rengu 2 St2 Cut 3 Primary branches Pb number 3 Secondary branches Sb number 3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Spines S number 3 Mericarp length MI cm 3 Spine length Spi cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short thransverse section 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3 Stein length 2 St2 Cumber 3 Primary branches Pb number 3 Largest ray of umbel Lru mm 3 Terminal ambel peduncle Tup cm 3 Spines S number 3 Mericarp length Ml cm 3 Mericarp length Spl cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the morphology 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	2	Involucral bract petiole membrane	Ibpm	(0) absence, (1) presence
 3 Secondary branches 3 Largest ray of umbel 3 Largest ray of umbel 3 Largest ray of umbel 3 Terminal umbel peduncle 3 Turp cm 3 Spines 3 Mericap width 3 Mericap length 3 Spine length 3 Umbel arrangement 3 Mericar papearance (based on spine morphology) 3 Endosperm median transverse section 4 Emts 4 Endosperm median transverse section 4 Emts 5 Endosperm median transverse section 5 Emts 6 Endosperm median transverse section 	 a Secondary branches b number a Largest ray of umbel peduacle Tup en Spines Mericap width Mw en Spine length MI en Spine length Spine length Cm Spine arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest Mericar appearance (based on spine morphology) Endosperm median transverse section Entor Entor Entor Entor Cm <	3	Stem length 2 Primary branches	SI2 Ph	CM number
3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Spines S number 3 Mericap width Mw cm 3 Spines S number 3 Mericap width Mw cm 3 Spine length Spi cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the morphology 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3 Largest ray of umbel Lru mm 3 Terminal umbel peduncle Tup cm 3 Mericap width Mw cm 3 Mericap length MI cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the morphology 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3	Secondary branches	Sh	number
3 Terminal umbel peduncle Tup cm 3 Spines S number 3 Mericarp length MI cm 3 Spine length Spi cn 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the second secon	3 Terminal umbel peduncle Tup cm 3 Mericap width Mw cm 3 Mericarp length MI cm 3 Spine length Spine length Spine length Gm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the morphology 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3	Largest ray of umbel	Lru	mm
3 Spines S number 3 Mericap width Mw cm 3 Mericar length MI cm 3 Unbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the second	3 Spines S number 3 Mericap width Mw cm 3 Spine length MI cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines (1) trapezoid, (2) crescent, (3) arcuate 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3	Terminal umbel peduncle	Tup	cm
3 Mericap with Mw cm 3 Mericarp length MI cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the morphology 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3 Mericap width Mw cm 3 Mericarp length Spl cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines of the spine morphology 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3	Spines	S	number
3 Mericarp length MI cm 3 Spine length Spl cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short th 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3 Mericarp length MI cm 3 Spine length Spi Cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short th 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3	Mericap width	Mw	cm
3 Spine length Spi cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3 Spine length Spi cm 3 Umbel arrangement Uar (1) strongly compacted, (2) compacted, (3) intermediate, (4) half loc loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines (3) long thin spines, (4) short the spines (3) long thin spines, (4) short the spines (3) arcuate 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3	Mericarp length	Ml	cm
3 Under arrangement Uar (1) strongy compacted, (2) compacted, (3) intermediate, (4) half for loose, (6) lax, (7) bird's nest 3 Mericarp appearance (based on spine morphology) Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines (1) trapezoid, (2) crescent, (3) arcuate 3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	 3 Ombet arrangement 3 Mericarp appearance (based on spine morphology) 3 Endosperm median transverse section 4 Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the spines (1) trapezoid, (2) crescent, (3) arcuate 	3	Spine length	Spl	cm (1) structure to d (2) some stade (2) intermediate (4) helf less
 Mericarp appearance (based on spine morphology) Bendosperm median transverse section Ma (1) variable, (2) short triangle spines (3) long thin spines, (4) short the transverse section (1) trapezoid, (2) crescent, (3) arcuate 	 Mericarp appearance (based on spine morphology) Endosperm median transverse section Emts Hat (1) variable, (2) short triangle spines (3) long thin spines, (4) short the transverse section Emts Endosperm median transverse section 	3	Umber arrangement	Uar	(1) strongly compacted, (2) compacted, (3) intermediate, (4) half loos loose, (6) lax, (7) bird's nest
3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3 Endosperm median transverse section Emts (1) trapezoid, (2) crescent, (3) arcuate	3	Mericarp appearance (based on spine	Ма	(1) variable, (2) short triangle spines (3) long thin spines, (4) short th
		3	Endosperm median transverse section	Emts	(1) trapezoid (2) crescent (3) arcuate

olecular narker	Primer code	Sequence 5'-3'	Polymorphic D. pusillus/ montevidensis accessions	All Daucus accessions
AFLP	PP1	M-CAT E-AAG	15	74
	PP2	M-CTG E-ACA	6	41
	PP3	M-CAA E-ACA	5	42
ISSR	MM8	(CA)6 GT	16	70
	MM14 MM31	(CGT)4 T CAA (CT)6	17 18	63 49
Total polyn	orphic ban	ds	77	339

http://mc06.manuscriptcentral.com/botany-pubs

	D montanus	D carota	D. pusillus/mon	tevidensis from
	(ECmon1)	(ECMCcar16)	Patagonia	Pampa and
	Mean SD	Mean SD	Mean SD	Mesopotamia Mean SD
Overtitative characters	Witan 5D	Wiedin 5D	Wiedin 5D	Mean 5D
Quantitative characters	14.04 + 2.57	101.58 + 17.79	32.25 + 11.36	51.60 + 11
L	26.64 + 1.67	34 10 + 260	11 33 + 158	1560 ± 29
Lbwb	84.03 ± 10.44	98.50 ± 12.88	34.03 ± 8.40	53.99 ± 10.00
Lbwp	73.01 ± 8.16	98.75 ± 11.38	30.78 ± 5.00	47.82 ± 10
Piw	9.39 ± 1.14	13.70 ± 1.35	6.06 ± 1.23	7.97 ± 1.0
Ib	7.00 ± 0.53	10.67 ± 1.97	6.30 ± 1.25	9.54 ± 1.9
Libl	34.42 ± 4.69	32.78 ± 1.95	36.41 ± 7.12	30.74 ± 5.9
Libw	23.33 ± 3.25	29.60 ± 6.01	20.47 ± 4.88	20.97 ± 5.2
Sibl	24.72 ± 3.14	22.57 ± 2.44	24.63 ± 5.08	21.95 ± 4.6
Sibw	14.55 ± 2.04	14.32 ± 5.11	11.37 ± 3.41	11.70 ± 3.6
S12	42.83 ± 5.15	113.00 ± 13.40	47.00 ± 14.77	73.82 ± 11
Pb	2.14 ± 0.69	4.00 ± 0.63	2.50 ± 0.53	2.26 ± 0.9
Sb	0.57 ± 0.79	4.50 ± 0.55	3.40 ± 1.43	0.55 ± 0.9
Lru	103.33 ± 34.45	46.60 ± 8.74	21.67 ± 3.18	23.16 ± 3.5
Tup	26.67 ± 3.78	17.25 ± 3.76	22.33 ± 6.82	32.57 ± 5.1
S	10.60 ± 0.55	15.33 ± 2.94	13.30 ± 1.16	12.45 ± 1.2
Mw	0.16 ± 0.01	0.18 ± 0.02	0.18 ± 0.01	0.18 ± 0.0
Ml	0.47 ± 0.04	0.38 ± 0.05	0.35 ± 0.03	0.35 ± 0.0
Spl	0.09 ± 0.01	0.11 ± 0.03	0.10 ± 0.03	0.19 ± 0.0
Ua	21781 ± 8398	6259 ± 3017	555 ± 162	1250 ± 312
Rp	16.70 ± 2.38	13.63 ± 2.17	16.05 ± 2.68	16.60 ± 2.0
Qualitative characters				
Sp	0	0, 1, 2	2,3	2, 3
Shl	0	0, 1, 2, 3	1, 2	1, 2, 3
Lp	0	0, 1, 2	1, 2, 3	1, 2, 3
Ltf	1	1	1,2	1, 2, 3
Ltfs	3	3, 4	1, 2, 3	1, 2, 3
Ibpm	0	1	0	0
Uar	6	7	4, 5	1, 2, 3, 4
Emts	3	$\frac{1}{2}$	1	-, _, _, , .
Ma	4		1.2	1

Note: Abbrev.: Sl, Stem length; Ll, Leaf length; Lbwb, Leaf blade width basal segment; Lbwp, Leaf blade width prebasal segment; Piw, Petiole insertion width; Ib, Involucral bracts; Libl, Largest involucral bract length; Libw, Largest involucral bract width; Sibl, Smallest involucral bract length; Sibw, Smallest involucral bract width; Sl2, Stem length 2; Pb, Primary branches; Sb, Secondary branches; Lru, Largest ray of umbel; Tup, Terminal umbel peduncle; S, Spines; Mw, Mericap width; Ml, Mericarp length; Spl, Spine length; Ua, Umbel area; Rp, Rachis percentage; Sp, Stem pubescence; Shl, Stem hair length; Lp, Leaf pubescence; Ltf, Leaf terminal foliole; Ltfs, Leaf terminal foliole shape; Ibpm, Involucral bract petiole membrane; Uar, Umbel arrangement; Emts, Endosperm median transverse section; Ma, Mericarp appearance.

Page 25 of 32

Botany

Patagonian vs. the rest of accessions Among geographical regions 1 Among accessions within geographical regions 10 Among individuals within accessions 13 Patagonian + Pampean vs. Mesopotamian accessions 1 Among geographical regions 1 Among individuals within geographical regions 1 Among individuals within geographical regions 10 Among individuals within accessions 13	6	4.099	-0.05471	-0.42	0.43891
) 13	79.094	10.92489	84.71	0.00000
	1 26	55.506	2.02676	15.72	0.00000
	. 48	35.652	5.40754	35.06	0.00000
) 95	57.541	7.98843	51.80	0.00000
	1 26	55.506	2.02676	13.14	0.00000
Among geographical regions 1 Among accessions within geographical regions 10 Among individuals within accessions 13 Patagonian + Pampean vs. Mesopotamian accessions 14 Among geographical regions 1 Among accessions within geographical regions 10 Among individuals within accessions 13 Among geographical regions 10 Among individuals within accessions 13	6	4.099	-0.05471	-0.42	0.43891
) 13	79.094	10.92489	84.71	0.00000
	1 26	55.506	2.02676	15.72	0.00000
	48	85.652	5.40754	35.06	0.00000
) 95	57.541	7.98843	51.80	0.00000
	1 26	55.506	2.02676	13.14	0.00000
Among accessions within geographical regions 10 Among individuals within accessions 13 Patagonian + Pampean vs. Mesopotamian accessions 13 Among geographical regions 1 Among accessions within geographical regions 10 Among individuals within accessions 13) 13	79.094	10.92489	84.71	0.00000
	1 26	55.506	2.02676	15.72	0.00000
	48	55.652	5.40754	35.06	0.00000
) 95	57.541	7.98843	51.80	0.00000
	1 26	55.506	2.02676	13.14	0.00000
Among individuals within accessions 13 Patagonian + Pampean vs. Mesopotamian accessions 13 Among geographical regions 1 Among accessions within geographical regions 10 Among individuals within accessions 13	1 20 48 0 95 1 20	55.506 85.652 87.541 55.506	2.02676 5.40754 7.98843 2.02676	15.72 35.06 51.80 13.14	0.00000
Patagonian + Pampean vs. Mesopotamian accessions Among geographical regions 1 Among accessions within geographical regions 10 Among individuals within accessions 13	48	85.652	5.40754	35.06	0.00000
) 95	77.541	7.98843	51.80	0.00000
	1 26	55.506	2.02676	13.14	0.00000
Among geographical regions 1 Among accessions within geographical regions 10 Among individuals within accessions 13	48	85.652	5.40754	35.06	0.00000
) 95	87.541	7.98843	51.80	0.00000
	1 26	85.506	2.02676	13.14	0.00000
Among accessions within geographical regions 10) 95	57.541	7.98843	51.80	0.00000
Among individuals within accessions 13	1 26	55.506	2.02676	13.14	0.00000
Among individuals within accessions 13	1 26	55.506	2.02676	13.14	0.00000

Fig. 1. Geographical distribution of wild *Daucus* accessions from Argentina used in this study. 65x50mm (300 x 300 DPI)

Botany

Fig. 2. Phenological stages for morphological characterization: A. *stage 1*- closed flowers in primary umbel,
 B. *stage 2*- mostly opened flowers in primary umbel, and C. *stage 3*- mature fruits. *i*) complete plant, detail of primary umbel in *ii*) upper and *iii*) lateral view. Scale bars: 10 cm (*i*), 1 cm (*ii*, *iii*).
 182x66mm (300 x 300 DPI)

Fig. 3. Distinctive morphological qualitative characters evaluated in accessions of three wild *Daucus* species from Argentina. Plant aspect: (a) short and branched and (b) tall and little branched, and scales of characters described in Table 2: stem and leaf pubescence (c) 0, (d) 1, (e) 2, (f) 3, involucral bract petiole membrane (g) 0, (h) 1, umbel arrangement (i) 1, (j) 2, (k) 3, (l) 4, (m) 5, (n) 6, (o) 7, endosperm median transverse section (p-s) 1, (t) 2, (u) 3, and mericarp appearance (v-x) 1, (y) 2, (z) 3, (a) 4. Specific characters of each species: D. pusillus (a-g, i-m, p-s, v-y), D. carota (h, o, t, z), and D. montanus (n, u, a). Scale bars: 10 cm (a, b), 4 cm (n), 1 cm (o), 0.5 cm (g-m), 0.3 cm (c-f), 0.1 cm (v-a), 0.05 cm (p-u). 182x236mm (299 x 299 DPI)

Botany

Fig. 4. Combined analysis based on individual values for 30 morphological characters and 339 polymorphic bands of molecular markers (AFLP, ISSR), in 14 accessions of wild *Daucus* from Argentina. A. Dendrogram based on Euclidean similarity coefficient by the UPGMA method. B. Principal component analysis accounting for 72% of the variation. 65x23mm (300 x 300 DPI)

Fig. 5. Analysis of 30 morphological characters based on mean values in 12 *Daucus pusillus/montevidensis* accessions from Argentina. A. Phenogram based on Euclidean similarity coefficient by the UPGMA method. B. Principal component analysis accounting for 60% of variation. Accessions origin: Patagonia (black), Pampa (grey) and Mesopotamia (white).

54x16mm (300 x 300 DPI)

Botany

Fig. 6. Molecular analysis of 12 Daucus pusillus/montevidensis accessions from Argentina based on individual observations of 77 polymorphic bands of AFLP and ISSR markers using Dice coefficient. A. Dendrogram by UPGMA method, (I) accessions from Patagonia, Pampa, and one from Mesopotamia, ECpus11; and (II) accessions from Mesopotamia (Entre Ríos and Isla Martín García). The numbers above the branches are bootstrap support values (%). B. Principal coordinate analysis. Accessions origin: Patagonia (black), Pampa (grey) and Mesopotamia (white).

79x34mm (300 x 300 DPI)

Table 1S. Range of quantitative morphological characters used to evaluate wild *Daucus* accessions from Argentina.

	ECn	non1	ECM	Ccar16	ECI	pus1	EC	pus2	ECI	ous7	ECI	ous9	ECp	us11	ECp	us12	ECM	Cpus2	ECM	Cpus3	ECM	Cpus11	ECM	Cpus12	SIMa	cpus1	SIMa	cpus2
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	May
Sl	11.00	19.00	81.50	129.50	38.00	46.50	17.00	39.00	37.00	77.00	34.50	62.50	40.50	65.00	47.50	57.50	30.50	58.50	50.00	63.00	30.50	49.50	30.50	49.50	42.00	85.50	44.00	80.0
Ll	24.50	29.00	29.00	36.00	10.65	12.95	7.97	13.15	11.80	16.20	10.90	16.30	12.80	19.80	12.60	17.60	12.23	20.10	16.40	20.50	9.62	14.00	9.62	14.00	16.20	25.00	13.40	20.6
Lbwb	65.90	94.80	87.00	120.30	21.65	35.30	24.00	44.00	34.00	53.90	35.70	61.60	37.30	74.00	45.00	76.30	45.00	69.50	40.20	69.20	29.45	65.60	29.45	65.60	48.20	95.00	41.80	65.0
Lbwp	62.25	87.85	84.80	114.80	23.50	29.20	26.60	39.00	35.00	49.60	30.50	51.20	36.30	62.70	39.00	64.10	43.10	68.70	38.20	69.30	30.20	50.40	30.20	50.40	40.00	73.40	31.00	59.00
Piw	8.00	11.40	11.60	15.00	4.40	5.90	5.40	8.70	6.50	10.00	5.50	9.70	6.80	10.30	6.20	9.00	6.00	9.80	6.90	9.10	5.70	8.30	5.70	8.30	7.40	10.40	7.60	9.70
Ib	6.00	8.00	9.00	14.00	6.00	7.00	5.00	9.00	8.00	12.00	6.00	9.00	9.00	13.00	7.00	9.00	7.00	11.00	9.00	12.00	5.00	8.00	5.00	8.00	10.00	15.00	11.00	14.00
Libl	26.30	40.60	30.00	34.90	28.50	36.80	31.90	48.00	25.00	45.50	28.80	40.60	25.00	34.90	25.20	39.60	24.30	39.00	27.00	46.40	24.80	39.50	24.80	39.50	21.40	30.70	17.60	31.60
Libw	18.25	27.45	23.60	37.80	17.20	24.00	11.60	30.00	14.00	29.30	21.90	30.80	14.60	26.80	16.20	29.20	15.50	32.20	15.50	28.60	15.50	32.30	15.50	32.30	12.80	22.20	10.20	19.60
Sibl	20.20	29.40	20.40	26.10	19.10	20.80	22.80	33.60	17.20	34.00	18.00	31.30	16.20	25.20	17.10	28.80	15.70	30.00	19.20	32.50	19.00	33.60	19.00	33.60	15.50	22.80	10.50	20.70
Sibw	11.80	17.10	6.70	21.20	8.50	11.30	8.70	20.00	5.20	20.00	8.00	17.40	7.90	19.80	6.20	16.00	9.00	18.70	8.80	18.90	7.40	24.50	7.40	24.50	7.80	12.40	5.00	13.10
S12	37.00	49.00	94.00	135.00	55.50	62.50	25.00	58.00	50.50	87.50	54.50	86.50	62.00	89.50	62.00	78.00	48.00	93.00	65.00	89.00	50.50	85.00	50.50	85.00	67.00	105.00	60.00	99.50
Pb	1.00	3.00	3.00	5.00	2.00	3.00	2.00	3.00	1.00	3.00	1.00	3.00	1.00	4.00	1.00	3.00	2.00	6.00	1.00	3.00	1.00	3.00	1.00	3.00	1.00	4.00	2.00	6.00
Sb	0.00	2.00	4.00	5.00	2.00	4.00	1.00	6.00	0.00	1.00	0.00	2.00	0.00	0.00	0.00	4.00	0.00	4.00	0.00	1.00	0.00	2.00	0.00	2.00	0.00	0.00	0.00	1.00
Lru	70.00	160.00	38.00	58.00	21.80	27.60	16.70	22.40	18.40	29.80	19.90	25.90	21.50	29.20	20.00	30.30	21.20	31.20	23.60	30.80	17.30	25.00	17.30	25.00	16.30	22.90	18.30	23.40
Tup	22.00	30.00	13.00	23.00	23.00	30.00	12.00	30.00	25.00	40.50	27.50	47.00	30.00	39.00	19.50	36.50	26.50	41.50	29.00	40.50	23.00	42.50	23.00	42.50	23.00	38.00	22.00	41.00
s	10.00	11.00	12.00	20.00	13.00	14.00	11.00	15.00	11.00	15.00	11.00	13.00	11.00	12.00	12.00	15.00	11.00	13.00	13.00	15.00	10.00	12.00	10.00	12.00	11.00	13.00	11.00	16.0
Mw	0.15	0.18	0.15	0.20	0.16	0.19	0.17	0.19	0.13	0.19	0.16	0.19	0.14	0.18	0.18	0.21	0.15	0.18	0.16	0.20	0.16	0.22	0.16	0.22	0.15	0.19	0.16	0.19
Ml	0.40	0.50	0.31	0.41	0.30	0.38	0.32	0.38	0.28	0.38	0.33	0.37	0.30	0.39	0.34	0.38	0.26	0.38	0.35	0.39	0.32	0.39	0.32	0.39	0.32	0.39	0.33	0.38
Spl	0.09	0.10	0.08	0.16	0.10	0.15	0.07	0.12	0.14	0.21	0.18	0.25	0.14	0.24	0.19	0.21	0.15	0.19	0.12	0.17	0.16	0.22	0.16	0.22	0.16	0.22	0.20	0.24
Ja	11902	33938	2671	9807	435	592	367	917	665	1713	911	2075	899	1928	919	1847	857	2304	1102	1691	517	1444	517	1444	757	1630	704	1728
Rp	12.41	19.71	11.44	16.84	12.33	14.44	16.03	20.70	14.44	22.17	11.73	17.56	13.83	20.12	13.02	18.26	16.63	18.57	15.78	21.07	14.38	19.21	14.38	19.21	14.46	18.21	13.64	21.28

Note: Abbrev.: SI, Stem length; Ll, Leaf length; Lbwb, Leaf blade width basal segment; Lbwp, Leaf blade width prebasal segment; Piw, Petiole insertion width; Ib, Involucral bracts; Libl, Largest involucral bract length; Libw, Largest involucral bract width; Sl2, Stem length 2; Pb, Primary branches; Sb, Number of secondary branches; Lru, Largest ray of umbel; Tup, Terminal umbel peduncle; S, Spines; Mw, Mericap width; Ml, Mericarp length; Spl, Spine length; Ua, Umbel area; Rp, Rachis percentage.