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In this paper, we examine the magnetoelectric response of Ising pyrochlores, focusing on both the ordered
antiferromagnetic state and the frustrated ferromagnetic case known as “spin ice.” We employ a model which
accounts for magnetoelastic effects by considering the interplay between oxygen distortions and superexchange
magnetic interactions within pyrochlores. This, together with numerical simulations, provides a tool to make
quantitative comparisons with experiments. Our main target is then to see how to extract relevant information
from this simple model, and to explore its limitations. We obtain a direct estimation of quantities such as
the electric dipole moment, the central oxygen displacement, and the effective magnetoelastic energy for the
canonical spin-ice material Dy2Ti2O7. We also inquire about the possibility of using the electric dipole carried by
magnetic monopoles to obtain a direct measure of their density. In each studied scenario the correlations between
monopoles, induced by their number or by the magnetic background, render these findings less straightforward
than initially anticipated. Furthermore, the coupling between electrical and magnetic degrees of freedom provides
additional tools to investigate magnetic order in these systems. As an example of this we discuss the phase
diagram of the antiferromagnetic pyrochlore under applied magnetic field along the [111] direction. We find an
instance where the phase stability at nonzero temperatures is not dictated by the energy associated with different
ground states but (akin to the phenomenon of “order by disorder”) is instead determined by their accessibility to
thermal fluctuations.
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I. INTRODUCTION

With their exponentially degenerate ground-state manifold
and exotic excitations, geometrically frustrated magnetic sys-
tems have been the focus of considerable attention in recent
years [1–4]. The so-called spin-ice materials, Ising ferromag-
nets with a pyrochlore structure, are among the best studied
within this group [5,6]. Some members of this family can
be grown as large single crystals [7], while the relevant
low-temperature physics can be modeled by a classical and
relatively simple Hamiltonian [8–12]; this has attracted the at-
tention of a great number of experimentalists and theoreticians
(see Ref. [6] and references therein). The low-temperature
ground state of pure spin-ice materials is exponentially de-
generate, with the same entropy as that calculated by Pauling
for water ice [13]. In turn, this manifold can be thought of as
the magnetically neutral background where localized energy
excitations analogous to magnetic charges—usually referred
to as “monopoles”—move [14,15]. There exist both single
and double monopoles of each sign, the smaller magnetic
charges being the lowest energy quasiparticles. Interestingly,
the monopolar picture can be applied not only to spin ice, but
also to “all-in–all-out” (AIAO) Ising antiferromagnets [16].
Here the picture is reversed: the ground state corresponds to a
crystal of double monopoles with the structure of zinc blende,
the single monopoles remain the lowest energy excitations,
and the neutral regions are now those with the highest energy.
As it is the case in spin ice [14], single monopoles can be
stabilized in antiferromagnets by applying a magnetic field

[17,18]. They can also be favored by distortions, both exter-
nally induced [19] and spontaneous [20,21].

These magnetic excitations have also an effect on the
elastic, and therefore the electrical, degrees of freedom. As
it was theoretically demonstrated nearly ten years ago [22],
a combination of magnetic frustration and local asymmetry
gives rise to a localized lattice distortion, with an associated
electric dipole, for each single-charge monopolar excitation.
On the other hand, double monopoles and neutral regions of
the crystal lattice remain locally undeformed. There is some
experimental evidence of the existence of the distortions ac-
companying monopoles [23,24]. The estimation of their size
(on the order of 0.1 pm) has been made indirectly, either
through the electric dipolar energy needed to stabilize certain
exotic monopolar phases in Tb2Ti2O7 [25] (which, strictly
speaking, is not a spin-ice material), or in Dy2Ti2O7, by
combining a magnetoelastic model with experiments on the
dependence of the exchange constant with uniaxial deforma-
tion in Ref. [21].

Due to the presence of the associated electric dipoles, it
is to be expected that part of the magnetodielectric response
measured in spin ice [26–30] is related to magnetic charges.
However, it is still an open question if magnetoelectricity
due to monopoles is strong enough to be detected in stan-
dard macroscopic measurements, or how they can be used
to extract information on their related magnetic properties.
For example, using measurements on single crystals of the
conducting Ho2Ir2O7 combined with dipolar Monte Carlo
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simulations, it was recently found that the isothermal mag-
netoresistance is highly sensitive to the monopole density
[18]. This opens the question of whether the electric dipolar
moment carried by single monopoles could be used as a way
to measure their density within a crystal of spin ice or in a
AIAO antiferromagnet.

In this work we address some of the points raised above.
In order to do so we will review the magnetoelastic spin ice
(MeSI) model presented in Ref. [21] and discuss its use as a
tool for the study of magnetoelectricity in Ising pyrochlores
(Sec. II). By means of this model we will extract quanti-
tative information about the electric response of magnetic
monopoles through the fluctuations of their dipolar electric
moment, and will trace parallels with previous works studying
the effect of these moments on phase stability [25] or their
electric response [31]. In Sec. III we will study, using Monte
Carlo simulations, the magnetoelectricity of the AIAO antifer-
romagnet in zero magnetic field and with an external magnetic
field applied in different directions. Section IV addresses
the same problems in the case of spin-ice materials, taking
advantage of some published experimental results to give
quantitative estimates of the magnitude of the distortion and of
the electric dipolar moment. Section V considers these results,
focusing first on the ability of magnetoelectricity to pro-
vide a direct measurement of the density of single magnetic
monopoles (and of neutral sites in AIAO antiferromagnets
at low temperatures). We then provide a study, perhaps long
overdue, of the phase diagram for the simplest possible AIAO
model in an applied field, that will also contribute to the cur-
rently active field of antiferromagnetic iridates [18,32]. After
discussing some consistency checks for the assumptions made
on the MeSI model, evaluating its main parameters, arguing
about its limits, and discussing some surprising effects of
monopole correlations, we summarize this work in Sec. VI.

II. SYSTEM AND MODEL

The pyrochlore lattice can be described as a cubic diamond
lattice of corner-sharing tetrahedra (Fig. 1). Classical Ising
magnetic moments, μi = μSi = μSi ŝi, sit on the vertices of
the tetrahedra with quantization directions ŝi along the local
〈111〉 directions. The pseudospins Si = ±1 indicate if the
magnetic moments point outwards (+1) or inwards (−1) of
“up” tetrahedra [embedded in a cube in Fig. 1(a)]. Magnetic
charges occupy the centers of tetrahedra, labeled here using
using greek letters; their charge Qβ is defined in direct pro-
portion to the divergence of Si across their surface. In this
way, and as illustrated in Fig. 1(a), positive (negative) sin-
gle monopoles belong to three-in–one-out (one-in–three-out)
tetrahedra, while positive (negative) double monopoles sit in
all-in (all-out) ones, and neutral sites are related to two-in–
two-out configurations.

A. Magnetoelastic model

The simplest magnetic Ising Hamiltonian on the py-
rochlore lattice is the nearest-neighbor (NN) model,

HNN
0 = J0

∑
〈i j〉

SiS j, (1)

FIG. 1. Structure, magnetic monopoles, and O2− distortions.
(a) Pyrochlore structure, with Ising spins in the shared vertices of up
tetrahedra and down tetrahedra. The three-in–one-out configuration
in the up tetrahedron (embedded in a cube) has associated a positive
single monopole in its center (small green sphere); we also show
single and double negative monopoles (small and big red spheres,
respectively) and one neutral site (two-in–two-out). (b) For single
monopoles, the displacement δr of the central oxygen ion (cyan
sphere) along the cube diagonals decreases the exchange constant’s
value along the three magnetic bonds it approaches (red lines and sur-
faces), and strengthens the other three (green lines and surfaces). No
displacement occurs for neutral sites or double monopoles. Within
the model, the rare-earth ions (R) are assumed to be fixed.

where 〈· · · 〉 indicates that the sum is carried over nearest
neighbors only. J0 is an effective energy that takes into account
possible contributions from superexchange and nearestneigh-
bor magnetic dipolar interactions. A positive value of J0 leads
to frustration and a two-in–two-out locally neutral ground
state that characterizes spin-ice materials [5]. On the other
hand, the ground state for J0 < 0 corresponds to the unfrus-
trated all-in–all-out antiferromagnet; in terms of its magnetic
charge degrees of freedom it can be described as a zinc-blende
crystal of double monopoles.
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The superexchange interactions in R2M2O7 pyrochlores
are thought to be mediated by the oxygen O2− ions sitting
in the center of the magnetic tetrahedra [25,33–35]. We will
assume for simplicity that the magnetic ions, corresponding to
the rare-earth atoms R, remain fixed in their pyrochlore lattice
sites. Then, a displacement [see Fig. 1(b)] of the diamagnetic
O2− ions δrβ will affect differently the effective exchange
constant for each i-j bond of the tetrahedron: J0 −→ Ji j (δrβ ).
Conversely, given a magnetic configuration for a tetrahedron,
the O2− will displace its center of charge [22,25] so as to
maximize the energy gain on satisfied bonds and minimize
loses on unsatisfied ones.

Following Ref. [21], the simplest magnetoelastic Hamilto-
nian we can write is

HMe
0 =

∑
〈i j〉

Ji j (δrβ )SiS j +
∑

β

1

2
K

(
δrβ

rnn

)2

, (2)

where the O2− ions are modeled as sitting in a harmonic elas-
tic potential with spring constant K measured in kelvin, and
the different distortions δrβ are approximated as uncorrelated
from each other. We define the magnetoelastic constant, also
measured in kelvin, as the change in the exchange energy of
a bond when the intermediary O2− moves away from it; using
[see Fig. 1(b)] the bond 2–4 for concreteness,

α̃ ≡ rnn
∂J24

∂z

∣∣∣∣
δr=0

, (3)

where rnn is the distance between nearest neighbors.
Reference [21] shows that, to first order in the distortions,

the Hamiltonian in Eq. (2) leads to the so-called magnetoelas-
tic spin ice model. It consists of an effective spin-only part,
Heff

0 ({Si}), together with a modified elastic term that depends
on both degrees of freedom, Helas({δrβ}, {Si}):

HMe
0 ≈ HMeSI ≡ Heff

0 ({Si}) + Helas({δrβ}, {Si}). (4)

The magnetic Hamiltonian can be written as

Heff
0 ({Si}) ≡

∑
β

(
Jml

4∏
i=1

Si + 1

2
J0

4∑
i �= j=1

SiS j

)
, (5)

where the index β that sweeps up and down tetrahedra is left
implicit in the pseudospin variables. The constant

Jml ≡ 3α̃2

K
(6)

represents a new effective magnetic energy scale in a four-
spin Hamiltonian (see Refs. [20,36]). It favors the creation of
single monopoles against neutral sites or double charges; as it
will be seen afterwards, the conditions implicit in our studies
are such that this term will not play a major part in this work.

In the presence of an externally applied magnetic field, a
Zeeman term should be added to the effective Hamiltonian:

HZeeman = −
∑

i

μB · Si, (7)

with B the external magnetic field. In order to simulate more
accurately spin-ice materials such as Ho2Ti2O7 (HTO) or

Dy2Ti2O7 (DTO) (Sec. IV), it is necessary to consider long-
range dipolar interactions,

HDip.M. = D r3
nn

∑
i> j

′
[

Si · S j

|ri j |3 − 3(Si · ri j )(S j · ri j )

|ri j |5
]
. (8)

Here, the primed sum indicates the exclusion of the contribu-
tion to nearest-neighbor interactions, which has already been
taken into account in Eq. (5).

To better elucidate the elastic properties of the MeSI
Hamiltonian, it is useful to rewrite Helas in Eq. (4) as

Helas({δrβ}, {Si}) =
∑

β

3

2
J−1

ml (δOβ )2 + const, (9)

δOβ ≡ α̃

rnn
(δrβ − δreq

β ({Si}β )). (10)

This term is quadratic on the distortion variable δrβ . However,
the feedback from the magnetic configuration {Si}β of the
tetrahedron β redefines the position of the elastic energy mini-
mum for the O2− ion: it is now displaced from the center of the
tetrahedron by δreq

β ({Si}β ). For neutral or double monopoles,
δreq

β ({Si}β ) = 0: the O2− ion remains in the center of its
tetrahedron, and there is no local dipolar electric moment.
However, for single monopoles [22] of any sign the energy
balance dictates that there is a new equilibrium point given by
[21]

δreq
β ({Si}β ) = η

2rnn Jml√
3α̃

d̂ ({Si}β ), (11)

where η takes the value +1 (−1) for up (down) tetrahedra and

d̂ ({Si}β ) ≡ d̂β =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
3
(−1,−1,−1)

1√
3
(−1, 1, 1)

1√
3
( 1, 1,−1)

1√
3
( 1,−1, 1).

(12)

The mean displacement direction of the O2− is along the
direction of the minority spin in a single magnetic charge,
and towards the triangular phase of the tetrahedron with
three “in-in” or “out-out” bonds (red in Fig. 1). According to
the MeSI model then, the magnitude of this distortion (which
we will be able to estimate in a real material) is determined by
the ratio Jml/α̃, proportional to α̃/K .

B. Magnetoelectric properties

An important message from the previous section is that
a large magnetoelastic coupling and small restoring forces
favor not only the existence of single monopoles but also
the existence of larger average distortions with consequently
bigger microscopic electric moments. In this paper we will
consider Jml/α̃ to be large enough for the electric phenom-
ena associated with single monopoles to be detectable, but
small enough to make electric dipolar interactions negligible
(some consequences of these interactions have been studied
in Ref. [25], and further developed within the MeSI model
in Ref. [37]). Furthermore, as opposed to Ref. [21], here we
will work within the weak limit given by Jml 
 J0. Therefore,
from this point onwards we will neglect the four-spin term in
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Eq. (5); this assumption will be checked for consistency for
spin-ice materials in Sec. V.

We now concentrate on the magnetoelectric properties
of the O2− ions involved in superexchange, which manifest
through their electric dipolar moments pβ . We define the con-
tribution to the electric dipolar moment associated to central
O2− ions along the unit direction ê as

PO2−
ê ≡ ê ·

∑
β

pβ = −2q ê ·
∑

β

δrβ

= Pup
ê + Pdo

ê , (13)

where q is the elementary electric charge. In the last line we
have separated the contributions from O2− ions in up and
down tetrahedra. Its equilibrium fluctuations are connected
with the electric response of a sample of volume V to a field,
the static electric susceptibility,

χO2−
ê = 1

ε0V kBT

(〈(
PO2−

ê

)2〉 − 〈
PO2−

ê

〉2)
. (14)

It is interesting to see how the MeSI Hamiltonian gives a
physical interpretation to the procedure used in Ref. [25]
to study some of the electrical properties of Tb2Ti2O7. One
can split the O2−-ion distortions into two terms, the first one
corresponding to the displacement of the magnetoelastic min-
imum determined by the spin configuration, and a second one
corresponding to thermal (or eventually quantum) fluctuations
that make it vibrate around it,

δrβ = δreq
β ({Si}β ) + δvth

β . (15)

The average electric polarization fluctuations [Eq. (14)] have
no crossed term, leaving two contributions to the electric
susceptibility:

χO2−
ê ({δrβ}) = χmon

ê

({
δreq

β

}) + χ th
ê

({
δvth

β (T )
})

. (16)

The first one corresponds to the fluctuations of an electric
dipolar moment of constant magnitude −2q δreq

β related to
single monopoles, with O2− ions precisely at the new min-
imum of magnetoelastic energy. The second contribution is
thermally or quantum-mechanically activated and concerns all
tetrahedra, independently of its topological charge. It depends
on the fluctuations of the O2− around the minimum, 〈(δvth

β )2〉;
through equipartition, it would be proportional to T in a classi-
cal context. We will neglect it in our study of the contribution
of monopoles to the electrical activity of pyrochlores, con-
sidering that we generally are in a temperature regime quite
below the Debye temperature of the materials.

Using Monte Carlo simulations we will measure this sus-
ceptibility along ê through its average thermal fluctuations:

χmon
ê ≡ Dq

3

T Nq

(〈( ∑
β

d̂β · ê

)2〉
−

〈 ∑
β

d̂β · ê

〉2)
.

(17)

Here,

Dq ≡ δq p2
q

3ε0kB
(18)

is measured in kelvin, δq = Nq/V is the number density of
central O2− ions, ε0 the electric permittivity of the vacuum,
and kB the Boltzmann constant. Note that the measurement
of the electric susceptibility can give us access to the mi-
croscopic dipolar electric moment; pq in turn can reflect the
material’s magnetoelastic properties:

pq = 2qδreq
β = 4q rnn√

3

Jml

α̂
. (19)

For brevity, we will sometimes note χmon
ê using a nonunity

vector (e.g., we note χmon
[111]).

C. Single tetrahedron approximation (no applied field)

As it was discussed, within the MeSI model the only con-
tribution to the electric susceptibility at low temperature is
associated with single monopoles. It will be useful to compute
this susceptibility for the case of a single tetrahedron where
the probability of having a single monopole is given by the
average density of single monopoles per tetrahedron in the
pyrochlore lattice, ρs. The electric susceptibility from Eq. (17)
is now

χ1tet
ê ≡ 3ρs(T )

Dq

T

∑
β

(〈(d̂β · ê)2〉 − 〈d̂β · ê〉2). (20)

If there is no symmetry-breaking field applied, all spin con-
figurations associated with single monopoles will be equally
probable, leading to 〈d̂β〉 = 0: only the quadratic fluctuations
are then important. It can be shown that for the isotropic case
the average, and thus the susceptibility, is independent of ê:

χ1tet
ê (B = 0) = Dq

ρs(T )

T
. (21)

This expression should describe the electric response of a
pyrochlore lattice where the single monopole magnetic con-
figurations in different tetrahedra are independent of each
other. In this case, the electric susceptibility can provide an
indirect measure of the monopole density.

D. Simulation details

It is remarkable that within the framework we have dis-
cussed it is not necessary to use a complete magnetoelastic
Hamiltonian in order to calculate the monopole contribution
to the electric properties of spin-ice-like materials. Instead,
we can restrict ourselves to the magnetic part of the MeSI
Hamiltonian [Heff

0 ({S}) in the simplest case, to which other
pure magnetic terms like Eqs. (7) or (8) can be added]. This
is a great advantage from the viewpoint of computational
physics.

Here, we performed Monte Carlo simulations with the
Metropolis algorithm and single-spin-flip dynamics. In or-
der to implement Eq. (8) in the algorithm, we used Ewald
summations to take into account long-range interactions. The
conventional unit cell of the pyrochlore lattice [Fig. 1(a)]
consists of 16 spins, and we simulated cubic systems of
L3 cells with periodic boundary conditions. As an example,
for a system with L = 4 and dipolar interactions we took
8 × 105 Monte Carlo steps for equilibration, and then 2 × 105

steps were used to calculate the averages at each value of
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(a)

(b)

FIG. 2. Zero field magnetoelastic behavior for the AIAO anti-
ferromagnet from Monte Carlo simulations (L = 4). (a) Density of
magnetic charges as a function of temperature for single monopoles
(ρs), double monopoles (ρd), and neutral sites (ρn) for μB = 0. We
also include the order parameter for the zinc-blende crystal of double
monopoles, ρ

stag
d , and an estimate for ρs taken from the electric

response in (b), χmon/Dq ∗ T . This estimation is excellent above
the ordering temperature of the antiferromagnet, TC/J0 ≈ 4.2; below
TC , the electric response is accounted for by the density of neutral
sites [see (b)]. (b) Electrical susceptibility due to monopoles, χmon

MC

(open symbols), calculated from Monte Carlo simulations compared
with the single tetrahedron approximation χ1tet based on the single
monopole density (red line), and with a similar estimate based on the
density of neutral sites (orange symbols). See text for details.

temperature and applied magnetic field. In turn, the results
were averaged over ten independent runs.

III. ALL-IN–ALL-OUT ISING ANTIFERROMAGNETS
IN THE PYROCHLORE LATTICE (J0 < 0)

We start by studying the magnetoelastic properties of
the MeSI model with antiferromagnetic nearest-neighbor in-
teractions, H = Heff

0 + HZeeman. Along this section J0 < 0,
and—as for the rest of the paper—we assume Jml 
 |J0|.

A. Zero magnetic field

We begin the study with the case of no applied exter-
nal magnetic field. Figure 2(a) shows the density of double
monopoles (blue curve) per tetrahedron as a function of
temperature and B = 0. As expected, at temperatures be-
low T/J0 ≈ 5 the density is compatible with the formation
of a crystal of double charges. There are two possible

antiferromagnetic domains; as we will see later, it will be
useful to identify them by the sign of the magnetic charge in
the up tetrahedra. For the perfect crystal, a positive (+2Q)
charge marks the all-in–all-out domain type, while a neg-
ative −2Q magnetic charge identifies all-out–all-in (AOAI)
domains. The formation of a crystal is confirmed by the order
parameter associated to this phase. We define the staggered
charge density of double monopoles, ρ

stag
d , as the modulus of

the total charge due to double monopoles in up tetrahedra per
unit charge. We can see in Fig. 2(a) how ρ

stag
d raises from very

near zero for temperatures below TC/|J0| ≈ 4.2.
We have mentioned that there is no intrinsic electric ac-

tivity associated with double charges; however, there should
be an electrical response from the crystal’s lowest energy
excitations: the single monopoles. Their density is measured
by the red curve in Fig. 2(a). Figure 2(b) shows that the elec-
tric susceptibility due to monopoles calculated using Eq. (17)
along ê ‖ [111] increases in a Curie-law fashion for decreas-
ing temperature (green curve). It peaks near TC/|J0|, where it
gets the best compromise between a relatively big density of
single monopoles and minimum thermal disorder. At lower T
it drops suddenly (faster even than the density ρs, as we will
see below) as the zinc-blende structure of double monopoles
becomes less defective.

It is interesting that the single tetrahedron approximation,
Eq. (21), drawn in red in Fig. 2(b), reproduces the true sus-
ceptibility above TC ; however, χ1tet overestimates it below the
transition. Correspondingly, if we calculate the monopole den-
sity directly from the electric response assuming χ1tet/Dq =
ρs(T )/T ≈ χmon/Dq we obtain the green curve in Fig. 2(a).
The approximation follows the behavior of the true ρs(T ) at
high T really closely (they never differ by more than 5%,
value taken at TC), but it is rather poor below it. A quick look
at the density of the energetically more expensive neutral sites
[orange symbols in Fig. 2(b)] shows that the decreasing trend
of χmon/T as T → 0 resembles more the behavior of ρn(T )
than ρs(T ).

While the difference between both susceptibility curves in
Fig. 2(b) is obviously due to correlation effects, it is interest-
ing to discuss why their departure becomes noticeable below
the crystallization temperature. The lowest energy excitations
for the perfect crystal of double charges involves the flipping
of a single spin, to produce two single monopoles linked by
this minority spin (see the central and upper left tetrahedron
in Fig. 1). Although two new single monopoles are created,
and with them two new electric dipolar moments, it is easy to
see that there is no associated net electric moment fluctuation.
In other words, P = 0 for the perfect crystal, since there are
no dipoles, and P = 0 after the fluctuation since the new
dipolar moments cancel each other, in a fashion that recalls
the discussion on the reduced electric response in a crystal
of single monopoles in Ref. [31]. This reasoning explains
the origin of the correlation, and the fact that the curve for
independent tetrahedra [proportional to ρs(T )] overestimates
the electric susceptibility and underestimates the true value
of ρs.

Given the constraints imposed by the construction rules of
a double monopole crystal, it follows that a nonzero χmon

for T < TC necessarily implies the existence of other types
of excitations. The flip of a second spin, one of the majority
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spins linking a single with a double monopole (see the double
monopole on the lower left corner in Fig. 1), separates and
decorrelates the two original single monopoles. This second
flip results in a neutral site between two single monopoles
and in a nonzero total electric moment. Hence, the density of
neutral sites results directly proportional (with a factor of 2)
to the density of electrically active (i.e., decorrelated) single
monopoles,

χmon = Dq
2ρn

T
, T < TC . (22)

Figure 2(b) shows that 2ρn/T (orange triangles) is an ex-
cellent approximation for χmon/(DqT ) (green open squares)
below the crystallization temperature. Note also that below
TC , the difference ρs − 2ρn can be interpreted as the number
of coupled, electrically inactive single monopoles.

B. Magnetic field B ‖ [111]

The metamagnetic transition that takes place in Ising py-
rochlores as a function of magnetic field B ‖ [111] has been
widely studied in the context of spin ices [10,14,38–41] and,
more recently, for AIAO Ising antiferromagnets [32,42–45].
For this orientation, the field couples with all four spins in a
tetrahedron. However, the “apical” spin (sitting on triangular
planes) has its full component along B, while the projection
of the three “basal” spins along this direction is 1/3.

Figure 3 condenses the results of our Monte Carlo
simulations for this field direction. The curves have been
measured for decreasing magnetic field B, as indicated by
the black arrows. Figure 3(a) shows the magnetization curves
for three different temperatures. For positive fields we ob-
serve just a crossover on decreasing B; it links saturation
at M/μ = 0.5 [corresponding to the fully polarized crys-
tal of single monopoles, schematized in the right inset to
Fig. 3(b)] with the crystal of double monopoles [central inset
to Fig. 3(b)], with M = 0. Correspondingly, the monopole
density [Fig. 3(b)] climbs smoothly from 1 to 2, and the
specific heat [Fig. 3(c)] shows two bumps defining a low val-
ley at low temperature. Within this field range the difference
between the energy cost for double and single monopoles is
of the order of the thermal energy.

Naively, this smooth crossover is to be expected since
(i) there is no spontaneous symmetry breaking and (ii) the
formation of a crystal of double charges out of one of single
ones involves no condensation energy in our nearest-neighbor
model. It may then be surprising the behavior observed as the
field is inverted. There is a sudden decrease in the magnetiza-
tion and the density of monopoles near μB/|J0| ≈ −5, while
the sharp peak in CV and the critical field where it occurs show
finite scaling effects compatible with a first-order transition
(not shown).

The electric susceptibility due to monopoles at low T pro-
vides us with some clues. We note that χmon is very nearly
zero at low temperature and positive fields [see curve at T =
1 K in Fig. 3(d)]. We can understand this fact easily if we
take into account that electric dipolar fluctuations would be
mainly related with the fluctuations of apical spins [colored
brown in the right inset to Fig. 3(b)]. This is (again) a mi-
nority spin linking two single monopoles and thus involves a

(a)

(b)

(c)

(d)

FIG. 3. B ‖ [111] magnetoelastic behavior for the AIAO antifer-
romagnet. (a) Magnetization, (b) density of monopoles, (c) specific
heat, and (d) electric susceptibility due to monopoles as a function
of magnetic field for three different temperatures below TC . The
curves were measured for decreasing field [black arrows in (a)], and
show a clear asymmetry around B = 0. The sharp features at B < 0
correspond to phase transitions (see dashed orange lines in Fig. 7).
(b) Three schematic views of the spin configurations that are stable
at low temperature in a two-dimensional projection. Spins can be
divided into apical [colored brown on the scheme on the right of
(b)], parallel to the applied field, and basal (colored blue on the same
configuration).

zero net electric dipole moment [31], and explains the almost
zero electric susceptibility in spite of the obvious magnetic
changes: the conversion of the single monopole crystal into
an AIAO domain of a double monopole crystal involves only
local, single spin-flip events. On the other hand, as the field
is reversed, this AIAO domain (with positive double charges
in up tetrahedron) is then eventually transformed into a single
monopole crystal with positive charges located in down tetra-
hedra. As pointed out in Ref. [45], this requires the flipping
of basal spins in each tetrahedron. It is a nonlocal event, since
even if the flip of three basal spins may be an energetically
favorable event in a given tetrahedron, there are three other
adjacent tetrahedra where only a single spin has flipped. Al-
though the first spin flip links two tetrahedra with mutually
canceling electric dipolar moments, other flips should lead to
an uncompensated PO2−

(i.e., to electric dipole fluctuations)
and a measurable susceptibility χmon, explaining the sharp
peak in Fig. 3(d) for B < 0. The phase diagram for this phase
transition, with its very particular hysteresis, will be discussed
in more depth in Sec. V.
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(a)

(b)

(c)

(d)

FIG. 4. Magnetoelastic behavior for the AIAO antiferromagnet
with parallel electric and magnetic fields along different directions.
(a) Magnetization, (b) density of monopoles, (c) electric susceptibil-
ity due to monopoles, and (d) staggered charge density for double
monopoles as a function of magnetic field for three different mag-
netic field directions at T/|J0| = 1, 67. The curves were measured
for decreasing field [black arrows in (a)]. Interestingly, χmon

ĥ
[panel

(c)] is bigger for field orientations where the density of neutral sites
[panel (b)] is bigger, and the staggered charge density [panel (d)] is
smaller.

C. Comparison between different field directions

As it happens with the ferromagnetic—spin-ice—version,
the antiferromagnetic AIAO phase also has an anisotropic
response to a magnetic field. Figure 4(a) shows the magne-
tization curves at T/J0 = 1.67 K for three different magnetic
field directions, measured again for decreasing fields. In red
we replot the curve for the [111] direction as a reference;
among the three, it is the only one that is not symmetric under
the inversion of B.

Figure 4(b) plots the total density of monopoles (solid
symbols, saturating in two for a crystal of double charges), and
that of neutral sites (open symbols). Since double monopoles
have no magnetic moment, the different orientations reflect
how these charges (stable at B = 0) are replaced by other
more energetically favorable ones under a magnetic field. As
we have seen, the [111] direction favors single monopoles
(ρT −−−−−→

|μB/J0|
1
1); on the contrary, B ‖ [100] stabilizes neutral

(two-in–two-out) sites, depleting the lattice of all magnetic
charges at high fields. The direction [110] is interesting:
while the magnetic field treats single monopoles and neutral
sites on equal footing, single monopoles are configurationally

preferred by the exchange energy term in Eq. (5). This ex-
plains why at high [110] fields the system is dominated by
single monopoles, but with a non-negligible fraction of neutral
sites due to the relatively high temperature [46]. An additional
thing to note is that, differently from [111], B ‖[110] does
not impose global charge order. We discuss below the mag-
netoelectric effects using this information on the phases and
magnetic charges evolution with magnetic field.

Figure 4(c) shows the magnetoelectric response χmonê ; in
each curve the fluctuations of PO2−

ê were calculated using
ê ‖ B, mimicking experimental configurations used previously
[27]. The sharp peaks observed in χmon are related to phase
transitions. The one for B ‖[111] at negative fields (red curve)
has been already mentioned, and will be further discussed
in Sec. V. The symmetric transitions for [100] (blue) are in
correspondence with the destruction of a zinc-blende charge
crystal due to the proliferation of neutral sites. The orange
curve corresponds to B ‖[110]. Here the double monopole
crystal gives place to a single monopole liquid. This happens
after a narrow field range dominated by single charges of
opposite sign held together by “order by disorder” [17,46]
[see the staggered density of monopoles in Fig. 4(d)]. The
relative peak height of the diverse field directions is perhaps
perplexing: in spite of the fact that the only charges carrying
an electric dipolar moment able to fluctuate are the single
monopoles, the highest fluctuations occur for [100], where the
lattice at each side of the transition point is mainly populated
by double charges or neutral sites. This relies again on the fact
that not only the density of single monopoles is important,
but also the electric dipolar correlations between neighbor-
ing single monopoles of opposite charge [31]. The alternate
charge order is enhanced by a [111] field, and by the presence
of double monopoles. On the other hand, it is weakened by
neutral sites [17]. Indeed, we can see in Fig. 4 that the value of
the staggered charge density for the different field directions
[Fig. 4(d)] decreases with the density of neutral sites at the
transition [Fig. 4(b)], while the electric response at the peak
increases with ρn [Fig. 4(c)]. Although with a smaller ρs, the
presence of a high density of neutral sites favors a bigger peak
in χmon for B ‖[100].

IV. FERROMAGNETIC TWO-IN–TWO-OUT
SPIN-ICE SYSTEMS

We now consider the ferromagnetic case, with J0 > 0 in
the magnetoelastic part of the MeSI Hamiltonian, Eq. (5). In
this case, and in order to do a better comparison between our
simulation and experimental results, we have also included
long-range dipolar interactions [Eq. (8)] using the Ewald
method [8], and exchangelike interactions from the second
and the two types of third-nearest neighbors:

H = Heff
0 + J2

∑
〈i j〉2

SiS j + J3

∑
〈i j〉3

SiS j + J ′
3

∑
〈i j〉3′

SiS j

+ HDip.M. + HZeeman. (23)

Here, Jk is the kth-neighbor exchange constant, and 〈· · · 〉k

indicates summing over k-type neighbors. We use parameters
for μ, D, and rnn for Dy2Ti2O7 taken from Ref. [9], and the
optimized value of the exchange constants from Ref. [10]. We
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(a)

(b)

(c)

FIG. 5. Magnetodielectric behavior for Dy2Ti2O7 spin ice from
Monte Carlo (MC) simulations (zero magnetic field), together with
experimental measurements adapted from Saito et al. [27]. (a) Single
monopole density from simulations, compared with estimations us-
ing χmon from MC simulations and experiments in the lower panels.
Electric susceptibility due to monopoles, χmon for (b) [100] and
(c) [111] electric field directions. Monte Carlo simulations (open
circles) are compared with experimental data (solid diamonds), after
background subtraction. The shape of the experimental curves coin-
cides for directions, as do the simulated ones, giving us confidence on
the subtraction procedure. The value of the displacement δreq in the
simulations for each direction, specified in the figures, was chosen so
that the curves coincide in the high-T regime.

again assume Jml < J0; we will check the consistency of this
assumption after comparing with the experimental results.

A. Zero magnetic field

The black curve with open symbols in Fig. 5(a) shows the
density of single monopoles for Dy2Ti2O7 as calculated from
numerical simulations. The number of monopoles is exponen-
tially low at low temperatures, while the neutral background
contributes to decorrelate them. In contrast with what we stud-
ied in Sec. III for the antiferromagnet (Fig. 2), we now expect
correlation effects to increase with T . Figures 5(b) and 5(c)
show the results of the simulated susceptibility (open circles)
as a function of temperature for B = 0 and for two different di-
rections of the electric field ê; the method we used to calibrate
the vertical axes will be made clear in the next paragraph,
and will be further discussed in the Sec. V. The maximum
in the electric response due to monopoles is near 2 K for both
directions (in the absence of a symmetry-breaking field, χmon

ê
is isotropic), at higher temperatures than in the specific heat

[5,15]. As we did for the AIAO case, we can use this electric
response at zero field to provide an estimate for the number of
monopoles in the sample (black curve with solid symbols in
Fig. 5). The estimate is indistinguishable from the simulated
value at low temperature (low ρs), and remains within 10%
of the measured value within the inspected temperature range.
We will now benefit from the fact that spin ices are among the
best studied frustrated materials and compare our simulations
with previous experimental results in order to obtain quantita-
tive information on the system.

Saito et al. [27] measured the real and imaginary parts
of the magnetodielectric constant for Dy2Ti2O7 by subtracting
the contribution from the samples’ geometrical changes to
the capacitance. Ignoring dynamical effects one would have
naively expected the behavior of our simulated curves in
Figs. 5(b) and 5(c) to be similar to the real part of the electric
susceptibility (Figs. 4 and 5 of Ref. [27]). On careful inspec-
tion, we see that although there are some common features,
the similarity of the overall behavior is not so apparent. The
reason behind this contrast is of course that in a real sample
there are other temperature-dependent contributions to the
dielectric response aside from that coming from distortions
associated to monopoles. As we will argue, they can be in
principle subtracted by using data measured at high magnetic
fields.

At high B (such that μ · B 
 T ) all magnetic moments
should be saturated. No new electric dipolar moments related
to monopoles are then created, and none fluctuate; all re-
maining contributions constitute then a background that may
still depend on T , but which does not originate on magnetic
monopoles, and can thus be subtracted from the curves at
B = 0. In our case, we used as background the curves from
Ref. [27] measured as a function of temperature at the highest
fields. In the subtraction we also added a constant to this back-
ground, to ensure that χmon → 0 for T → 0. This constant
is very small (on the scale of the overall variation of χmon

with temperature) for B ‖[100], and bigger than this scale [of
the order of 0.024 in Fig. 5(c)] for B ‖[111] (see also Figs. 4
and 5 in Ref. [27]). The results are displayed in Figs. 5(b)
and 5(c) on top of the numerical simulations (solid circles).
We can see that the resulting experimental curves are quite
similar, peaking approximately at the same temperature. This
is remarkable taking into account that this maximum was
absent in the untreated data, and that both curves had different
shapes. While there are some noticeable differences between
the experiments and our simulations, the overall agreement
is good, particularly considering the many approximations in
the model, the subtraction method used with the experimental
curves (that have already undergone a previous background
subtraction), and the fact that these curves correspond to dy-
namic rather than static data.

For each of the two Monte Carlo curves in Figs. 5(b)
and 5(c) we determined a value for Dq (i.e., a value for
electric dipole moment pq) so that they approximately co-
incide with the experimental ones from Saito et al. at high
temperature. Assuming that the displaced charge is twice the
electron charge [25], we obtain as estimations for the O2− dis-
placement δreq = 0.21 pm for [111] and δreq = 0.36 pm for
[100]. The difference in the values obtained for the different
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directions can be used as a way to estimate the magnitude of
the error in its inferred value.

We understand ours is the first direct measurement (in
the sense that it is coming from an electric property) of the
value of the dielectric dipole moment related to monopoles.
These values are between 1/3 and 1/2 of that for the O2−
displacement evaluated for Tb2Ti2O7, a compound which is
known for its big magnetoelastic coupling [47,48]. There
are at least two previous, more indirect estimates for pq

in Dy2Ti2O7. The first one [21] corresponds to an O2−-ion
displacement δreq ≈ 0.1 pm. It is based on the independent
estimate for α̃ for Dy2Ti2O7 from uniaxial pressure studies
[49], where they inferred the change in the exchange con-
stants J0 as a function of deformation, and also on the value
of the elastic constants for Dy2Ti2O7 from Raman, infrared
spectroscopy, and modelization [50,51]. The second one, by
Sarkar and Mukhopadhyay [52], is grounded on theoretical
work on spin currents on noncollinear magnets [53]. Taking
as inputs estimates for the hybridization energy between the
Dy site and the O one involved in superexchange, they obtain
pq ≈ 10−30 C m. This value is approximately ten times what
we deduce from magnetoelectrical experiments, and would
imply an electric response linked to monopoles [proportional
to p2

q, Eq. (17)] two orders of magnitude bigger than the
experimental curves in Figs. 5(b) and 5(c).

As we did for the antiferromagnet, we can now use the
experimental and the theoretical curves to estimate the density
of monopoles, assuming each tetrahedron contributes inde-
pendently. This is shown in Fig. 5(a). The estimation is very
good at low temperatures, with an error near 10% in the
high-temperature limit.

There are polarization measurements under magnetic fields
in Ho2Ti2O7 [28], taken at temperatures above 2 K. However,
the data do not allow for a reliable comparison with our
simulations, in particular since the temperature range explored
excludes the maximum in the susceptibility.

B. Magnetic field parallel to [111]

The presence of a magnetic field adds a layer of difficulty
for a model to reproduce the experimental results. We will
exemplify this for the case of B ‖ [111]. Figure 6(a) shows the
magnetization for Dy2Ti2O7, simulated using the same model
as in the previous section. Within the temperature regime
T � J0 ≈ 1 K and increasing B there is a smooth crossover
into the “kagome ice” plateau, where the apical spins are fully
polarized by the field. It is followed by a sharper evolution
towards the saturated state near 0.9 T, marking the flipping
of the basal spins (which are now the minority spins in each
tetrahedron) in the kagome planes. This crossover turns into
a first-order phase transition at T below ≈0.4 K both for
Dy2Ti2O7 [39] and Ho2Ti2O7 [54], a feature that is repro-
duced by the extended dipolar model we use [9,10,55]. The
curves for the density of single monopoles [Fig. 6(b)] have
a decreasing behavior at low fields, followed by a sharper
increasing one near B = 0.9 T: there, the symmetry-breaking
field destroys the monopole vacuum, and stabilizes a crystal
of single monopoles.

Our main subject of study here, the magnetodielectric re-
sponse [Fig. 6(a)], features a broad peak centered at B = 0,

(a)

(b)

(c)

(d)

FIG. 6. Simulated magnetodielectric behavior due to monopoles
for Dy2Ti2O7 spin ice for B ‖ [111]. (a) Magnetization vs field at
different temperatures above the critical point, with a sharp crossover
at low T near 0.9 T. (b) The change into a crystal of single monopoles
is shown at low temperatures by a sharp increase in the density
of single monopoles, ρs. At low fields ρs initially decreases with
increasing field; this has a marked effect in the magnetodielectric
response. (c) Electric susceptibility due to monopoles as a function
of field. It is nearly zero at low T , with a pronounced maximum near
B = 0 at higher T . There is no trace in χmon of the sharp crossover
near 0.9 T. (d) Electric susceptibility due to monopoles on up tetra-
hedron only (solid circles), and the negative of the covariance of the
polarization due to monopoles in up and down tetrahedra (lines).
Both quantities are almost identical (and χ down

111 = χ
up
111) across the

peak, explaining the absence of a peak in χmon at the metamagnetic
transition.

quite noticeable at and above 1 K. It occurs in correspondence
with the shallow maximum observed there in the density of
single monopoles. Against our expectations, there is no trace
of a peak nor any feature near 0.9 T in the electric response
χmon

111 , in spite of the change in ground state from a vacuum to
a crystal of single charges; this absent feature remains at even
lower temperatures (not shown), where the change happens
through a phase transition.

Once again, the counterintuitive fact of a reduction or
total absence of an electric response when the density of
single monopoles increases can be understood in terms of the
monopole correlations we have discussed before. The progres-
sion from the kagome plane towards saturation involves the
flipping of minority spins (the basal ones, with fully polarized
apical spins) that leads to pairs of single monopoles with
opposing dipolar electric moments. Of course, other magnetic
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fluctuations aside from these do occur at finite T (responsible
for a finite χmon near 0.9 K in Fig. 6), but they do not gener-
ate any feature identifiable with the magnetic crystallization.
This remarkable fact contrasts with the experimental measure-
ments by Saito et al. for this field direction [27], evidencing
a clear magnetodielectric peak near around 1 T at all but the
lowest temperatures (0.26 K). Again we will stress that our
model is only sensitive to dielectric changes in relation with
magnetic monopoles, while Saito’s samples should evidence
those coming from any change concerning electric degrees of
freedom within the crystal. It is thus reasonable to expect the
full electric susceptibility to reflect the sharp changes taking
place in a crystal with a changing symmetry-breaking field
applied and going across a sharp crossover or phase change
[56].

Regarding the broad maximum we observe in Fig. 6(c) at
low fields, this also seems to be absent from Saito et al.’s
measurements (Fig. 6 in Ref. [27]); indeed, the real part of
the dielectric constant as a function of B at and below 0.55 K
has a depression at low fields. This is surprising in light of
our previous success with the measurements at B = 0 (Fig. 5):
it could be expected that the peak in the density of single
monopoles centered at B = 0 (with a very small degree of
correlation) should make a contribution. A closer look at
these curves reveals that at T = 1 K the depression in the
susceptibility at low fields has now leveled up with the rest
of the curve, and there is even the hint of a peak at T = 2 K.
We take this progression as the effect of the contribution of
the single monopoles created on increasing temperature to the
electric susceptibility at low fields. This seems to be qualita-
tively described by Fig. 6(c). Furthermore, such a peak at low
fields (although much broader) is quite noticeable in the po-
larization measurements performed in Ho2Ti2O7 at T = 2 K.
Finally, although the resolution in magnetic field is low and
the temperature is relatively high, there does not seem to be
any feature related to metamagnetism in these measurements
(expected for this compound to be near 1.5 T). This coincides
with the results of our simulations.

V. DISCUSSION

A. Magnetoelectric measurements
and the magnetic charge density

Within the Results section, we have made use of mag-
netoelectric results in order to gain understanding on other
quantities and, conversely, benefited from other results to en-
hance our understanding of magnetoelectric phenomena. The
coupling between magnetic and electric degrees of freedom
enables this exchange, and the MeSI model, in turn, provides
a quantitative connection between them. This consideration
assumes particular significance in scenarios where electric or
magnetic measurements are easier to implement, or where the
pursuit of an additional, parallel avenue to explore magnetic
or electric phenomena proves advantageous. Although not
explored here, it is worth mentioning that this coupling could
also prove a useful tool to control properties in a crossed way,
allowing, for example, the manipulation of electric properties
of a material by means of a magnetic field as in multiferroic
materials.

Since the proposal of magnetic monopoles in spin ice [14],
there have been several proposals for indirect ways to mea-
sure the density of magnetic monopoles in spin ice and other
related materials. The methods involve measuring the specific
heat, neutron scattering, magnetic noise, the response to an
oscillating field, or (more recently) electronic magnetotrans-
port (see Ref. [18] and references therein). Regarding this
last suggestion, the electron scattering involves a magnetic
channel (through the monopole’s magnetic charge coupling
with the electron spin) and an electric channel (through the
monopole’s electric dipolar moment and the electron charge).
The studies in the previous sections indicate the possibility
of using the electric dipolar moment carried by monopoles to
measure the monopole density directly in electric polarization
measurements [28,29], or through its fluctuations with mag-
netocapacitance experiments [26,27].

Our results suggest that the method is as its best (see
Figs. 2 and 5) for zero magnetic field and low tempera-
tures (T < J0) for spin ices. The contrast between simulations
and experimental results seems to support the technique. Re-
garding AIAO antiferromagnets, the same method provides
different information at two temperature regimes B = 0. For
T above the ordering temperature the electric susceptibility
due to monopoles, χmon, provides a reliable way to evalu-
ate the density of single monopoles, ρs. Below TC , once the
antiferromagnetic order is established, it conducts to the den-
sity of neutral sites, ρn, connected with the density of single
monopoles with uncorrelated electric moments.

B. The phase diagram for the AIAO phase for B ‖ [111]

As mentioned before, there are previous reports
[18,32,44,45] on the peculiar hysteresis for the AIAO
antiferromagnet in a B ‖[111] magnetic field that we have
measured here by means of the electric susceptibility χmon

(Sec. III). However, to our knowledge there is no study of
the full B-T phase diagram. We will undertake this task now
using our magnetic model, which is perhaps the simplest
possible in the pyrochlore lattice, with nearest-neighbor
interactions plus a Zeeman term.

We start by identifying the magnetic states. With the mag-
netic field explicitly breaking the symmetry, we will talk of
different phases if they are separated by singularities in the
thermodynamic quantities. In this respect, finite-size scaling
reveals that the observed discontinuities in Fig. 3 are related
to a true first-order phase transition. Given the water-vapor
transition found in spin ices for the same field direction [39],
it is tempting to associate the abrupt decrease of the total
density of monopoles at low temperature [Fig. 3(b)] with
a phase transition between the crystal of double monopoles
and the zinc-blende crystal of single monopoles. However,
this identification is challenged by the fact that the same
figure evidences no phase transition at positive fields. Only
if a domain type labeled by the sign of the average magnetic
charge in up tetrahedra (let us say AIAO, with charge +2Q)
at low fields is different from the one at higher field modulus
(correspondingly, −Q in up tetrahedra) we see evidence of a
phase transition. This points to the first fact: there are only two
different magnetic phases. As with the scalar magnetization
for an Ising ferromagnet, these phases are identifiable by the
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FIG. 7. Phase diagram for a simple AIAO antiferromagnet in a
[111] field. The AIAO and AOAI phases at positive and negative
fields are separated at nonzero temperatures by a coexistence line
at μB = 0 (blue horizontal line) terminating in a critical end point
indicated by a blue circle. The sign (and not the magnitude) of the
average magnetic charge in each diamond sublattice is the feature
that can be used to label each phase. Since a magnetic field selects
a phase through their excitations, there is coexistence between these
two phases at T = 0 even at nonzero magnetic field. The features we
observed for negative fields in Fig. 3 are related to the limit of phase
metastability, indicated here by a dashed orange line. Inset: Phase
diagram for an Ising ferromagnet. The thick blue line for B = 0
indicates the region of coexistence (a first-order transition line) be-
tween the two polarized phases. Their distinction disappears above
the Curie temperature, indicated by a blue circle. This phase diagram
is similar—but not identical—to that of the AIAO antiferromagnet.

sign of the average charge in up tetrahedra, irrespective of
its magnitude (the crystals with Q and 2Q in up tetrahedra
correspond to the same phase, explaining the lack of a phase
transition in Fig. 4 for positive fields).

The inset of Fig. 7 shows the schematic phase diagram
for a collinear Ising ferromagnet; a horizontal first-order tran-
sition line ending on a terminal critical point separates the
two phases, labeled by the sign of M. Only if the sample
is polarized such that M < 0 (M > 0) at B = 0 there will
be a nonanalytic behavior at positive (negative) fields due to
metastability. We now propose that a similar phase diagram is
valid for the AIAO antiferromagnet (blue lines in Fig. 7, with
stable configurations drawn schematically above and below
the horizontal transition line).

We should first address the question of the stability of the
different domains in an applied field. Unlike the Ising ferro-
magnet, both the AIAO and AOAI domains (now phases) have
zero magnetization. What can change their relative stability in
an applied magnetic field? It is important to remember that,
differently from Nd2Ir2O7 and Ho2Ir2O7 [18,43,57], there is
no second magnetic lattice in this case. Furthermore, there

is no spin canting in our model that may tilt the energetic
balance towards one or the other phase [32,44]. The answer
to the previous question then rules out the differences be-
tween ground-state configurations as the source of stability,
and should then involve their respective excitations. Starting
from the AIAO phase (2Q > 0 in up tetrahedra), a field B > 0
would favor leaving the three polarized basal spins as they
are, and flipping the apical spin to make it fully parallel
to the field—and thus have two monopoles with maximum
magnetic moment along [111] and a relatively big Zeeman
energy reward [see the central and top left tetrahedron in
Fig. 7(b)]. On the other hand, the AOAI phase in the same
positive field should favor low energy excitations obtained
after flipping a basal spin (with the apical fully polarized,
but the other basals having a component against the field).
This alternative excitations implies also creating two single
monopoles, but has a lower Zeeman energy than the former,
making the excited AOAI phase at a given B > 0 less favored
that the corresponding excited AIAO one.

This way to stability is reminiscent of the phenomenon
of order by disorder [58], in that the low energy excita-
tions determine the smaller free energy among the available
ground states. A consequence of this is that the ground state
is degenerate at T = 0 even for nonzero fields, something
we acknowledge with the vertical blue segment ending at
±6J0 in Fig. 7(b). The figure also shows an orange dashed
curve, which marks the limit of metastability as measured in
our simulations for a domain with positive (negative) charge
in up tetrahedra with a negative (positive) field. It was con-
structed using the phase transition points in the CV vs B curves
[Fig. 3(c)] at each temperature and L = 4. The curve has a a
Gaussian shape; the critical end point peaks at B = 0, near
T/|J0| ≈ 4.18. On decreasing T/|J0| it first appears to inter-
sect the axis T = 0 at μB/|J0| = ±6. However, at very low
T it flattens, pushing the spinodal curve towards much higher
fields. This is due to the lack of single monopole excitations
at very low temperatures: without single monopoles the single
spin-flip dynamics raises the energy barrier to nucleate the
stable domain to μB/|J0| = ±18.

The physics studied in this section may have implications
in relation to previous studies. As we said, this simple mech-
anism for stabilizing antiferromagnetic domains would be
operative even in the absence of a second magnetic lattice in
the pyrochlore lattice, and without spin canting. It may thus be
at work in experiments of antiferromagnetic domain handling
where other mechanisms involving other degrees of freedom
or energy terms have been contemplated [18,32,43,44,57].
Using the language of Ref. [18] we can summarize the effect,
saying that the single monopolar excitations of the AIAO or
AOAI phases exert a pressure on its own antiferromagnetic
background.

C. Estimation of the electric dipole moment pq,
distortion δreq, and Jml in Dy2Ti2O7

In spite of its simplicity and the number of approxi-
mations, the quantitative comparison of our simple MeSI
model with experimental results for spin-ice physics brought
a number of results worth discussing. The first one regards
the value of the dipolar electric moment for Dy2Ti2O7,
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pq = (1 ± 0.2) × 10−31 C m and the central O2−-ion dis-
placement δreq = 0.28 ± 0.07 pm. Since the prediction of
an electric dipole moment accompanying single magnetic
monopoles, there have been a number of experimental results
connecting different effects with the distortion δreq [21,23–
25]. To our knowledge, ours is the first direct estimation of its
value.

We stress now that the real part of the dielectric constant as
a function of temperature measured at zero field in Ref. [27]
has different shapes for ê ‖[100] and [111]. The same is true
for the two high field backgrounds at B ≈ 6 T. In spite of
this, it is quite remarkable that after subtraction the shape of
the experimental electric susceptibility looks essentially the
same [solid circles in Figs. 5(b) and 5(c)]. This makes us
confident on the subtraction procedure. On the other hand,
and in spite of this coincidence, there is an overall scale factor
between both experimental curves which is very near 3. This
unexpected factor is the main source of error in the estimation
of the magnetoelectric parameters for Dy2Ti2O7.

One of the assumptions along our work was that the effec-
tive magnetoelastic energy in the form of the four-spin term
in Eq. (5) could be neglected compared with the other con-
tributions. We can show the consistency of this for Dy2Ti2O7

in different, independent ways. There are previous studies of
this material where the evolution of the exchange constants
upon uniaxial pressure was measured [49]. This, together with
the geometrical changes taking place in the unit cell allow us
to estimate α̃ ≈ 40 K for Dy2Ti2O7. Using expression (11)
together with the average value we obtained from Figs. 5(b)
and 5(c) of δreq ≈ 0.3 pm, we obtain Jml ≈ 0.03 K 
 J0.
Otherwise, we can use the interatomic force constants in-
ferred from infrared measurements as a direct estimation
for the elastic constant, obtaining K ≈ 3 × 105 K. With this
value and our estimate for δreq we obtain Jml ≈ 0.05 K.
Another consistency check regards the importance of the elec-
tric dipolar interactions between monopoles. Using the two
values obtained for δreq we estimate electric dipolar ener-
gies for neighboring monopoles ranging between 0.03 and
0.1 K. Although small, the second estimation is comparable
to the third-nearest-neighbor magnetic dipolar interactions in
Dy2Ti2O7, about 0.18 K.

In order to keep things simpler we have assumed a crystal
with no imperfections. However, a static distortion caused
by defects (for instance, O deficiency [7]) can affect what
we want to simulate if it alters the probability of occur-
rence of spin configurations with different associated electric
dipoles (for example, if it modifies the exchange constants).
Impurities replacing ions can change the magnetic energy
balance and, more drastically, the local symmetry, leading
to electric dipoles. Since the experiments we compare with
here are performed on single crystals, we expect defects
associated to grain boundaries not to be dominant in this
case.

D. Correlations and in-field measurements for spin ice

At nonzero field, the comparison between our results
for the spin ice Dy2Ti2O7 and the experiments seem to
show a considerably poorer agreement than for B = 0. The
existence of a varying magnetization M(T, Be) due to an

applied magnetic field seems to have a big influence on
the dielectric properties, beyond the direct contribution re-
lated to magnetic monopoles. This is made apparent by the
fact that the MeSI model predicts no peak in χmon for the
metamagnetic transition in spin ices for B ‖[111] (Fig. 6),
while measurements of the ac dielectric constant evidence
a big peak near the transition for Dy2Ti2O7 [27]. While
it is likely that this lack of correspondence will be also
observed in other compounds, there are measurements of
the magnetocapacitance at 1.8 K [26] and electric polariza-
tion at 2 K [28] in Ho2Ti2O7 that seem to show no peak
around B = 1.5 T.

We will now stress an important aspect in association with
these results. If we separate the contributions to the electric
dipolar moment from up and down diamond sublattices [see
Eq. (13)] we can write the electrical susceptibility due to
monopoles as

χmon
ê = χ

up
ê + χdown

ê + 2 Cov(up,down)
ê , (24)

with

Cov(up,down)
ê ≡ Dq

3

T Nq

( 〈
Pup

ê Pdown
ê

〉 − 〈
Pup

ê

〉〈
Pdown

ê

〉 )
. (25)

It is to be noted that the electric susceptibility associated to
fluctuations of dipoles in any of the sublattices is huge along
the crossover from the kagomeé ice to the crystal of single
monopoles [see the relative scales for the vertical axis in
Figs. 6(c) and 6(d)]. The very small susceptibility at ≈0.9 T in
Fig. 6(c) is what remains of the subtraction between two big
terms, the second of which is the covariance from Eq. (25);
it is surprising that any feature related with the crossover is
removed from the electric response. However, any influence
on this correlation that is not taken into account by our simple
model would imply a sizable contribution to χmon. Perhaps
such an effect is behind the peak observed in the experiments
by Saito et al. [27] in association with metamagnetism for
B ‖[111].

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the magnetoelectric response
of Ising pyrochlores, both the ordered antiferromagnetic “all-
in–all-out” and the frustrated ferromagnetic “spin-ice” case.
We worked in the limit of weak coupling between the mag-
netic and elastic degrees of freedom. For this, we have used
numerical simulations based on the magnetoelastic spin ice
(MeSI) model, which considers the interplay between oxy-
gen distortions and superexchange magnetic interactions in
pyrochlores. We showed that the model can be simplified
into a purely magnetic effective model. In this way, one
can overcome the need to simultaneously simulate magnetic
and elastic degrees of freedom, and thus gain a significant
numerical benefit. Furthermore, the treatment supplies a uni-
fied framework that encompasses previous works [25]. This
streamlining opens up the potential for quantitative compar-
isons between simulations and experiments, allowing for a
direct estimation of quantities such as the monopoles electric
dipole moment pq, and the local distortion δeq associated to it
for the spin-ice materials. The values obtained for Dy2Ti2O7

using the experimental data from Saito et al. [27] are
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pq = (1 ± 0.2) × 10−31 C m and the central O2−-ion dis-
placement δreq = 0.28 ± 0.07 pm. This allows in turn for an
estimation of new magnetoelastic and electric dipolar contri-
butions that may affect in unsuspected ways the physics of this
material. We found that both the four-spin term in Eq. (5) and
the dipolar interactions are small, but that the contributions
from the latter are of the same order of magnitude as the
magnetic dipolar interactions between third-nearest neighbors
(and thus, not negligible).

Due to the electric dipole attached to monopoles, electrical
properties can be used to investigate magnetic properties, or
the establishment of magnetic order. As an example of the
former, we have shown that magnetoelectricity provides a
direct method to estimate the density of monopolar excita-
tions in Ising pyrochlores. Furthermore, the magnetoelectric
response showed a high sensitivity to monopole correla-
tions; the reduced susceptibility due to this factor [31] led
many times to somewhat counterintuitive results. Regarding
the latter possibility, we discussed the phase diagram of the

antiferromagnetic pyrochlore under applied magnetic field
along the [111] direction, and found a somewhat unusual
situation where order at nonzero temperatures is stabilized
not by the in-field energy related to the different ground-state
configurations, but by their relative accessibility to low energy
fluctuations.

At a broader level, our study highlights the possibilities
opened up by the interplay between electrical and magnetic
degrees of freedom, not only in terms of allowing for diverse
probes into physical phenomena but also providing avenues to
cross-control electric and magnetic phenomena.

ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with T. S.
Grigera. This work was supported by Consejo Nacional de In-
vestigaciones Científicas y Técnicas (CONICET) and Agencia
Nacional de Promoción Científica y Tecnológica (ANPCyT)
Argentina, through PICT 2017-2347.

[1] H. T. Diep, Frustrated Spin Systems (World Scientific, Singa-
pore, 2013).

[2] C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated
Magnetism: Materials, Experiments, Theory (Springer Science
& Business Media, 2011), Vol. 164.

[3] A. P. Ramirez, Strongly geometrically frustrated magnets,
Annu. Rev. Mater. Sci. 24, 453 (1994).

[4] R. Moessner and A. P. Ramirez, Geometrical frustration, Phys.
Today 59(2), 24 (2006).

[5] S. T. Bramwell and M. J. P. Gingras, Spin ice state in frustrated
magnetic pyrochlore materials, Science 294, 1495 (2001).

[6] M. Udagawa and L. Jaubert, Spin Ice (Springer, Berlin, 2021).
[7] D. Prabhakaran and A. Boothroyd, Crystal growth of spin-ice

pyrochlores by the floating-zone method, J. Cryst. Growth 318,
1053 (2011).

[8] R. G. Melko and M. J. Gingras, Monte Carlo studies of the
dipolar spin ice model, J. Phys.: Condens. Matter 16, R1277
(2004).

[9] T. Yavors’kii, T. Fennell, M. J. P. Gingras, and S. T.
Bramwell, Dy2Ti2O7 spin ice: A test case for emergent clus-
ters in a frustrated magnet, Phys. Rev. Lett. 101, 037204
(2008).

[10] R. A. Borzi, F. A. Gómez Albarracín, H. D. Rosales, G. L.
Rossini, A. Steppke, D. Prabhakaran, A. P. Mackenzie, D. C.
Cabra, and S. A. Grigera, Intermediate magnetization state and
competing orders in Dy2Ti2O7 and Ho2Ti2O7, Nat. Commun.
7, 12592 (2016).

[11] P. Henelius, T. Lin, M. Enjalran, Z. Hao, J. G. Rau, J. Altosaar,
F. Flicker, T. Yavors’kii, and M. J. P. Gingras, Refrustration
and competing orders in the prototypical Dy2Ti2O7 spin ice
material, Phys. Rev. B 93, 024402 (2016).

[12] A. M. Samarakoon, K. Barros, Y. W. Li, M. Eisenbach, Q.
Zhang, F. Ye, V. Sharma, Z. L. Dun, H. Zhou, S. A. Grigera
et al., Machine-learning-assisted insight into spin ice Dy2Ti2O7,
Nat. Commun. 11, 892 (2020).

[13] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B.
Shastry, Zero-point entropy in ‘spin ice’, Nature (London) 399,
333 (1999).

[14] C. Castelnovo, R. Moessner, and S. L. Sondhi, Magnetic
monopoles in spin ice, Nature (London) 451, 42 (2008).

[15] D. J. P. Morris, D. Tennant, S. A. Grigera, B. Klemke, C.
Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. Rule,
J.-U. Hoffmann et al., Dirac strings and magnetic monopoles in
the spin ice Dy2Ti2O7, Science 326, 411 (2009).

[16] P. C. Guruciaga, S. A. Grigera, and R. A. Borzi, Monopole or-
dered phases in dipolar and nearest-neighbors Ising pyrochlore:
From spin ice to the all-in–all-out antiferromagnet, Phys. Rev.
B 90, 184423 (2014).

[17] P. C. Guruciaga, M. Tarzia, M. V. Ferreyra, L. F. Cugliandolo,
S. A. Grigera, and R. A. Borzi, Field-tuned order by disorder
in frustrated Ising magnets with antiferromagnetic interactions,
Phys. Rev. Lett. 117, 167203 (2016).

[18] M. Pearce, K. Götze, A. Szabó, T. Sikkenk, M. Lees, A.
Boothroyd, D. Prabhakaran, C. Castelnovo, and P. Goddard,
Magnetic monopole density and antiferromagnetic domain con-
trol in spin-ice iridates, Nat. Commun. 13, 444 (2022).

[19] D. Slobinsky, L. Pili, and R. A. Borzi, Polarized monopole
liquid: A Coulomb phase in a fluid of magnetic charges, Phys.
Rev. B 100, 020405(R) (2019).

[20] L. D. C. Jaubert, Monopole holes in a partially ordered spin
liquid, SPIN 05, 1540005 (2015).

[21] D. Slobinsky, L. Pili, G. Baglietto, S. A. Grigera, and R. A.
Borzi, Monopole matter from magnetoelastic coupling in the
Ising pyrochlore, Commun. Phys. 4, 56 (2021).

[22] D. I. Khomskii, Electric dipoles on magnetic monopoles in spin
ice, Nat. Commun. 3, 904 (2012).

[23] C. P. Grams, M. Valldor, M. Garst, and J. Hemberger, Critical
speeding-up in the magnetoelectric response of spin-ice near its
monopole liquid–gas transition, Nat. Commun. 5, 4853 (2014).

[24] F. Jin, C. Liu, Y. Chang, A. Zhang, Y. Wang, W. Liu, X. Wang,
Y. Sun, G. Chen, X. Sun et al., Experimental identification of
electric dipoles induced by magnetic monopoles in Tb2Ti2O7,
Phys. Rev. Lett. 124, 087601 (2020).

[25] L. D. C. Jaubert and R. Moessner, Multiferroicity in spin ice:
Towards magnetic crystallography of Tb2Ti2O7 in a field, Phys.
Rev. B 91, 214422 (2015).

235152-13

https://doi.org/10.1146/annurev.ms.24.080194.002321
https://doi.org/10.1063/1.2186278
https://doi.org/10.1126/science.1064761
https://doi.org/10.1016/j.jcrysgro.2010.11.049
https://doi.org/10.1088/0953-8984/16/43/R02
https://doi.org/10.1103/PhysRevLett.101.037204
https://doi.org/10.1038/ncomms12592
https://doi.org/10.1103/PhysRevB.93.024402
https://doi.org/10.1038/s41467-020-14660-y
https://doi.org/10.1038/20619
https://doi.org/10.1038/nature06433
https://doi.org/10.1126/science.1178868
https://doi.org/10.1103/PhysRevB.90.184423
https://doi.org/10.1103/PhysRevLett.117.167203
https://doi.org/10.1038/s41467-022-27964-y
https://doi.org/10.1103/PhysRevB.100.020405
https://doi.org/10.1142/S2010324715400056
https://doi.org/10.1038/s42005-021-00552-0
https://doi.org/10.1038/ncomms1904
https://doi.org/10.1038/ncomms5853
https://doi.org/10.1103/PhysRevLett.124.087601
https://doi.org/10.1103/PhysRevB.91.214422


VIGNAU COSTA, GRIGERA, AND BORZI PHYSICAL REVIEW B 108, 235152 (2023)

[26] T. Katsufuji and H. Takagi, Magnetocapacitance and spin
fluctuations in the geometrically frustrated magnets R2Ti2O7

(R = rare earth), Phys. Rev. B 69, 064422 (2004).
[27] M. Saito, R. Higashinaka, and Y. Maeno, Magnetodielectric

response of the spin ice Dy2Ti2O7, Phys. Rev. B 72, 144422
(2005).

[28] D. Liu, L. Lin, M. Liu, Z. Yan, S. Dong, and J.-M. Liu, Multifer-
roicity in spin ice Ho2Ti2O7: An investigation on single crystals,
J. Appl. Phys. 113, 17D901 (2013).

[29] L. Lin, Y. Xie, J. Wen, S. Dong, Z. Yan, and J. Liu, Experimental
observation of magnetoelectricity in spin ice Dy2Ti2O7, New J.
Phys. 17, 123018 (2015).

[30] P. K. Yadav and C. Upadhyay, Magnetodielectric relaxation in
Ho2Ti2O7 and Dy2Ti2O7 spin ice, J. Supercond. Novel Magn.
32, 2267 (2019).

[31] D. Khomskii, Electric activity at magnetic moment fragmenta-
tion in spin ice, Nat. Commun. 12, 3047 (2021).

[32] L. Opherden, J. Hornung, T. Herrmannsdörfer, J. Xu,
A. T. M. N. Islam, B. Lake, and J. Wosnitza, Evolution of anti-
ferromagnetic domains in the all-in–all-out ordered pyrochlore
Nd2Zr2O7, Phys. Rev. B 95, 184418 (2017).

[33] S. Onoda and Y. Tanaka, Quantum fluctuations in the effective
pseudospin-1/2 model for magnetic pyrochlore oxides, Phys.
Rev. B 83, 094411 (2011).

[34] B. Tomasello, C. Castelnovo, R. Moessner, and J. Quintanilla,
Correlated quantum tunnelling of monopoles in spin ice, Phys.
Rev. Lett. 123, 067204 (2019).

[35] A. P. Sazonov, A. Gukasov, H. B. Cao, P. Bonville, E.
Ressouche, C. Decorse, and I. Mirebeau, Magnetic structure
in the spin liquid Tb2Ti2O7 induced by a [111] magnetic field:
Search for a magnetization plateau, Phys. Rev. B 88, 184428
(2013).

[36] D. Slobinsky, G. Baglietto, and R. A. Borzi, Charge and spin
correlations in the monopole liquid, Phys. Rev. B 97, 174422
(2018).

[37] T. Vignau and R. A. Borzi, Effect of dipolar interactions in
pyrochlore Ising systems (unpublished).

[38] T. Fennell, O. Petrenko, G. Balakrishnan, S. Bramwell, J.
Champion, B. Fåk, M. Harris, and D. M. Paul, Field-induced
partial order in the spin ice dysprosium titanate, Appl. Phys. A:
Mater. Sci. Process. 74, s889 (2002).

[39] T. Sakakibara, T. Tayama, Z. Hiroi, K. Matsuhira, and S. Takagi,
Observation of a liquid-gas-type transition in the pyrochlore
spin ice compound Dy2Ti2O7 in a magnetic field, Phys. Rev.
Lett. 90, 207205 (2003).

[40] S. V. Isakov, K. S. Raman, R. Moessner, and S. L. Sondhi,
Magnetization curve of spin ice in a [111] magnetic field, Phys.
Rev. B 70, 104418 (2004).

[41] H. R. Molavian and M. J. Gingras, Proposal for a [111] mag-
netization plateau in the spin liquid state of Tb2Ti2O7, J. Phys.:
Condens. Matter 21, 172201 (2009).

[42] E. Lhotel, S. Petit, S. Guitteny, O. Florea, M. Ciomaga Hatnean,
C. Colin, E. Ressouche, M. R. Lees, and G. Balakrishnan,
Fluctuations and all-in–all-out ordering in dipole-octupole
Nd2Zr2O7, Phys. Rev. Lett. 115, 197202 (2015).

[43] Z. Tian, Y. Kohama, T. Tomita, H. Ishizuka, T. H. Hsieh, J. J.
Ishikawa, K. Kindo, L. Balents, and S. Nakatsuji, Field-induced
quantum metal–insulator transition in the pyrochlore iridate
Nd2Ir2O7, Nat. Phys. 12, 134 (2016).

[44] L. Opherden, T. Bilitewski, J. Hornung, T. Herrmannsdörfer,
A. Samartzis, A. T. M. N. Islam, V. K. Anand, B. Lake, R.
Moessner, and J. Wosnitza, Inverted hysteresis and negative
remanence in a homogeneous antiferromagnet, Phys. Rev. B 98,
180403(R) (2018).

[45] J. Xu, O. Benton, V. K. Anand, A. T. M. N. Islam, T. Guidi, G.
Ehlers, E. Feng, Y. Su, A. Sakai, P. Gegenwart, and B. Lake,
Anisotropic exchange Hamiltonian, magnetic phase diagram,
and domain inversion of Nd2Zr2O7, Phys. Rev. B 99, 144420
(2019).

[46] P. C. Guruciaga and R. A. Borzi, Monte Carlo study on the
detection of classical order by disorder in real antiferromagnetic
Ising pyrochlores, Phys. Rev. B 100, 174404 (2019).

[47] T. Fennell, M. Kenzelmann, B. Roessli, H. Mutka, J. Ollivier,
M. Ruminy, U. Stuhr, O. Zaharko, L. Bovo, A. Cervellino,
M. K. Haas, and R. J. Cava, Magnetoelastic excitations in the
pyrochlore spin liquid Tb2Ti2O7, Phys. Rev. Lett. 112, 017203
(2014).

[48] J. P. C. Ruff, Z. Islam, J. P. Clancy, K. A. Ross, H. Nojiri,
Y. H. Matsuda, H. A. Dabkowska, A. D. Dabkowski, and B. D.
Gaulin, Magnetoelastics of a spin liquid: X-ray diffraction stud-
ies of Tb2Ti2O7 in pulsed magnetic fields, Phys. Rev. Lett. 105,
077203 (2010).

[49] R. Edberg, L. Ø. Sandberg, I. M. B. Bakke, M. L. Haubro, L. C.
Folkers, L. Mangin-Thro, A. Wildes, O. Zaharko, M. Guthrie,
A. T. Holmes, M. H. Sørby, K. Lefmann, P. P. Deen, and P.
Henelius, Dipolar spin ice under uniaxial pressure, Phys. Rev.
B 100, 144436 (2019).

[50] H. Gupta et al., A lattice dynamical investigation of the Raman
and the infrared frequencies of the Dy2Ti2O7 pyrochlore spin
ice compound, J. Mol. Struct. 937, 136 (2009).

[51] A. Kushwaha, Vibrational, mechanical and thermodynam-
ical properties of Re2Ti2O7 (Re = Sm, Gd, Dy, Ho, Er
and Yb) pyrochlores, Int. J. Mod. Phys. B 31, 1750145
(2017).

[52] A. Sarkar and S. Mukhopadhyay, Dynamics of electrically
polarized magnetic monopoles in spin ice, Phys. Rev. B 90,
165129 (2014).

[53] H. Katsura, N. Nagaosa, and A. V. Balatsky, Spin current and
magnetoelectric effect in noncollinear magnets, Phys. Rev. Lett.
95, 057205 (2005).

[54] C. Krey, S. Legl, S. R. Dunsiger, M. Meven, J. S. Gardner,
J. M. Roper, and C. Pfleiderer, First order metamagnetic tran-
sition in Ho2Ti2O7 observed by vibrating coil magnetometry
at milli-kelvin temperatures, Phys. Rev. Lett. 108, 257204
(2012).

[55] A. M. Samarakoon, A. Sokolowski, B. Klemke, R. Feyerherm,
M. Meissner, R. A. Borzi, F. Ye, Q. Zhang, Z. Dun, H. Zhou
et al., Structural magnetic glassiness in the spin ice Dy2Ti2O7,
Phys. Rev. Res. 4, 033159 (2022).

[56] T. Stöter, Static and dynamic magnetoelastic properties of spin
ice, Ph.D. thesis, Technische Universität Dresden (2019).

[57] E. Y. Ma, Y.-T. Cui, K. Ueda, S. Tang, K. Chen, N. Tamura,
P. M. Wu, J. Fujioka, Y. Tokura, and Z.-X. Shen, Mobile metal-
lic domain walls in an all-in-all-out magnetic insulator, Science
350, 538 (2015).

[58] J. T. Chalker, C. Lacroix, P. Mendels, and F. Mila, Introduc-
tion to Frustrated Magnetism: Materials, Experiments, Theory
(Springer-Verlag, Berlin, 2011).

235152-14

https://doi.org/10.1103/PhysRevB.69.064422
https://doi.org/10.1103/PhysRevB.72.144422
https://doi.org/10.1063/1.4793704
https://doi.org/10.1088/1367-2630/17/12/123018
https://doi.org/10.1007/s10948-018-4957-4
https://doi.org/10.1038/s41467-021-23380-w
https://doi.org/10.1103/PhysRevB.95.184418
https://doi.org/10.1103/PhysRevB.83.094411
https://doi.org/10.1103/PhysRevLett.123.067204
https://doi.org/10.1103/PhysRevB.88.184428
https://doi.org/10.1103/PhysRevB.97.174422
https://doi.org/10.1007/s003390201638
https://doi.org/10.1103/PhysRevLett.90.207205
https://doi.org/10.1103/PhysRevB.70.104418
https://doi.org/10.1088/0953-8984/21/17/172201
https://doi.org/10.1103/PhysRevLett.115.197202
https://doi.org/10.1038/nphys3567
https://doi.org/10.1103/PhysRevB.98.180403
https://doi.org/10.1103/PhysRevB.99.144420
https://doi.org/10.1103/PhysRevB.100.174404
https://doi.org/10.1103/PhysRevLett.112.017203
https://doi.org/10.1103/PhysRevLett.105.077203
https://doi.org/10.1103/PhysRevB.100.144436
https://doi.org/10.1016/j.molstruc.2009.08.027
https://doi.org/10.1142/S0217979217501454
https://doi.org/10.1103/PhysRevB.90.165129
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevLett.108.257204
https://doi.org/10.1103/PhysRevResearch.4.033159
https://doi.org/10.1126/science.aac8289

