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Benchmarking methods and data for the whole‐outline
geometric morphometric analysis of lithic tools

1 | INTRODUCTION

Originally developed for the quantitative analysis of organismal

shapes, both two‐dimensional (2D) and 3D geometric morpho-

metric methods (GMMs) have recently gained some prominence

in archaeology for the analysis of stone tools1–3—unquestionably

the primary deep‐time data source for the earliest periods of

human cultural evolution.4 The key strength of GMM rests in its

ability to statistically quantify and hence qualify complex shapes,

which in turn can be used to infer social interaction,5 function,6,7

reduction,8 as well as to assess classification systems and cultural

relatedness.9–11

The methodological diversification that has accompanied the rise

in popularity of this particular suite of methods has, however, also

resulted in an increasing lack of comparability and interoperability,

which—ironically—works against the promise of GMM to provide a

tool for comparing artifact shapes that is not sensitive to interanalyst

variation. Standardized protocols, vetted datasets, as well as case‐

transferable and fully reproducible methods do not currently exist,

hampering the full utility of geometric morphometrics as an approach

to comparatively understand human behavior as reflected in these

lithic proxies. Additionally, the emerging issue of methodological

diversity in the geometric morphometric analysis of stone tools is

further compounded by issues related to landmark selection. When

applied to organisms, landmark selection is guided by a priori

knowledge about ontogeny, homology, and function. For stone tools,

however, only very few such evident landmarks suggest themselves.2

Instead, many studies have used landmarks selected specifically to

highlight particular design features of a given tool class (e.g.,

stemmed points or leaf points). These cannot, however, be easily

compared across tool classes. Other studies have used sets of

equidistant landmarks measured perpendicularly from a given tool's

longest axis to its margins to describe overall shape.

In this context, whole‐outline geometric morphometrics offers an

alternative approach that circumvents landmark selection by describing

the entire outline of the recorded artifact. It is computationally tractable,

readily replicable, and well‐suited for 2D object representations such as

drawings and photographs, many of which exist in excavation reports,

catalogs, finds registers and the published literature at large. Further-

more, emerging approaches in paleobiology now allow such continuous

shape data to be used in phylogenetic applications, opening up the

possibility of effectively combining stone tool geometric morphometrics

with cultural phylogenetics in one workflow.

2 | THE “CULTURAL EVOLUTIONARY
TOOLS FOR STONE TOOL SHAPE
ANALYSIS” WORKSHOP

From 26 to 30 September 2022, the authors convened for a

workshop with the title “Cultural evolutionary tools for stone tool

shape analysis: Geometric morphometrics and Bayesian phyloge-

netics” at the Aarhus Institute for Advanced Studies, in Aarhus,

Denmark. This workshop was held under auspices and with

funding from Cultural Evolution Society (https://culturale

volutionsociety.org/) and in direct continuation of the Society's

biannual conference. The aim was to stimulate and foster the use

and application of whole‐outline GMM to questions of cultural

evolution, and to begin assembling a data set of stone tools—

probable projectile points in the first instance, but other classes

of artifacts as well—that may be used to explore these methods

and benchmark interpretations.

The event was conceived in a hybrid format and brought

together 10 participants from 7 different countries (Argentina,

Belgium, Brazil, Canada, Denmark, Germany, and Spain; Figure 1).

This 5‐day meeting had the dual purpose of:

1. introducing the attendees to the application of reproducible

outline based GMM in the programming language R12 for the

analysis of 2D stone tools; and

2. assembling an initial data set of lithic projectile point shapes from

different times and places that can subsequently be used by the

research community for comparative analyses using these or other

methods.

The specific outline based GMM approach applied in this workshop

follows the protocol recently published by Matzig13,14 who also led the

workshop. This approach includes the semi‐automated extraction of

outlines from legacy data, such as drawings or photographs. Vitally, this

protocol relies entirely on open‐source software and is, beyond basic

image preparation, fully replicable and reproducible. Before the start of

the workshop, all participants had prepared their own individual sets of

photographs or drawings related to their expertise alongside associated

metadata such as geographical coordinates and dating.

During the workshop, focus rested initially on how to prepare the

images for the extraction of artifact outlines using the open‐source

imaging software GIMP (http://www.gimp.org) and R. Thereafter,

the outline datasets created in this way and ranging from Late Pleistocene
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Europe and Northern Africa to Holocene North and South America

(Figure 2) were analyzed in a multivariate framework closely following the

approach of Matzig et al.15 The performance of this methodology has

been directly compared to previous published analyses that use both

traditional typo‐technological attributes as well as those using landmark‐

based GMM and was shown to capture salient differences in artifact

forms where they exist.

On the first day of workshop, each participant presented their data

set and shared their assumptions regarding the cultural evolutionary

processes they sought to test; these hypotheses related variously to

chronological and spatial differentiation, or to cultural taxonomic

assessments of the material at hand. Each participant's data set and

research questions differed substantially in their geographical and

chronological scope, and the number of artifacts in each data set also

varied. Some datasets were best suited to analyses regarding their

diachronic, intra‐site patterns of cultural evolution, while for others,

patterns on a continental, and temporally deep scale were most pertinent.

After each participant's presentation of their datasets and objectives, they

completed their metadata sheets with all relevant information.

The second day was dedicated to image preparation to a common

standard so that these could be transferred into the automated outline

extraction protocol. The third and fourth days then focused on the main

analytical pipeline, the first steps of which consist of the quantification of

the extracted outlines using elliptic Fourier analysis16 and principal

component analysis for initial visualization. Then, the resulting data are

further interrogated using both hierarchical clustering and disparity

analysis. The latter, implemented using the R package dispaRity,17

represents a multivariate measure of variance within a morphometric

data set that is comparable to the coefficient of variation (CV) for linear

measurements. By quantifying variance, the CV is commonly used in

cultural transmission research to infer the dominant modes of social

learning related to ancient craft production, including stone tools.18,19 but

see Premo.20 The disparity measures, together with multivariate analyses

that reveal internal structure within the stone tool shape data at hand,

facilitate interpretations of social transmission and cultural evolution

(Figure 3). On the fifth and last day, participants presented their results

and discussed them in relation to their a priori expectations. Furthermore,

all datasets were combined and analyzed together following the exact

same analytical pipeline.

3 | WORKSHOP RESULTS AND FUTURE
PERSPECTIVES

With its focus on both conceptual issues as well as data wrangling and

analysis, this workshop was intense, productive, and collaborative.

Participants walked away with a set of tools to reproducibly analyze

2D lithic outlines. By the same token, the heterogeneity of the data

and research questions brought to the table by the participants

afforded the occasion to review the analytical workflow's strengths

and weaknesses. For most datasets, the hierarchical clustering proved

to be a useful tool to visualize the relations between artifact shapes

and compare the efficacy of existing classifications. As all analyses

were performed in the flexible computing environment of R, mapping

or others forms of downstream visualizations can be added in a

straightforward manner, all the while retaining reproducibility.21 The

final day ended with a stimulating discussion concerning the suitability

of the methods to capture tool shape heterogeneity, and raising vital

issues such as the orientation criteria for asymmetrical tools, such as

backed pieces. Issues of sampling bias and analytical scale were also

raised, with the current workflow being best suited to macroarchaeo-

logical approaches.

F IGURE 1 Participants on the fifth day of workshop discussing
the results of the combined analysis composed of each member's
analytical results.

F IGURE 2 The geographic spread of datasets included in the
workshop. (Araujo/Okumura: Gruta do Marinheiro, Alice Boer
[Brazil]; Barrera: La Esparragosa, Jovades, Niuet, Cova del Retoret,
Montelirio, Los Millares, Arenal de la Costa, Cova dels Diablets, Igay,
Casa de la Viuda, Can Gambus [Spain]; Cardillo: Puna area [Argentina‐
Chile]; Leplongeon: E71K18, E‐78‐3, E‐83‐4, E‐81‐1 [Egypt];
Rabuñal: Cova de Les Borres, Cova Gran de Montserrat [Spain];
Riede: Abri Fuchskirche, Golßen, Kettig, Külte, Mühlheim‐
Dietesheim, Niederbieber, Reichwalde, Rietberg, Rissen,
Rothenkirchen, Rüsselsheim, Urbar, Zigeunerfels [Germany], Rekem
[Belgium]; Wren: Jimmy Camp Creek Park [USA]).
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Besides these important findings and the training of the

participants, the data set collated as part of this workshop is now

freely available (https://doi.org/10.5281/zenodo.7757171); relevant

metadata are available as Supporting Information alongside this

report. We hope that future studies will use, update, and add to these

data. In time, such a public repository would be a first step towards

the comparative study of cultural evolution at large geographic and

chronological scales.

The workshop's final discussion revolved around the potential

to couple whole‐outline GMM with the analysis of specific

technological traits, and how to integrate these into emerging

phylogenetic applications. So far, phylogenetic analyses of stone

projectile points have partitioned artifacts using different traits to

capture their key characteristics as well as their shape. Only such

trait‐ and landmark‐based GMM have offered an integration with

phylogenetic methods.22 Yet, both BEAST23 as well as RevBayes24

in principle allow continuous characters to be used, not least

within a Bayesian statistical framework. Thanks to such recent

developments, a fuller integration between these powerful

quantitative methods for stone tool analysis looms on the horizon.

The potential thus emerges that both rich outline shape data can

be combined with technological traits under one analytical

protocol.
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