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ABSTRACT

This study deals with the structure and emplacement of the

Calmayo and El Hongo trondhjemite plutons (Famatinian belt

of C�ordoba, Argentina). It provides structural data from the

granites and the country rocks and a study of the magnetic

fabric in the plutons. New U/Pb geochronological data yield

intrusion ages of 512.1 � 3.4 Ma and 500.6 � 4.5 Ma for the

Calmayo and El Hongo plutons respectively. The El Hongo

massif and the southern part of the Calmayo trondhjemite

preserve magmatic structures, whereas the northern domain

of Calmayo shows the imprint of solid-state deformation. The

main foliation in the country rocks outlines a boudin-like

pattern at the map scale and the granites are located along

boudin necks, suggesting that the emplacement of these tron-

dhjemite plutons was linked to large-scale boudinage of the

country rocks.

Terra Nova, 0, 1–8, 2013

Introduction

Knowledge of the structure of gran-
ite massifs has seen a remarkable
improvement due to the proliferation
of structural studies (Corry, 1988;
Hutton, 1988; Kisters et al., 2009),
application of gravity (Vigneresse,
1995; Am�eglio and Vigneresse, 1999)
and magnetic susceptibility (Bouchez,
1997) methods, and the extrapolation
of experimental results on the migra-
tion of granite analogues (Rom�an-
Berdiel et al., 1995, 2000).
Detailed information about the

structural evolution of the country
rocks remains essential to constrain
accurately the emplacement history
of a pluton, as different geological
structures may be involved in the
whole process leading from magma
collection to the ultimate construc-
tion of granite plutons. For example,
melt can be accumulated in fold
hinges (Williams et al., 1995), and
the contacts between competent and
incompetent rocks can behave as
barriers hindering the rise of magma

and promoting its lateral spreading
(Corry, 1988). However, shear zones
are the most frequently described
structures associated with granite
emplacement. Their role is twofold:
they can be used as channels for the
ascent of magma, and may provide
low-pressure sites where magma can
be stored (Hutton et al., 1990; D’Le-
mos et al., 1992; Hutton and Reavy,
1992; Tikoff and Teyssier, 1992;
McNulty, 1995; Brown and Solar,
1998; Weinberg et al., 2004).
This study deals with the emplace-

ment of the El Hongo and Calmayo
plutons, two trondhjemite bodies
belonging to the Sierra Chica de
C�ordoba (SCC) (Argentina), and
provides new U/Pb zircon ages for
both plutons. The study combines
structural information from the
country rocks with structural and
magnetic fabric data from the Cal-
mayo and El Hongo trondhjemites.
The structure of the El Hongo
pluton has been published previously
(D’Eramo et al., 2006) and will be
commented briefly here. Based on
such data, we propose that large-
scale boudinage of the country rocks
may be an efficient mechanism trig-
gering the emplacement of granite
plutons. Many authors have noticed
that leucosome is observed to collect
in boudin necks of deformed
migmatites (Ramberg, 1955; Van der

Molen, 1985; Brown, 1994; Sawyer,
1994; Brown and Rushmer, 1997;
Vanderhaegue, 1999; Vanderhaeghe,
2001; Arslan et al., 2008), but to
our knowledge, this is the first
reported case of granite plutons
emplaced in large-scale inter-boudin
partitions.

Regional frame and granite
geology

The SCC belongs to the eastern
Sierrras Pampeanas of the Andes
and shows Palaeozoic basement,
uplifted by Tertiary reverse faults,
within Cretaceous and Cenozoic
deposits (Fig. 1). The basement con-
sists mainly of coarse-grained gneis-
ses of medium-to-upper amphibolite
facies, with amphibolite, granite and
locally marble (Fig. 2A). In the study
area, the basement includes the El
Hongo, San Agustin and Calmayo
trondhjemite plutons. Fig. 1 shows
the location of these trondhjemite
plutons in the SCC. The trondhje-
mite plutons of the SCC, whose
intrusion ages are poorly con-
strained, are linked to the Famatin-
ian subduction that started at
around 500 Ma (Rapela et al., 1998).
These authors obtained a SHRIMP
U-Pb zircon age of 499 � 6 Ma for
the emplacement of the G€uiraldes
trondhjemite.
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The Calmayo and El Hongo plu-
tons are small, ENE–WSW elongate
massifs of elliptical and rectangular
shapes respectively (Fig. 1). They cut
at high angle the structure of the
country rocks (Fig. 1). Two main
facies compose the Calmayo and
El Hongo plutons. Coarse-grained,
hypidiomorphic trondhjemite domi-
nates and scarce fine-grained porphy-
ritic facies are concentrated in the
borders of each massif. The coarse-
grained rocks contain more than
90% plagioclase and quartz, with
biotite as the most abundant mafic
mineral. Accessory minerals include
epidote, apatite, magnetite, zircon
and titanite. Idiomorphic epidote
with allanite core is frequent as
inclusions in biotite (Fig. 3A). Such

a texture points to magmatic epidote,
which is consistent with very low
TiO2 (≥0.015 wt%) and high pistacite
contents (26.30–28.60 wt%). Mag-
matic epidote attests to a deep origin
and fast ascent of the magma (Zen
and Hammarstrom, 1984; Schmidt
and Thompson, 1996). Inclusions of
magnetite are frequent in biotite, as
either equiaxial or extremely elon-
gate crystals (shape ratios >10) are
parallel to the (001) biotite cleavage
(Fig. 3B). The fine-grained porphy-
ritic trondhjemite, composed of
plagioclase phenocrysts in a ground-
mass of quartz, plagioclase and bio-
tite, suggests fast cooling at shallow
crustal levels.
New U-Pb isotope analyses were

carried out following the standard

procedures described by Basei et al.
(1995). Thirteen zircon fractions were
analysed: seven from the Calmayo
and six from the El Hongo plutons.
Zircon crystals are idiomorphic with
well-defined faces and edges. After
data reduction, the results were plot-
ted using the software ISOPLOT/EX
(Ludwig, 1998). For the El Hongo
pluton, an age of 500.6 � 4.5 Ma
and 1.3 MSWD is defined by points
2184, 2187 and especially by the
more concordant fraction 2243
(Fig. 4A). Points 2198, 2200, 2202
and 2241 from the Calmayo pluton
yield an age of 512.1 � 3.4 Ma and
2.3 MSWD (Fig. 4B). These ages
represent the time of zircon crystalli-
zation and granite emplacement. For
both samples, the scattering of the
remaining points suggests recent lead
loss. The emplacement age of 500.6 �
4.5 Ma for the El Hongo pluton
agrees with the age of the G€uiraldes
trondhjemite (Rapela et al., 1998),
whereas the Calmayo pluton is a bit
older, 512.1 � 3.4 Ma.

Field structural data

The dominant structure of the base-
ment is a NE-dipping foliation paral-
lel to the axial surface of tight folds.
The presence of garnet, plagioclase
and cordierite porphyroblasts gives a
wavy appearance to the gneissic foli-
ation (Fig. 2B). The foliation in the
country rocks shows a dominant
NW–SE strike and dips steeply to
the NE (Fig. 1), reflecting a bulk
NE–SW shortening consistent with
the widespread presence of boudins
and pinch-and-swell structures
(Fig. 2C). Boudins display steep-
plunging necks or sub-horizontal and
NW-trending necks in nearby out-
crops. The foliation trajectories out-
line a boudin-like geometry (Fig. 1).
They also draw triple points around
the Calmayo pluton, suggesting that
the shortening was active after its
emplacement.
Late shear bands with S-C mylo-

nites appear locally (Fig. 2D). They
dip 50°–70° SW and strike NNW
except close to the Calmayo and El
Hongo plutons, where they display
N–S or NE–SW strikes (Fig. 1B).
Whatever their strike, they yield
reverse motions with a minor dextral
component, except along a few
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2 © 2013 John Wiley & Sons Ltd

Crustal boudinage and granite emplacement • F. D’Eramo et al. Terra Nova, Vol 0, No. 0, 1–8

.............................................................................................................................................................



ENE-striking shear zones located
close to the Calmayo pluton where
sinistral displacements are observed.
These shear bands are linked to the
Soconcho belt, a SW-dipping reverse
shear zone, which extends more than
35 km along the southern part of the
SCC (Martino et al., 1995).
Two types of planar structures of

magmatic origin are recognized
within the Calmayo and El Hongo
plutons: (i) a magmatic layering,
defined by thin biotite-rich bands
alternating with thicker plagioclase-
and quartz-bearing layers (Fig. 2E);
and (ii) a foliation defined by the
parallel arrangement of the plagio-
clase and biotite. The magmatic
origin of the foliation is evidenced
because these minerals coexist with
equiaxial aggregates of quartz devoid
of solid-state deformation micro-
structures. The layering and the
magmatic foliation are parallel and
show westward dips and N- to
NNW-strike. These structures
display similar orientation in both
massifs.
The Calmayo pluton shows two

structural domains. Magmatic struc-
tures are widespread to the south and
solid-state deformation structures are
observed in its north-eastern corner.
The solid-state deformation led to
S/C structures, consistent with the
motion of the Soconcho shear zone.
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Fig. 2 Field aspect and structures of
the Calmayo trondhjemite and its
country rocks. (A) Inter-layered
amphibolite (amp), granite (gr), gneiss
(gn) and marble (m). (B) Aspect of the
main foliation in the dominant gneissic
rocks of the country rock sequence. (C)
Boudins in an amphibolite layer sur-
rounded by gneiss. (D) S-C structures
related to late shear bands in the coun-
try rocks. (E) Magmatic layering in the
Calmayo pluton.

Fig. 3 Photomicrographs from the Cal-
mayo trondhjemite. (A) Magmatic epi-
dote (ep) hosted by biotite. (B)
elongate inclusions of magnetite in bio-
tite. (C) S-C microstructures with dex-
tral shear sense from the NE-portion
of the pluton. (D) Sub-grain bound-
aries with perpendicular orientation in
quartz. The small, new recrystallized
grains of quartz are consistent with
low-temperature of deformation.
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The spacing between C-planes (>2
cm) and the C-S angles (�40°)
(Fig. 3C) point to a weak deforma-
tion (Berth�e et al., 1979; Dell’Angelo
and Tullis, 1989). In the NE corner, a
WNW-trending stretching lineation is
defined on by elongate aggregates of
quartz. The grains of quartz present
sub-grain boundaries and small new
grains pointing to low-temperature
conditions during deformation. The
sub-grain boundaries are usually
arranged in two nearly perpendicular
systems symmetrical with respect to
the foliation trace (Fig. 3D), which is
consistent with a weak rotational
deformation (Bouchez and Duval,
1982).

Magnetic fabric in the Calmayo
pluton

Anisotropy of the magnetic suscepti-
bility (ASM) has been analysed on
samples from 26 sites from the
Calmayo pluton. Two or three ori-
ented cores per site were extracted
with a portable drilling machine, and
three cylindrical samples (24 mm in
diameter and 22 mm high) were
obtained from each core, affording
213 specimens. Measurements were
performed at the UPV/EHU, using
a Kappabridge KLY-2 bridge
(Geofysica, Brno), yielding magnetic
susceptibility values and orientations
of the three principal axes of the
AMS ellipsoids (K1>K2>K3). The
bulk susceptibility, K, is expressed as
(K1+K2+K3)/3. The magnetic linea-
tion corresponds to the K1-axis and
the K3-axis determines the pole to the

foliation. The principal anisotropy
parameters are given as P = K1/K3 or
the corrected anisotropy degree (Je-
linek, 1981), Pj ¼ exp

pf2½ðg1 � gmÞ2
þðg2 � g2mÞ2þ ðg3 � gmÞ2�g, where:
g1 = ln K1, g2 = ln K2, g3 = ln K3

and gm = (g1 + g2 + g3)/3. The eccen-
tricity of the magnetic ellipsoid is
expressed by the shape parameter
(Jelinek, 1981), T = [2 ln (K2/K3)/
ln (K1/K3) − 1].
K varies from 45 lSI to 4770 lSI

(Fig. 5A). Nine sites provide K-val-
ues lower than 300 lSI, typical of

paramagnetic granitoids; their AMS
mainly reflect the orientation of
biotite and amphibole in the rock.
K-values greater than 300 lSI (60%
of sites) indicate that magnetite
makes a significant contribution to
susceptibility and usually to the
anisotropy, their AMS reflecting the
shape fabric of magnetite (Rochette,
1987; Bouchez, 1997). The magnetic
phases have been determined measur-
ing K as a function of temperature in
a CS-2 furnace coupled to the Kapp-
abridge (Fig. 5B). The analysed

(A) (B)

Fig. 4 Tera-Wasserburg diagrams for the El Hongo and Calmayo trondhjemites.
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samples correspond to small amounts
(0.25 cm3) of crushed samples and
cover the whole range of K-values
found in the Calmayo pluton.
The heating runs reveal the presence
of magnetite in all three samples, as
indicated by the susceptibility drop
at ~580 °C, the Curie temperature
for this mineral. The magnetic
anisotropy and susceptibility show
a direct correlation, as P increases as
K does (Fig. 6A). T-values fluctu-
ate between �0.63 and 0.82, with a
mean value of 0.33 and most sites
provide oblate magnetic fabrics
(Fig. 6B).
The magnetic foliation strikes

NNW–SSE to N–S and dips steeply
to the west in the two plutons
(Fig. 7). Field and magnetic foliation
measurements give similar results, a
fact pointing to biotite as the main
marker of the shape fabric in gran-
ites even if magnetite is dominant, as
this mineral has a mimetic fabric
(Gr�egoire et al., 1998); elongate mag-
netite inclusions parallel to the (001)
cleavage of host biotite crystals
(Fig. 3B) support this interpretation.
Moreover, the concordance between
the magnetic and field fabrics points
to magnetic anisotropy triggered by
multi-domain magnetite, as single-
domain magnetite would result in
inverse magnetic fabrics (Tarling and
Hrouda, 1993). In the Calmayo plu-
ton, the magnetic lineation differenti-
ates two structural domains:
S-plunging lineations dominate in the
SW part of the massif, whereas
WNW-plunging lineations prevail
in the NE zone (Fig. 7). The WNW-
trending lineations proceed from
outcrops showing solid-state
deformation, suggesting that the
magmatic foliation was reactivated
as shear planes during the late
shearing, whereas the magmatic line-
ation was replaced by a stretching
lineation.

Discussion and conclusions

Petrographical, geochemical and age
affinities between the El Hongo and
Calmayo plutons point to magma
emplacement from a common mag-
matic source during the same tec-
tonic event of the Famatinian cycle.
Steep-dipping foliations are observed
all over these plutons (Fig. 7). We
attribute this structural homogeneity
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to the current erosional level of gran-
ite sheets with flat roof and basal
contacts, as shown in the cross-sec-
tion through the Calmayo pluton
(Fig. 8). Such geometry agrees with
the gravity-constrained shape of the
El Hongo pluton (D’Eramo et al.,
2006), corresponding to a very thin
horizontal sheet resting on two
N-trending root zones (Fig. 9B).

Besides, a thickness of only 0.8 km
results for the Calmayo pluton from
the length-to-thickness relationship
proposed by Petford et al. (2000).
We tentatively place the last mag-
matic pulse towards the northern
side of the Calmayo pluton. Such a
location would give an explanation
to the localization of solid-state
deformation in that part, which rest-

ing confined between, and being
weaker than, the fully crystallized
granite to the SW and the country
rocks to the NE could promote a
brittle–ductile deformation during
the last events of regional shortening.
The foliation trajectories bring to

light an asymmetric boudin-like
structure in the country rocks of the
Calmayo and El Hongo plutons
(Fig. 9). A cursory glance at the foli-
ation map could lead to the mislead-
ing conclusion that the deflection of
foliation around the El Hongo plu-
ton is due to dextral shearing. How-
ever, a sinistral displacement along
the inter-boudin partition zone is evi-
denced when the boudin median-lines
are taken as reference (Fig. 9A). This
shear sense is also supported by two
negative gravity anomalies located
below the El Hongo pluton, compati-
ble with en-�echelon fractures linked
to sinistral shearing (Fig. 9B) and
interpreted as feeder magma conduits
(D’Eramo et al., 2006). Therefore,
the opposite deflections of the folia-
tion do not imply a dextral shear
zone, but they rather correspond to
the eastern and western edges of
neighbour boudins brought in con-
tact after the sinistral motion
(Fig. 9A).
We interpret the boudin-like struc-

ture of the Calmayo and El Hongo
country rocks as a case of foliation
boudinage at crustal scale. Foliation
boudinage was first described in
Swiss glaciers to account for the
formation of boudin-like structures
in compositionally homogeneous
glace with a strong planar anisotropy
(Hambrey and Milnes, 1975). Similar
structures have been recognized in
metamorphic rocks with no lithology
contrast (Platt and Vissers, 1980;
Lacassin, 1988; Arslan et al., 2008).
For our interpretation to be correct,
the metamorphic basement should
react to the NE–SW shortening like
a homogeneous sheet. We consider
that the country rocks meet this
condition at the megascopic scale,
even if they show variances at
outcrop scale, as the size of this
boudin-like structure is at least
three orders of magnitude thicker
than the layers composing the meta-
morphic basement (compare Figs 2B
and 9A). The migration of melts
to boudin necks has been long
recognized in migmatite domains,

Erosion
Level

1 Km

NESW

Fig. 8 Schematic NE–SW cross-section of the Calmayo pluton.

En-echelon 
conduits

Boudin
median-line

4Km
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(B)

Fig. 9 (A) Sketch showing a boudin-like structure at the map scale and the location
of the trondhjemite plutons in inter-boudin partitions. The red and blue lines mark
the eastern and western edges of the boudins respectively. The dark grey colour
outlines foliation triple points around the Calmayo plutons. Close to the El Hongo
pluton, a sinistral displacement along the inter-boudin partition zone is evidenced
when the boudin median-lines are taken as reference. (B) The same shear sense can
be deduced from en-�echelon conduits revealed by two negative gravity anomalies
located below the El Hongo pluton (modified after D’Eramo et al., 2006).
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but to our knowledge, this is the
first example of granite emplace-
ment by boudinage processes at
crustal scale.
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