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Abstract The phylogeography of two sympatric Magel-

lanic limpets of the genus Nacella was studied. The his-

torical and contemporary processes underlying their

intraspecific patterns in Argentina were inferred using the

mitochondrial cytochrome oxidase I gene. Results indicate

different evolutionary histories in the two species. A recent

geographic and demographic expansion *11,000 years

ago, with absence of current genetic structuring, is pro-

posed for Nacella magellanica. In contrast, the phylogeo-

graphic pattern showed noticeable phylogenetic and

geographic discontinuities in Nacella deaurata; slow con-

tinuous population size growth with current low levels of

gene flow among its populations was also observed, indi-

cating demographic equilibrium. The beginning of diver-

gence between these closely related limpets was estimated

at about 270,000 years ago with very little or none gene

flow occurring after their splitting. These contrasting his-

toric patterns could be related to distinctive responses to

climate changes associated with Pleistocene glaciations, as

a result of differences in their ecological traits.

Introduction

Environmental changes associated with Pleistocene glacial

cycles are known to be one of the main historical process

influencing the genetic structure of aquatic species both in

the northern and in the southern hemispheres (Avise 2000;

Muellner et al. 2005; Ruzzante et al. 2006; Túnez et al.

2010). However, these variations have been not only

related to climate changes, but also to how differing eco-

logical traits of species can lead to distinctive responses

(Ruzzante et al. 2008; Deng and Hazel 2010). In several

benthic marine invertebrates showing high levels of gene

flow, it has been demonstrated the influence of pelagic

larval duration (Kindal and Gaines 2003; Paulay and

Meyer 2006) and of marine currents in their dispersal

(Murray-Jones and Ayre 1997; Sotka et al. 2004), since

adults typically have low mobility. For instance, some

invertebrate species living in rocky intertidal could survive

the dramatic environmental and climatic change from

Pleistocene glaciations in eastern North America due to

their life-history traits such as mechanisms of dispersal

(Wares and Cunningham 2001). Therefore, genetic varia-

tion is structured not only by the historical processes, but

also by contemporary forces of genetic exchange.

Nacella species inhabiting the Magellanic Province are a

suitable model to explore the impact of historical events in

shaping population structure in marine coastal inverte-

brates with larval development and low mobile adults,

since this area has been influenced by glacial processes and

interglacial intervals during the last 800,000 years

(McCulloch and Bentley 1998; Rabassa et al. 1992). This

biogeographical province that extends along Atlantic and

Pacific coasts in the southern tip of South America repre-

sents the area with the highest diversity of the genus

(Valdovinos and Rüth 2005). González-Wevar et al. (2010)
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recognized an event of recent diversification of the genus

Nacella that led to an important radiation in the Magellanic

Province during the late Pleistocene. In that extended

region, about eight morphological species of Nacella have

been described (Pilsbry 1891; Carcelles 1947, 1950; Powell

1973; Otaegui 1974; Castellanos and Landoni 1988;

Valdovinos and Rüth 2005), exhibiting very low levels of

genetic divergence among them, both in the Atlantic and in

the Pacific coasts (de Aranzamendi et al. 2009; González-

Wevar et al. 2010). The low genetic differentiation among

these species suggests the existence of a recent radiation

process accompanied by rapid morphological and ecologi-

cal diversification (de Aranzamendi et al. 2009; González-

Wevar et al. 2010). These results are in line with the fossils

records of some species of Nacella that correspond to late

Pleistocene—Holocene (Aguirre et al. 2005). The envi-

ronmental conditions of the littoral ecosystems and its

benthic communities in these regions during the periods

referred were similar to those prevailing at present (Olivier

et al. 1966; Gordillo 1999; Aguirre et al. 2005; Cuevas et al.

2006). These stable environmental characteristics could

have led to low levels of genetic differentiation among

modern Nacella species (de Aranzamendi et al. 2009).

Nacella magellanica (Gmelin 1791) and Nacella deau-

rata (Gmelin 1791) are distributed in the biogeographic

Magellanic Province of Argentina and Chile, as well as in

Malvinas (Falkland) Islands (Castellanos and Landoni

1988; Morriconi and Calvo 1993; Valdovinos and Rüth

2005). Nacella magellanica is the most abundant limpet in

the Argentinean sector of that Province; it is highly vari-

able in shell morphology and color patterns. Nacella

deaurata is morphologically stable, presenting slight vari-

ations among individuals. Although this limpet has been

reported all along the coasts of the southern tip of South

America, in a previous study, it was demonstrated that the

species is restricted to Tierra del Fuego and was absent in

Patagonia (de Aranzamendi et al. 2009). The similar

morphological characteristics that present some morpho-

types of N. magellanica with N. deaurata could have

generated the errors in the classification of the specimens

from Patagonia in the literature and in the collections of

several museums. These morphotypes have a displacement

of the apex toward the front of the valve, a diagnostic

character of N. deaurata; however, de Aranzamendi et al.

(2009) identified these two nominal species using arbi-

trarily primed nuclear markers (68 loci of ISSR, Inter

Simple Sequence Repeats) and recognized them as two

different genetic units. In a recent study, González-Wevar

et al. (2011b), using COI sequence data and elliptic Fourier

analyses, reported significant genetic and morphological

differences between individuals of these two species sam-

pled in the same locality in the Magellan Strait, Southern

Chile. In addition, these species differ in their vertical

location on wave-exposed shorelines. Nacella magellanica

is able to colonize all intertidal levels from the high shore

to the low shore and also shallow subtidal bottoms,

whereas N. deaurata inhabits lower levels of the intertidal

zone and also shallow subtidal areas.

Phylogeography has greatly contributed to understand

the genetic population structure providing a means of

examining the history of genetic exchange among popu-

lations, with the potential to infer the contribution of his-

torical and contemporary processes in the biogeographic

patterns of genetic variation (Avise 2000). In the recent

years, a few studies have resolved successfully questions

concerning phylogeography in species of the two genera

included in the family Nacellidae (Patellogastropoda),

Cellana and Nacella. A comparative phylogeographic

study of Hawaiian sympatric sister species of Cellana

showed that these limpets have a contrasting pattern of

population structure, in spite of their similar life histories

(Bird et al. 2007). An intraspecific phylogeographic anal-

ysis of three Cellana species of New Zealand demonstrated

genetic discontinuity among North and South Island pop-

ulations as a result of allopatric fragmentation (Goldstien

et al. 2006). Another study in the Antarctic limpet Nacella

concinna suggested the existence of a recent demographic

expansion with lack of genetic structure among popula-

tions, which could reflect a dramatic effect of glacial

periods on population size (González-Wevar et al. 2011a).

The aim of this paper is to study the phylogeographic

patterns in two closely related limpet species, N. magel-

lanica and N. deaurata, along the South-western Atlantic

coast. Specifically, we used these data to infer the contri-

bution of historical and contemporary processes to shape

the genetic structure of Nacella species. Since N. magel-

lanica and N. deaurata present overlapping geographical

distribution in an area highly affected by recurrent growth

and retreat of Pleistocene glaciers, their phylogeographic

patterns should show signals of genetic bottlenecks and

subsequent postglacial expansions. Regarding contempo-

rary processes, marine currents plus pelagic larval duration

could maintain low levels of genetic subdivision among

populations. Our second objective was to determine whe-

ther gene flow has been occurring between these limpet

species after their divergence. Closely related species could

share common haplotypes in spite of having interrupted

genetic exchange among them, due to not having reached

reciprocally monophyly. Alternatively, low level of gene

flow might exist between two species as a consequence of

incomplete reproductive isolation (Avise 2004). To fulfill

these objectives, we utilized a partial sequence of the

mitochondrial cytochrome oxidase I gene (COI) as

molecular marker. This widely used marker has proved to

be useful in population genetic and phylogeographic

studies in closely related molluscs species (Collin 2001;
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Kirkendale and Meyer 2004; Bird et al. 2007; Sá-Pinto

et al. 2008).

Materials and methods

Sample collection

A total of 171 specimens of N. magellanica and 36 indi-

viduals of N. deaurata were collected from 13 and 3

localities, respectively, along the Patagonian coast (Rı́o

Negro, Chubut, Santa Cruz) and the Argentine sector of

Tierra del Fuego (Fig. 1; Table 1). During our intensive

sampling, N. deaurata was only found in three of the

sampling localities corresponding to Tierra del Fuego and

was completely absent in the Patagonian continental coast.

Besides, it was not as abundant as N. magellanica in the

intertidal zone. These explain the few number of localities

and individuals of N. deaurata used in this analysis.

Species identification was based on shell morphology

following several authors (Powell 1973; Otaegui 1974;

Castellanos and Landoni 1988; Morriconi and Calvo 1993;

Valdovinos and Rüth 2005). In particular, the most

important diagnostic elements for differentiation between

N. magellanica and N. deaurata were the position and

curvature of the apex. Nacella deaurata presents the apex

situated at the anterior part of the shell’s length and a slight

curvature at the tip. No individual of N. magellanica has

that curvature; the apex can present a central-subcentral

(most commonly observed) position or can be displaced to

the anterior part of the shell (Powell 1973; Castellanos and

Landoni 1988; de Aranzamendi et al. 2009). Samples were

preserved in 80% ethanol.

DNA extraction, amplification and sequencing

Total genomic DNA was obtained from foot muscle tissue

following phenol–chloroform extraction (Maniatis et al.

1982). Once extracted, DNA was stored in double-distilled

water at 4�C until PCR amplification. A fragment of the

mitochondrial cytochrome oxidase I gene (COI) was

amplified using universal primers: LCO1490 (50-GGTCAA

CAAATCATAAAGATATTGG-30) and HCO2198 (50-TA

AACTTCAGGGTGACCAAAAAATCA-30) (Folmer et al.

1994). The PCR amplification was performed as described

in a previous work (de Aranzamendi et al. 2009). Double-

stranded PCR products were purified and sequenced by the

commercial service Macrogen Inc (USA). Sequencing

results were analyzed using the program CHROMAS ver-

sion 2.23 (McCarthy 1998) and manually edited. Some

sequences of COI were available from a previous work

(de Aranzamendi et al. 2009), and the new ones were

submitted to GenBank database (accessing numbers:

EU870927-EU870985, HQ880439-HQ880550 for N. ma-

gellanica; EU870986-EU870999, HQ880551-HQ880573

for N. deaurata).

Data analyses

Sequences were aligned by eye, then alignments were

corroborated using the MUSCLE program (Edgar 2004),

and haplotypes were indentified using the program DnaSP

4.10 (Rozas et al. 2003). The average genetic diversity for

each species was estimated using nucleotide (p) and hap-

lotype (h) diversity estimates. Both estimates were calcu-

lated according to Nei’s (1987) method using the program

DnaSP version 4.10 (Rozas et al. 2003). For each species,

statistical parsimony networks were constructed in TCS

1.21 (Clement et al. 2000) to determine the relationships

among haplotypes. Since according to our sampling,

N. deaurata is distributed only in Tierra del Fuego, a

network including the specimens of this region was con-

structed for N. magellanica for comparisons purpose.

Fig. 1 Sampling sites of Nacella species along the study area in

Patagonia and Tierra del Fuego (Argentina). Key to localities labels is

given in Table 1. Black dots represent N. magellanica and gray dots

show N. deaurata sample sites. Arrows represent principal sea surface

currents affecting the study area coasts: 1 Cape Horn Current,

2 Patagonian Current, 3 Malvinas Current
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Tajima’s D (Tajima 1989) and Fu’s Fs (Fu 1997) were

used to test for selective neutrality of the mutations using

ARLEQUIN 3.11 (Excoffier et al. 2005). To evaluate a

possible historical population expansion event, the distri-

bution of the frequencies of nucleotide pairs between

individuals were compared (mismatch distribution, Rogers

and Harpending 1992) with the expected distribution of a

model of population expansion as implemented in ARLE-

QUIN. The validity of the estimated demographic model

was tested, obtaining the statistical distribution of SSD

(sum of squared differences) with parametric bootstrap

(Excoffier and Schneider 1999). In addition, we used the

raggedness index (Harpending 1994) to test the deviation

from the unimodal mismatch distribution. The mismatch

distribution analyses were conducted for each species, but

also for Patagonian and Tierra del Fuego localities sepa-

rately to compare the situation of N. deaurata (only found

in Tierra del Fuego) with N. magellanica (found in Pata-

gonia and Tierra del Fuego).

The Bayesian skyline plot, a method for estimating past

population dynamics through time without dependence on

a pre-specified parametric model of demographic history,

was used for each species implementing BEAST version

1.6 (Drummond et al. 2005). The analyses were performed

under an uncorrelated lognormal relaxed molecular clock

model with a 1.0% per million years evolutionary rate

(González-Wevar et al. 2011a: substitution rate estimated

for the sister genus Cellana), using a HKY ? c (selected

with Modeltest 3.5; Posada and Crandall 1998) and a

piecewise constant Bayesian skyline model with 5 groups.

For N. magellanica and N. deaurata data set analyses, 180

and 40 million generations were performed, respectively,

making sure that the ESS values of each statistic was at

least 1,000. Convergence was examined in TRACER 1.5

(Rambaut and Drummond 2007).

The relation between genetic divergence [PhiST/

(1-PhiST)] and geographical distance (log of geographical

distance) was assessed using a Mantel (1967) test. Pairwise

values of PhiST were calculated using ARLEQUIN and

associated probability values were calculated using

100,000 permutations. Coastal distances between pairs of

samples sites were calculated. Since only three sampling

sites were obtained for N. deaurata, this test was not per-

formed in this species but pairwise values of PhiST were

calculated to analyse the genetic structure of the species.

Finally, the isolation with the migration model imple-

mented in the Bayesian-based IM program was used to

assess possibly continuing gene flow between these closely

related species (Hey and Nielsen 2004; Hey 2005). This

program assumes that closely related taxa might still

experience limited gene flow (Hey and Nielsen 2004). To

fit the IM model to the data, a Bayesian coalescent method

that integrates over all possible genealogies with a Markov

chain Monte Carlo approach was used and posterior

probability distributions for demographic parameters

including migration (m) rate, effective population size (h)

and divergence time (t) were estimated. The IM program

was run under the Hasegawa Kishino Yano (Hasegawa

et al. 1985) substitution model; symmetrical gene flow

(m1 = m2) and equal effective population size

(h1 = h2 = hA) were forced, because by reducing the

number of parameters estimated, the rate of parameter

updates improved substantially. Preliminary runs were

done to determine the appropriate priors for subsequent

runs (Won and Hey 2005). Multiple independent runs with

different random seed numbers were conducted starting

with a burn-in period of 200,000 steps and running for

40 million steps. Runs were monitored by using estimates

of the effective sample size based on the measured auto-

correlation of parameter values over the course of the run

(greater than 80) and by inspection of the plots of param-

eter trends (ideally the posterior distribution should fall

completely within the prior distribution). For credibility

intervals, the 90% highest posterior density (HPD) interval

for each parameter was recorded, i.e., the shortest span that

includes 90% of the probability density of a parameter. To

convert the parameter estimates scaled by the mutation rate

to calendar years, the divergence rates available for COI of

Cellana was used (1.0% per million years evolutionary

rate; González-Wevar et al. 2011a). These divergence rates

equate to 3.25 9 10-7 mutations per year for the gene

region studied (650 base pairs). The migration parameters

m was converted to an estimation of gene flow between

species (hm/2 = 2Nem; Hey and Nielsen 2004).

Results

On the basis of a fragment of 650–695 bp from the mito-

chondrial COI gene, a total of 60 haplotypes were identi-

fied (51 for N. magellanica and 10 for N. deaurata)

(Table 1). Only one haplotype (h51) was shared between

the two species that of major frequency in N. magellanica

and the third in frequency in N. deaurata. Haplotype

diversity (h) varied from 0.286 to 0.927 in N. magellanica

and from 0.464 to 0.8 in N. deaurata. The nucleotide

diversity (p) was low in all localities, for both species

(p (N. magellanica) = 0.00044–0.00478; p (N. deaurata) =

0.00288–0.00461). In the total pooled samples, both

species showed similar values of haplotype diversity

(h (N. magellanica) = 0.868; h (N. deaurata) = 0.8) but N. deau-

rata presents higher nucleotide diversity (p (N. magellanica) =

0.00356; p (N. deaurata) = 0.00467).

The statistical parsimony network obtained for N. ma-

gellanica showed a star-like topology. The highest fre-

quency haplotypes were observed both in nearby and in
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geographically separated localities; there is a remarkable

abundance of singletons since the 70.6% of the haplotypes

are represented by a single member in the dataset (Fig. 2a;

Online Resource 1). The central haplotype in the network

(h51) is the most frequent (observed in 30.4% of the total

individuals) and broadly distributed, occurring at most

localities along the studied area. Most haplotypes diverge

from haplotype 51 by only one to three mutations. There is

no evident association between haplotype identity and

geographical location in N. magellanica. Since, according

to our sampling, N. deaurata is distributed only in Tierra

del Fuego, we constructed a network including the speci-

mens of this region for N. magellanica. These networks

were used to compare populations from the two species

that inhabit sympatrically in the same geographical area.

The network that includes only specimens of Tierra del

Fuego showed also a star-like topology with the same most

frequent haplotype (Fig. 2b).

Unlike N. magellanica, N. deaurata does not show a

star-like network, but presented noticeable phylogenetic

Fig. 2 Haplotype network of

COI mitochondrial DNA

sequence data. a N. magellanica
(whole data set);

b N. magellanica (only samples

of Tierra del Fuego);

c N. deaurata (whole data set).

Circles represent haplotypes

and circle surface corresponds

to haplotype frequency. The

numbers in each circle represent

the number of the haplotype.

Black circles show intermediate

haplotypes not found in the

study. The colors of the network

represent the haplotype

frequency of the each locality

group marked in the map. The

groups were formed including

nearby localities with similar

water temperature to reduce the

number of colors for an easily

understanding. The h51 is the

only haplotype shared between

the two species
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and geographic discontinuities (Fig. 2c). The main haplo-

type (h59) is restricted to both localities of the Beagle

Channel and the second (h54) and third (h51, shared with

N. magellanica) more abundant haplotypes are the only

ones shared between San Pablo and South of Ushuaia

(Beagle Channel). Seven of the ten haplotypes were

restricted to only one locality, but five of these seven were

singletons (Online Resource 1). The proportion number of

haplotypes/sample size and the number of singletons were

smaller in N. deaurata.

Fu’s Fs and Tajima’s D tests were both non-significant

for N. deaurata, but gave significant and negative estimates

for N. magellanica, also when considering Patagonia and

Tierra del Fuego separately, which is in accordance with

the excess of rare alleles found in the latter (Table 2). For

all cases, a demographic expansion model was used (s[ 0

and h0 \ h1; Excoffier and Schneider 1999). When con-

sidering all localities for N. magellanica, the mismatch

distribution was unimodal with short time (s & 2) since

the last demographic expansion event, and non-significant

values of raggedness index and SSD (Fig. 3a). When

populations from Patagonia and Tierra del Fuego were

separately considered, both showed non-significant values

of raggedness index and SSD, supporting the hypothesis of

demographic expansion (Fig. 3c, d). On the contrary,

N. deaurata showed a significant deviation in the observed

distribution from the simulated one under a recent expan-

sion model (Fig. 3b). The raggedness value is one order of

magnitude higher than the one of N. magellanica and the

presence of a bimodal distribution in haplotype differences

is not consistent with a model of recent range expansion.

The peaks of the bimodal distribution remained if one

locality at a time was removed from the analysis (data not

shown), indicating the presence of relatively stable popu-

lations. The Bayesian skyline plots for N. magellanica

showed a pattern of population expansion, initiating around

110,000 years BP (Fig. 4a). The plot for N. deaurata is

consistent with populations at demographic equilibrium

(Fig. 4b). Both plots exhibit a continuous increase in the

population size without evidence of bottlenecks, but

N. magellanica showed a higher increase in the effective

population size.

A small but significant correlation between geographic

and genetic distances was observed when all localities of

N. magellanica were considered (r = 0.38, P \ 0.01). The

pairwise PhiST values reveal that 89% of the significant

values (8/9) involve two localities, Golfo San José (II) and

Golfo Nuevo (III) (Table 3a). When we removed these

samples from the analyses, the Mantel test did not show

significant correlation (r = 0.17, P = 0.23). Nevertheless,

no PhiST values were significant when using a Bonferroni

correction for multiple comparisons. In N. deaurata, there

are significant values of PhiST among the sample sites

located on the Beagle Channel and the one on the Atlantic

coast (Table 3b).

Figure 5 shows the estimated posterior probability dis-

tribution of effective population size, divergence time and

migration rate between the two species obtained from the

isolation with migration (IM) model. The IM results pro-

vided strongly unimodal posterior distributions of all

parameter estimates and bounds fall within the prior dis-

tribution. Given the position of the peak at t = 0.875, time

of species splitting corresponds to 269,231 years (90%

interval: 162,769–442,153 years). The migration parameter

m revealed a peak at 0.003, and its conversion to an esti-

mation of 2Nem shows that after the two species began to

diverge, very little or none gene flow occurred between

them (2Nem = 0.0879).

Discussion

Distribution ranges of the species

In this work, we covered the entire range of the geo-

graphical distribution in Argentina of each of the two

sympatric species, N. magellanica and N. deaurata.

Although N. deaurata is mentioned by some authors for

Patagonian coasts (Otaegui 1974; Castellanos and Landoni

1988; Valdovinos and Rüth 2005), during our intensive

sampling, this species was only found in some localities in

Tierra del Fuego, confirming that individuals of N. deau-

rata reported for Patagonia (both current and fossils) could

correspond to specimens of N. magellanica that were

misclassified. A previous work using a dominant nuclear

marker with high mutation rate (ISSR-PCR) showed that

the individuals of these two species were clearly separated

into two groups in all the analyses. Specimens of N. ma-

gellanica sampled in Patagonia presenting a similar

Table 2 Fu’s Fs and Tajima’s D test statistic for selective neutrality

Statistic test

Fu’s Fs Tajima’s D

N. magellanica

Patagonia (n = 115) -26.39*

(P \ 0.01)

-1.77**

(P = 0.011)

Tierra del Fuego

(n = 56)

-26.69*

(P \ 0.01)

-2.39**

(P \ 0.01)

Total samples

(n = 171)

-26.93*

(P \ 0.01)

-2.22**

(P \ 0.01)

N. deaurata

Total samples (n = 36) -0.40 (P = 0.47) 0.14 (P = 0.61)

P and n values are in parenthesis

* P \ 0.02 for Fu’s Fs; ** P \ 0.05 for Tajima’s D
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N. deaurata morphotype were not grouped together with

these latter individuals but with the ones of their own

species (de Aranzamendi et al. 2009). As it is characteristic

for N. deaurata, some individuals of N. magellanica may

be flatter and have the apex located toward the anterior part

of the shell. This might lead easily to a misclassification of

these two species, as it was observed when consulting

malacological collections of local museums (R. Bastida,

personal communication). These observations support the

idea of possible misclassification in the literature of indi-

viduals belonging to these two species in Patagonia. Not

only water and air temperature, but also the high level of

spatial competition with N. magellanica in the intertidal

zone (R. Bastida, personal communication) could be pro-

posed as limiting factors for the distribution range of

N. deaurata in Argentina. In three endemic Cellana species

that exhibit a pattern of nested sympatric distribution, the

high shore species has the broadest distribution and the low

shore-shallow subtidal species is the most localized one; it

was proposed that colonization from high to middle to

subtidal habitats over evolutionary time occurred (Bird

et al. 2011). These authors argued that a high shore species

could more readily survive and adapt to the mid-low littoral

shore than the subtidal environment, since the high inter-

tidal zone requires adaptations to thermal stress and

desiccation (Somero 2002). A similar scenario could be

proposed for the Nacella species here considered, as

N. magellanica exhibits a wide distribution on the intertidal

and shallow subtidal zones throughout the Magellanic

Province, while N. deaurata is limited to less air exposed

shore levels in Tierra del Fuego. Furthermore, their

Antarctic sister species N. concinna exhibit strong physi-

ological differences between intertidal and subtidal mor-

photypes (Weihe et al. 2010) and is under discussion if

these differences are indicating the beginning of a specia-

tion process (de Aranzamendi et al. 2008; Hoffman et al.

2010). The Antarctic morphotypes of N. concinna could

resemble the past history of N. magellanica and N. deau-

rata before they diverged, since those morphs present

morphological differences and vertical stratification but

there are important levels of gene flow between them (de

Aranzamendi et al. 2008; Hoffman et al. 2010).
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Fig. 3 Predicted patterns of the mismatch distribution, the frequency

of pairwise differences between haplotypes. a N. magellanica;

b N. deaurata (Tierra del Fuego); c Specimens from Patagonia

of N. magellanica; d Specimens from Tierra del Fuego of

N. magellanica. s: time in generations since the last demographic

expansion; h0: initial population size; h1: final population size; SSD:

sum of squared differences. P values are in parenthesis. *P \ 0.05
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Is there ongoing gene flow between N. magellanica

and N. deaurata?

The presence of one shared haplotype in the COI sequence

analyses between N. magellanica and N. deaurata is con-

sistent with the recent estimated radiation for the Magel-

lanic species (González-Wevar et al. 2010), which is in line

with the failure of mitochondrial genes to differentiate

them (de Aranzamendi et al. 2009; González-Wevar et al.

2010). The existence of common haplotypes among species

has been observed in other groups and was attributed to

recent hybridization (Berthier et al. 2006) or to incomplete

lineage sorting (Garcı́a-Moreno et al. 1999; Kemppainen

et al. 2009). According to the IM analysis, after N. ma-

gellanica and N. deaurata diverged, very little or none

gene flow occurred among them. Besides, the hypothesis of

ongoing gene flow as the cause of the appearance of a

shared haplotype would be unlikely by the presence of a

significant number of exclusive bands observed in each of

these species in the ISSR-PCR analysis (de Aranzamendi

et al. 2009). Although mitochondrial introgression cannot

be ruled out, the presence of incomplete lineage sorting

would be the most suitable explanation for the genetic

similarity between these recognized species of Nacella,

since the estimation of their separation indicates that these

species diverged very recently (between 162,769 and

442,153 years ago), during the Pleistocene. This estimation

indicates that N. magellanica and N. deaurata would have

splitted more recently than the radiation time suggested by

González-Wevar et al. (2010) for most of the Magellanic

species (between 2.0 and 0.4 Ma). There is paleontological

evidence of Nacella limpets in molluscan assemblages

from the coastal area of Patagonia (Aguirre et al. 2005,

2009) and Tierra del Fuego (Gordillo 1999; Gordillo et al.

2005) in the late Pleistocene. This geological epoch has

been characterized by repeated glaciations accompanying

climatic change, which affected South of Patagonia and

Tierra del Fuego (Coronato et al. 2004; Rabassa et al.

2005). The presence of multiple refugia along the Magel-

lanic Province during the last glacial cycles may have

allowed the survival of these limpets during repeated

advances and retreats of the ice. In addition, fragmentation

and isolation of these areas could have favored the recent

speciation in this region (Valdovinos and Rüth 2005).

Population genetic structure

In the total pooled samples, both limpets showed similar

values of haplotype diversity but N. deaurata presented

higher nucleotide diversity, suggesting a higher genetic

divergence among individuals of N. deaurata than those of

N. magellanica. Nevertheless, it could not be ruled out that

these differences are due to the smaller sample size

obtained for N. deaurata. For a better comparison, these

parameters were recalculated only for individuals of

N. magellanica from Tierra del Fuego, and the relation did

not change (n = 56, h = 0.827, p = 0.00368). These

indices in both species were higher than the ones obtained

for the Antarctic limpet N. concinna (h = 0.630, p =

0.00128; González-Wevar et al. 2011a). The haplotype

networks obtained for both species clearly indicate an

expansion event in N. magellanica but not in N. deaurata.

In N. magellanica, haplotype 51 would be ancestral given

its internal position, its high frequency and its occurrence

in most localities along the studied area. Besides, this being

the only haplotype shared with N. deaurata supports the

idea of its existence before the two species diverged.

Significant negative Tajima’s D and Fu’s Fs indices, the

unimodal mismatch distribution and the non-significant

values of raggedness index and SSD in N. magellanica

suggest an excess of low-frequency haplotypes arising

from population growth (Fu 1997; Ramos-Onsins and

Rozas 2002); these results are also evidences of a recent

demographic expansion from one ancestral population in

Fig. 4 Bayesian skyline plot for two sister species of the genus

Nacella. The median estimates demographic histories are shown as

thick solid lines and the 95% highest probability density intervals are

represented by the gray areas. a N. magellanica plot; b N. deaurata
plot
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this species. On the contrary, the mismatch distribution

analysis in N. deaurata showed a significant deviation of

the observed values from the simulated ones under a recent

expansion model. Multimodal patterns are known to be the

result of populations at demographic equilibrium (Slatkin

and Hudson 1991; Rogers and Harpending 1992). Nacella

deaurata presented a bimodal distribution that is consistent

with the values obtained for the historical demographic

parameters (Tajima’s D and Fu’s Fs). Besides, the results

of a recent study in one population of N. deaurata from the

Magellan Strait in Southern Chile also showed a bimodal

pairwise difference distribution (González-Wevar et al.

2011b). Moreover, this species shows significant genetic

structuring between the localities from Beagle Channel and

the Atlantic coast. The geographic separation of these

sample sites could be responsible of current low levels of

gene flow among them. However, the significant PhiST

values between populations of these two coasts (estimated

using a coding gene and therefore, slow evolving) could be

also the result of historical restricted gene flow and sup-

ports the hypothesis of demographic equilibrium in sam-

ples of N. deaurata. During glaciations, the species were

able to persist by moving into deeper water or perhaps

surviving in unglaciated pockets on continental shelves

(Gordillo et al. 2005), isolating populations and prompting

the increase of divergence among them.

In the case of N. magellanica, the non-significant values

of PhiST support the idea of a recent event of expansion and

absence of genetic structuring along the Argentinean coast.

This result agrees with the non-significant correlation

between geographic and genetic distances observed for

N. magellanica when excluding two localities, Golfo San

José (II) and Golfo Nuevo (III). The lack of isolation by

distance could be maintained by the action of the Patago-

nian and Malvinas Currents that affects part of the South-

western Atlantic coast and the Argentinean continental

shelf. Both of them are cold water currents of subantarctic

origin that flow northward and could help to increase gene

flow among populations of this species, dispersing the

larvae northward. Furthermore, the presence of N. magel-

lanica throughout its distribution is nearly continuous in

the intertidal zone due to the high homogeneity of the

substrate, only interrupted by small areas of sandy or

pebble substrate, facilitating the exchange of larvae among

populations. The capacity of major ocean current systems

to favor larval dispersal was generally supported by the

high levels of gene flow estimated in other marine species

(Murray-Jones and Ayre 1997; Sotka et al. 2004). The

apparent high genetic exchange among localities of

N. magellanica could support the existence of plankto-

trophic larvae in this species, which have a higher potential

ability for dispersal compared with other modes of

Table 3 Values of pairwise PhiST among localities of N. magellancia and N. deaurata. (a) data for N. magellanica; (b) data for N. deaurata

(a)

(b)

Below diagonal: PhiST values; above diagonal: P value. Key to localities labels is given in Table 1
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development. Larvae could be dispersed by marine currents

for long distances since they remain in the plankton for

longer time, promoting gene flow between geographically

separated populations (Pannacciulli et al. 2009). For

instance, its development could concur with the one of the

Antarctic limpet of the genus, Nacella concinna, which has

free-swimming planktotrophic larvae that can survive for

1–2 months in the water column (Bowden et al. 2006).

Nevertheless, growing evidence from recent studies sug-

gests that dispersal potential of larvae is not a good pre-

dictor of marine population connectivity and that other

factors such as hydrographic conditions, discontinuous

distribution of suitable substrata, stochastic fluctuations in

larval supply and settlement success, or factors intrinsic to

the species like spawning season and biological charac-

teristics of the organism play a crucial role in modulating

the extent of migration among populations (Becker et al.

2007; Goldson et al. 2001; Sherman et al. 2008; Severance

and Karl 2006). Bird et al. (2007), by investigating three

closely related limpets of the sister genus Cellana from

Hawaii with similar larval life histories, demonstrated that

these have contrasting patterns of population structure that

were attributed to differences in their biogeographical

ranges and habitat preference. Since N. magellanica and

N. deaurata are closely related species and probably have

similar pelagic larval duration, similar phylogeographic

patterns would be expected. However, our data clearly do

not support this idea and reinforces the importance of

historical events and possible differences in ecological

traits of the species in shaping their population structure.

Nevertheless, new studies employing faster-evolving

markers, such as ISSR-PCR or microsatellites, would be

useful to better understand the contribution of contempo-

rary processes in population genetic differentiation.

Although in N. magellanica PhiST values are not sig-

nificant using the correction for multiple comparisons, the

high genetic differentiation between Golfo San José and

Golfo Nuevo with all the localities from Tierra del Fuego is

remarkable. Since the sampling sites are placed inside

gulfs, where the renewal of deep waters is partial (mainly

restricted to areas near their mouth) and are governed

primarily by tidal currents, restricted genetic flow between

those two localities and the rest could be favored. A study

carried out in the scallop Aequipecten tehuelchus (Mol-

lusca: Bivalvia) including localities inside Golfo San

Matı́as (Patagonia, Argentina) attributed the genetic dif-

ferences detected between northern and southern popula-

tions to the much higher residence time of water in the gulf

compared with the life time for larvae of the species (Real

et al. 2004).

Estimation of historical population dynamics

and a possible past scenario

Using a Bayesian skyline plot approach, we estimated that

the timing of the onset of expansion of N. magellanica is

around 110,000 years ago, which corresponds to late

Pleistocene. Ho et al. (2005) suggested that molecular

studies at population level estimate much higher mutation

rates than the substitution rates inferred from phylogenetic

(species-level) analyses. Besides, it was demonstrated that

short term (1–2 million years) mutation rates could be

tenfold higher than long-term substitution rates in different

taxa (Ho et al. 2005, 2007). Following these authors,

González-Wevar et al. (2011a) incorporated a simple ten-

fold correction to their time estimation of the demographic

expansion of N. concinna in Antarctica using COI partial

sequence, obtaining a range of 22,000 to 7,500 years ago.

The time for the onset of the expansion in N. magellanica
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corrected according to the same assumption could be

around 11,000 years ago. At the beginning of the Holo-

cene, Patagonia and Tierra del Fuego suffered a rapid

warming ending the glacial processes that influenced their

landscape in the past 800,000 years (Rabassa et al. 1992;

McCulloch and Bentley 1998). There is evidence of the

disappearance of ice by 12,000 years ago in different

localities of Tierra del Fuego (Heusser 1989, 1998), freeing

the intertidal zone in these areas. A major expansion of the

fauna with further diversification of taxa took place during

the mid-Holocene (5,000–4,000 years ago) under relatively

warmer temperatures, indicating an evolution toward

modern faunal diversity and environmental conditions in

the area (Gordillo et al. 2005).

Unlike N. magellanica, N. deaurata exhibits a historical

demographic equilibrium with slow continuous increase in

population size and no evidence of recent demographic

expansions or bottlenecks. There are several reports of

species whose populations seem not to have suffered sud-

den decreases and/or increases in their population size,

being less affected by recent glacial advances as in the

gastropod Mexacanthina lugubris angelica (Deng and

Hazel 2010) and in the fish Percichthys trucha (Ruzzante

et al. 2008). Although extrinsic factors such as oceanic

currents and isolation induced by sea level maxima during

Pleistocene glacial cycles are often suggested as principal

determinants of marine phylogeography, intrinsic factors

such as habitat preference or reproductive mode can have

significant influences (Colgan and Schreiter 2011). In a

study in three closely endemic species of Hawaiian Cell-

ana, habitat preference was one of the most suitable factors

explaining their differences in population structures (Bird

et al. 2007). Contrasting demographic history and phy-

logeographic patterns in two Indo-Pacific ecologically

similar, co-distributed gastropods was attributed to distinct

responses to shared environmental processes due to rela-

tively minor differences in traits such as pelagic larval

duration or microhabitat association (Crandall et al. 2008).

Little is known about reproductive cycle and physiological

characteristics in N. magellanica and N. deaurata (Morri-

coni 1999; Malanga et al. 2007); however, different

capacities in antioxidant defense systems have been dem-

onstrated between them (Malanga et al. 2004). Since

N. magellanica and N. deaurata differ in their vertical

location on wave-exposed shorelines, they could present

other different physiological responses to environment

characteristics. Comparative physiological and larval cycle

experimentation in these Nacella species may contribute to

a better understanding of their distinct phylogeographic

patterns in the South-western Atlantic coast.
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diversification in the neotropics: phylogenetic relationships

among Cranioleuca Spinetails (Aves, Furnariidae). Mol Phylo-

genet Evol 12(3):273–281

Gmelin JF (1791) Systema naturae per regna tria naturae. In:

Linneaeus, C. 13th edn. Leipzig, Vol. 1, Part 6 (Vermes),

pp 3021–3910

Goldson AJ, Hughes RN, Gliddon CJ (2001) Population genetic

consequences of larval dispersal mode and hydrography: a case

study with bryozoans. Mar Biol 138(5):1037–1042

Goldstien SJ, Schiel DR, Gemmell NJ (2006) Comparative phyloge-

ography of coastal limpets across a marine disjunction in New

Zealand. Mol Ecol 15:3259–3268
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