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Abstract: This paper presents simplified closed-form analytical solutions that can be used to interpret and predict ground movements caused
by shallow tunneling in soft ground conditions. These solutions offer a more comprehensive framework for understanding the distribution of
ground movements than widely used empirical functions. Analytical solutions for the displacement field within the ground mass are obtained
for two basic modes of deformation corresponding to uniform convergence and ovalization at the wall of a circular tunnel cavity, based on the
assumption of linear, elastic soil behavior. Deformation fields based on the superposition of fundamental, singularity solutions are shown to
differ only slightly from analyses that consider the physical dimensions of the tunnel cavity, except in the case of very shallow tunnels. This
work demonstrates a simplified method to account for soil plasticity in the analyses and illustrate closed-form solutions for a three-dimensional
(3D) tunnel heading. A companion paper describes applications of these analyses to interpret field measurements of ground response to tun-
neling. DOI: 10.1061/(ASCE)GT.1943-5606.0000948. © 2013 American Society of Civil Engineers.
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Introduction

The prediction and mitigation of damage caused by construction-
induced ground movements represents a major factor in the design
of tunnels. This is an especially important problem for shallow
tunnels excavated in soft soils, where expensive remedial measures
such as compensation grouting or structural underpinning may need
to be considered prior to construction.

Ground movements arise from changes in soil stresses around the
tunnel face and the overexcavation of the final tunnel cavity, often
referred to as ground loss. Sources of movements are closely related to
the method of tunnel construction ranging from (1) closed-face sys-
tems such as tunnel boring machines (with earth pressure or slurry
shields), where overcutting occurs around the face and shield (i.e., the
tail void) while local ground loss is constrained by grout injected be-
tween the soil and precast lining system, to (2) open-face systems [e.g.,
NewAustrian TunnelingMethod (NATM)]where ground loss around
the heading is controlled by expeditious installation of lining systems
in contact with the soil (typically steel rib or lattice girder and shot-
crete) with additional face support provided by a closed-shield or other
mechanical reinforcement or improvement (soil nails, subhorizontal
jet grouting, etc.). In all cases, it is easy to appreciate the complexity of
themechanisms causing groundmovement and their close relationship
with construction details, especially given the complex mechanical
properties of soils, and their linkage to groundwater flows.

This complexity has encouraged thewidespread use of numerical
analyses, particularly nonlinear FEMs, over a period of more than
30 years (e.g., review by Gioda and Swoboda 1999). Although
these powerful numerical analyses undoubtedly provide the most

comprehensive framework for modeling tunneling processes and in-
teractions with other existing structures (e.g., Potts and Addenbrooke
1997), their predictive accuracy is also closely tied to the knowledge
of in situ conditions and the modeling of soil behavior.

Despite the extensive research and progress in numerical analyses,
the prediction and interpretation of far-field ground movements is
still largely based on empirical methods. The most extensive data
relate to the transverse ground surface settlement trough for green-
field conditions. Following Peck (1969) and Schmidt (1969), the
surface settlement for a circular tunnel of radius, R, is usually de-
scribed by a Gaussian distribution function, Fig. 1

uyðx, y ¼ 0Þ ¼ u0y exp

�
2 x2

2x2i

�
(1)

where u0y 5 centerline settlement above the crown; and xi 5 in-
flection point in the curve. These parameters are fitted to field
monitoring data. Data compiled by Mair and Taylor (1997) suggest
average values, xi=H5 0:35 and 0:50 for tunnels in sands and clays,
respectively (H is the depth to the spring line of the tunnel, Fig. 1).

The displaced volume of the ground surface, DVs 5 2:5u0yxi is
often equated with the volume loss occurring at the tunnel cavity,
DVL (i.e.,DVg 5 0, Fig. 1). This appears to be a valid approximation
for undrained shearing associated with the short term response of
tunnels in clay.

In addition, a variety of analytical solutions have beenproposed for
estimating the two-dimensional (2D) distribution of ground move-
ments for shallow tunnels in soft ground (notably Sagaseta 1987;
Verruijt and Booker 1996; Verruijt 1997; González and Sagaseta
2001). These analyses make simplifying assumptions regarding the
constitutive behavior of soil, but otherwise fulfill the principles of
continuummechanics. In principle, these analytical solutions provide
a more consistent framework for interpreting horizontal and vertical
components of ground deformations than conventional empirical
models and use a small number of input parameters that can be readily
calibrated to field data. They also provide a useful basis for evaluating
the accuracy of numerical analyses.

This paper presents a detailed review and comparison of the ana-
lytical solutions for estimating far-field groundmovements for shallow
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tunnels. Thiswork presents someextensions of the published solutions
and illustrates further application for a three-dimensional (3D) tunnel
heading. A companion paper describes the practical application and
interpretation of the analyses using field data (Pinto et al. 2013).

Deep Tunnel in Elastic Soil

The development of a rigorous analytical solution for shallow tun-
nels is complicated by the geostatic gradient of in situ stresses and

by the traction-free boundary conditions at the ground surface (and
potentially by other factors such as hydraulic gradients resulting
from seepage, etc.). To avoid these difficulties, the first case chosen
is that of a deep circular tunnel in an elastic soil, a problem first
solved by Kirsch (1898). The in situ, in-plane stress state at the
spring line can be decomposed into volumetric and deviatoric total
stress components

p0 ¼ sv09
ð1þ K0Þ

2
þ pw (2a)

q0 ¼ sv09
ð12K0Þ

2
(2b)

where sv09 5 initial vertical effective stress (the paper adopts the
standard continuum mechanics convention with stresses and pore
pressures positive in tension); K0 5 coefficient of earth pressures at
rest; and pw 5 pore pressure.

Assuming the soil is isotropic and linear, changes in the volu-
metric stress will produce a uniform convergence of the tunnel
cavity, uɛ , while changes in the deviatoric stress will produce an
ovalization, ud, as defined in Fig. 2. The deformations (ux, uy) in the
surrounding soil caused by reducing stresses in the tunnel cavity can
be written as follows:

Convergence:

uxðx, yÞ ¼ uɛ
xR

x2 þ y2

uyðx, yÞ ¼ uɛ
yR

x2 þ y2

8>><
>>: (3a)

Ovalization:

uxðx, yÞ ¼ ud
R

32 4n
x
ð32 4nÞ�x2 þ y2

�2
2

�
3y22 x2

��
x2 þ y22R2

�
ðx2 þ y2Þ3

uyðx, yÞ ¼ 2ud
R

32 4n
y
ð32 4nÞ�x2 þ y2

�2
2

�
3x22 y2

��
x2 þ y22R2

�
ðx2 þ y2Þ3

8>>>>><
>>>>>:

(3b)

where R 5 tunnel radius; n 5 elastic Poisson ratio; and uɛ, ud 5 deformations occurring at the tunnel cavity.
Eq. (3b) can be further simplified [ignoring terms OðR=rÞ3] if the displacements are to be evaluated in the far field

Ovalizationðfar-field approximationÞ:

8>>>><
>>>>:

uxðx, yÞ ¼ ud
4ð12 nÞ
32 4n

R
x
�
x22 n

12 n
y2
�

ðx2 þ y2Þ2

uyðx, yÞ ¼ ud
4ð12 nÞ
32 4n

R
y
�

n
12 n

x22 y2
�

ðx2 þ y2Þ2

(3c)

In subsequent sections, the cavity wall displacements are con-
sidered as input parameters that define the distribution of ground
movements. However, it is also interesting to consider the ideal case
where there is no shear traction at the tunnel cavity, and an interior
pressure, pi (e.g., resulting from pressurized grouting or simple
compression of the lining ring). In this case, the maximum elastic
wall deflections are

uɛ ¼ ðp02 piÞR
2G

ud ¼ 2
q0R
2G

ð32 4nÞ
(4a)

where G 5 shear modulus of the soil. The relative distortion of the
cavity, r, can then be found as (Sagaseta 1998)

Fig. 1. Empirical function for transversal surface settlement trough
(adapted from Peck 1969)
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r ¼ 2
ud
uɛ

¼ 12K0

1þ K0 þ 2ru
32 4n
12 pr

(4b)

where ru 5 pw=sV09 5 pore pressure ratio; and pr 5 pi=p0 5 total
pressure ratio.

Although this result corresponds to an idealized boundary con-
dition for a deep tunnel, it provides a useful benchmark for inter-
preting the factors affecting the relative distortion parameter. Fig. 3
illustrates the influence of the parameters n, K0, and ru on the
expected range of r. The results show that r. 0 for all situations
with K0 , 1:0. Lower values of Poisson’s ratio produce higher
relative distortions (i.e., small values of n amplify the distortion
mode). In principle, r, 21 (i.e., upward displacement of tunnel
crown) can occur for combinations of large K0 and small n.

Shallow Tunnel

Fig. 4 shows the notation and sign convention used in the analysis of
a shallow circular tunnel with spring line located at a depth y5H
below the stress-free ground surface. The deformations of the tunnel
cavity can now be decomposed into three basic modes: (1) uniform
convergence, uɛ; (2) ovalization, ud (with no net change in volume of
the cavity); and (3) vertical translation, Duy (buoyancy effect). The
convergence component uɛ is clearly related to the change in volume
of the tunnel cavity (per unit length), 2uɛ=R5DVL=V0,whereDVL is
the ground loss and V0 is the initial tunnel volume (cf. Fig. 1). There
are twomethods that have been proposed for analyzing the shallow
tunnel problem. The first is the approximate solution based on the
superposition of singularity solutions [Eqs. (3a)–(3c); Sagaseta 1987;
Verruijt and Booker 1996] that implicitly ignore the finite dimensions
of the tunnel itself. A more analytically complete solution (referred
to as the exact case) was introduced by Verruijt (1997) based on 2D
functions of a complex variable. It should be noted that neither the
approximate nor the exact solutions account directly for the buoyancy
effects associated with geostatic stress gradients in the ground (or
other more complex features of soil stratification, etc.). The following
sections summarize and compare these two formulations.

Approximate Solution

Fig. 5 illustrates the superposition of singularity solutions used to
represent deformations for a shallow tunnel. In the current derivation,
the normal traction components on the ground surface (x, y5 0)
are cancelled by superimposing the full-space singularity solutions
[Eqs. (3a) and (3b) for convergence and ovalization modes, re-
spectively] located at x5 0 and y5H, with negative mirror image
solutions at x5 0 and y5 2H. Boundary conditions for the ground
surface are then satisfied by introducing a distribution of corrective
shear tractions and computing the grounddeformations they produce

u ¼ u‘ðx, y1Þ2u‘ðx, y2Þ þ ucðx, yÞ (5)

where u~ 5 deformation vector for the full-space solutions [Eqs.
(3a) and (3b)]; y1 5 ðy1HÞ; y2 5 ðy2HÞ; and uc 5 deformations
that result from the corrective surface shear tractions.

Appendix I gives a brief account of the derivation of the cor-
rective displacements, uc, from the singularity solutions for uniform
convergence and ovalization. The results for the uniform conver-
gence mode are as follows:

ucx ¼ 4uɛR

(
ð12 nÞx

x2 þ ðy2HÞ2 2
ðy2HÞxyh

x2 þ ðy2HÞ2
i2
)

ucy ¼ 2uɛR

(
2ðy2HÞx2 þ H

h
x22 ðy2HÞ2

i
h
x2 þ ðy2HÞ2

i2 2
2ð12 nÞðy2HÞ
x2 þ ðy2HÞ2

)
(6a)

These solutions are identical to results presented by Verruijt and
Booker (1996) using a different superposition method.

The current solutions for the ovalization mode (Pinto 1999) are
based on corrective tractions from the complete singularity solutions
for the line distortion [Eq. (3b)] as opposed to the far field approxi-
mations [i.e., Eq. (3c)] published previously

Fig. 2. Decomposition of initial stresses around deep tunnel

Fig. 3. Relative distortion values for deep tunnel cavity in elastic soil
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ucx ¼ 8udR
32 4n

(
x

x2 þ y22H2h
x2 þ ðy2HÞ2

i2 ð12 nÞ 2 xy
y
�
x2 þ y2

�þ 2H
�
H22 x2

�
2 3yH2h

x2 þ ðy2HÞ2
i3

)
(6b)

ucy ¼ 8udR
32 4n

(
x2ð2H2 yÞ2 yðy2HÞ2h

x2 þ ðy2HÞ2
i2 ð12 nÞ 2

ðy2HÞ
n
Hyðy2HÞ22 x2

��
x2 þ y2

�þ Hðyþ HÞ	oh
x2 þ ðy2HÞ2

i3
)

(6c)

The superposition method generates (parasitic) vertical dis-
placements for both the convergence and ovalization modes. The
average vertical translation at the tunnel spring line is given by

Convergence:
Duy
uɛ

¼ 4 R
H

8ð12 nÞ2 ð12 2nÞ
�
R
H

�2



4þ

�
R
H

�
2
�2

Ovalization:

Duy
ud

¼ 2
32 4n

R
H

ð12 8nÞ
�
R
H

�4
þ ð112 8nÞ4

�
R
H

�2
2 32


4þ
�
R
H

�
2
�3

(7)

Exact Solution

The solution method used by Verruijt (1997) is based on the com-
plex formulation of planar elasticity. The complex formulation of
planar elasticity is particularly suitable for this type of problem as it
allows mapping the domain to describe both boundaries (i.e., tunnel
wall and surface) by a single coordinate. In this formulation, the
general solution of the equations is expressed in terms of two
functions of complex variable (f and c) called Goursat functions.
These functions are found by imposing the displacement boundary

conditions at the tunnel wall. The displacements are related to these
functions as follows (e.g., Muskhelishvili 1963):

2GuzðzÞ ¼ kfðzÞ2 z
df
dz

2cðzÞ (8a)

where k5 ð3 e 4nÞ; G 5 elastic shear modulus; i 5 imaginary
constant; f and c 5 Goursat functions; overbar 5 complex con-
jugate; and

z ¼ xþ i × y (8b)

uz ¼ ux þ i × uy (8c)

The original domain (z-space) is mapped onto an annular region
on the auxiliary domain (z-space) by the following conformal
transformation:

zðzÞ ¼ i × z ×
�
1þ a2

�
2H ×

�
12a2

�
i × z × ð1þ a2Þ þ H × ð12a2Þ (9a)

where a is given by

a ¼ H
R
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
H
R

�2
2 1

r
(9b)

In this transformation, the ground surface ( y5 0, z-space) is
mapped onto a circle of unit radius in the z-space, Fig. 6, and the

Fig. 4. Deformation modes and notation for shallow tunnel
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circular tunnel cavity boundary transforms to a circle of radius a
(note a, 1).

As the Goursat functions are analytic, they can be expanded in
Laurent series in the transformed domain as follows:

fðzÞ ¼ a0 þ P‘
k¼1

akz
k þ P‘

k¼1
bkz

2k

cðzÞ ¼ c0 þ P‘
k¼1

ckz
k þ P‘

k¼1
dkz

2k
(10)

where the coefficients ak , bk , ck, and dk are found by means of
recursive relations derived from the boundary conditions. The stress-

free boundary condition at the ground surface [see Verruijt (1997)
for full details] yields the following recursive relations for the ck and
dk coefficients:

c0 ¼ 2 a02
1
2
a12

1
2
b1 (11a)

ck ¼ 2 bk þ 1
2
ðk2 1Þak212

1
2
ðk þ 1Þakþ1 (11b)

dk ¼ 2 ak þ 1
2
ðk2 1Þbk212

1
2
ðk þ 1Þbkþ1 (11c)

The a and b coefficients are found by imposing the displacement
boundary condition at the tunnel wall�

12a2�a12 �
kþ a2�b1 ¼ A02 ðkþ 1Þa0 (12a)

�
1þ ka2�a1 þ �

12a2�b1 ¼ A1aþ ðkþ 1Þa2a0 (12b)

�
12a2�ðk þ 1Þakþ12

�
a2 þ ka22k�bkþ1

¼ �
12a2�kak 2 �

1þ ka22k�bk þ A2ka
2k ,

k ¼ 1, 2, . . .

(12c)

�
1þ ka2 × kþ2�akþ1 þ

�
12a2�ðk þ 1Þbkþ1

¼ �
12a2�kbk þ a2�1þ ka2k�ak þ Akþ1a

kþ1,

k ¼ 1, 2, . . .

(12d)

where the Ak coefficients define the boundary condition in Fourier
series terms as follows:

Ak ¼ 1
2p

ð2p
0

2G
�
12aeiu

�
uz
�
eiu

�
e2ikudu (13)

Thus, the solution is obtained by solving the integral in Eq. (13) for
the Fourier coefficients and then obtaining the Laurent series
coefficients by means of Eqs. (11) and (12). Only the value of a0
remains undetermined. It is obtained from the condition that the
coefficients of the expansions must vanish for large k (a requirement
for convergence). This is done by means of taking advantage of the
linearity of the recursive relations. Hence, two tentative values of a0
are used to calculate an approximate value of a‘ and the value that
makes a‘ 5 0 is found by linear interpolation. Further details are
given in the work of Verruijt (1997).

Verruijt (1997) studies the uniform convergence of the tunnel
wall, where it is shown that only two Fourier coefficients are needed
for this deformation mode (see Appendix II).

The boundary for the case of ovalization of the tunnel cavity can
be written in the original plane (Fig. 1) as

uzðbÞ ¼ ude
2ib ¼ ud

R
zðbÞ þ iH

(14a)

and this becomes transformed according to Eq. (9a) into

uz
�
eiu

� ¼ udi
12aeiu

eiu 2a
(14b)

where aeiu represents the mapped coordinate z at the tunnel
boundary. Thus, the Fourier coefficients for the ovalization mode
are found by replacing Eq. (16b) into Eq. (13) and performing the
integral analytically

Fig. 5. Superposition of singularity solutions for shallow tunnel
(adapted from Sagaseta 1987)

Fig. 6. Conformal transformation for shallow tunnel: (a) conformal
transformation; (b) sign convention for ovalization mode (adapted from
Verruijt 1996)
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Ak ¼ 1
2p

ð2p
0

2G

�
12aeiu

�2
eiu2a

udie
2kiudu (15)

Appendix II summarizes the values of the coefficients,Ak , for the
ovalizationmode of the tunnel cavity. Only a few terms are needed to
achieve an accurate mapping of the boundary deformations (for
practical values with R=H, 0:7). The full solution for the ovali-
zation mode is thus obtained by means of the recursive relations
[Eqs. (11) and (12)].

Evaluations of the Goursat functions [Eq. (8a); Pinto 1999]
show that 10–15 terms are sufficient to achieve accurate solutions
for both the convergence and ovalization modes of deformation.

Results and Comparison of Solutions

One key aspect of the preceding exact formulation is that the half
plane is unrestrained and hence, rigid body motions remain un-
defined. This shortcoming is addressed by Verruijt (1996) by as-
suming that displacements vanish at infinity. This generates
a vertical translation of the tunnel cavity, Duy, which produces
parasitic differences in the displacements predicted at the crown
and inverts of the tunnel cavity for both the convergence and
ovalization modes. Figs. 7(a and b) compare the vertical rigid body
translation from the exact analyses with approximate solutions at
the tunnel axis [Eq. (7)]. The results are in remarkably close
agreement for tunnels with radius-embedment ratios, R=H, 0:5,
over the full range of expected elastic Poisson’s ratios. However,
approximations in the singularity superposition method become
more apparent for very shallow tunnels (R=H. 0:5), especially in
the ovalization mode.

Fig. 8 compares the spatial distribution of ground movements for
a tunnel with R=H5 0:45 and n5 0:25 using the exact and ap-
proximate methods of analysis for uniform convergence and ovali-
zationmodes of cavity deformation. It should be noted that the vertical
displacements (uy=uɛ and uy=ud) are always symmetric about the
y-axis while the horizontal components (ux=uɛ and ux=ud) are anti-
symmetric.Although the results are generally in very goodagreement,
it can be noted that the approximate analysis generates higher vertical
displacements that are 10 (uy=uɛ) and 20% (uy=ud) higher than the

exact solutions above the tunnel crown and up to 10% higher for the
ovalization-induced horizontal movements (ux=ud). These represent
practical upper limits on the differences in the two sets of analyses for
this case involving a very shallow tunnel; and further, provide strong
justification for using the approximate elastic solutions for subsequent
evaluations of tunnel-induced ground movements.

A uniform contraction (i.e., uɛ , 0) along the tunnel wall, to-
gether with the corresponding vertical translation [Eq. (7)], Fig. 7(a),
leads to downward displacements everywhere within the soil mass,
except in an approximately circular region centered at y5 yc with
radius Rc

yc
H

¼ 2
2ð12 nÞ þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð12 nÞ2

q
4ð12 nÞ (16a)

Rc

H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð12 nÞ2

q
2 ð12 2nÞ

2ð12 nÞ (16b)

This zone of heave generally lies below the soffit of the tunnel
[e.g., Fig. 8(b)]. All points in the soil mass displace horizontally
toward the centerline when there is a uniform contraction of the
cavity. These general patterns of ground movement are indepen-
dent of the parameters R=H and n.

The components of ground surface displacements for the uniform
convergencemode can be derived analytically from the approximate
method of analysis

uy
uɛ

¼ 4ð12 nÞ R
H

1�
x
H

�2 þ 1
(17a)

ux
uɛ

¼ 4ð12 nÞ R
H

x
H

1�
x
H

�2 þ 1
(17b)

Fig. 9(a) shows that these solutions represent a good approxi-
mation of the exact solutions for practical ranges of the tunnel
embedment (R=H, 0:5) and elastic Poisson’s ratio. The maximum
components of the surface displacement are given by

uxjmax

uɛ
¼ 62 R

H
ð12 nÞ at x=H ¼ 61

u0y
uɛ

¼ uy

max

uɛ
¼ 4 R

H
ð12 nÞ at x=H ¼ 0

(18)

Hence, uy

max

5 2uxjmax, and uy 5 ux at x5H.
The area (DVs) enclosed by the deformed settlement trough can

be evaluated from Eq. (17), using the conventional assumption that
only vertical displacements contribute to this volume, given by

DVs ¼ 4puɛRð12 nÞ[ 2ð12 nÞDVL [ pHu0y (19)

This result shows that the volume loss at the ground surface is
equal to the volume loss at the tunnel cavity (i.e., DVs 5DVL) for
n5 0:5, while DVs 5 2DVL for n5 0 (as noted by Verruijt and
Booker 1996).

Typical results for the ovalization mode, Figs. 8(c and d), show
that a positive distortion of the tunnel cavity (ud . 0) produces a zone
of settlement above the tunnel spring line and extending laterally to
jx=Hj# 1, with heave occurring in the far field and below the spring
line. The soil undergoes outward horizontal movements except in

Fig. 7. Comparison of approximate and exact solutions for translation
of a shallow tunnel
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a triangular zone where it extends from the crown to the ground
surface (at jx=Hj# 1) and below the soffit. There is only a small
dependence in this pattern of behavior with R=H and n.

The magnitudes of the surface displacement components
from the approximate analyses of the ovalization mode are as
follows:

uy
ud

¼ 2 R
H
4ð12 nÞ
32 4n


�
x
H

�4
2 1

�
þ 1
4ð12 nÞ

�
R
H

�2

12 3

�
x
H

�2�

�

x
H

�2 þ 1

�3
(20a)

ux
ud

¼ 2 R
H
4ð12 nÞ
32 4n

x
H

�
x
H

�2
2 1
�

x
H

�2 þ 1

�2 (20b)

These results can be further simplified using the far field approxi-
mation [cf. Eqs. (3a)–(3c)]

uxðxÞ
ud

¼ 2 R
H
4ð12 nÞ
32 4n

x
H

�
x
H

�2
2 1
�

x
H

�2 þ 1

�2 (20c)

uyðxÞ
ud

¼ 2 R
H
4ð12 nÞ
32 4n

�
x
H

�2
2 1
�

x
H

�2 þ 1

�2 (20d)

Ovalization produces a minimum surface settlement at the cen-
terline (i.e., a maximum surface settlement) and a far field maximum
heave

uy

min

ud
¼ 22 R

H
4ð12 nÞ
32 4n



12 1

4ð12 nÞ
�
R
H

�2�
at x ¼ 0

uy

max

ud
� R
H

12 n
32 4n

at x
H

¼ 6
ffiffiffi
3

p (21a)

There are also two maxima in the horizontal surface displacements

ux
ud

¼ 6 R
H
2ð12 nÞ
32 4n

at x
H

¼ 61H
ffiffiffi
2

p
(21b)

therefore, the maximum inward movement occurs at x=H
5 60:4142 and there is an equal, outward displacement at x=H
5 62:4142.

The preceding discussion has summarized the characteristic
ground movements resulting from uniform convergence and

Fig. 8. Comparison of ground deformations for shallow tunnel, R=H5 0:45, in elastic soil with n5 0:25 using approximate and exact methods of
analysis
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ovalization deformations, uɛ and ud at the tunnel cavity in an
isotropic, elastic soil. Approximate analyses derived by super-
position of singularity solutions provide a very good approximation of

the more complete analyses using complex variables for all cases except
very shallow tunnels (R=H. 0:5).

Fig. 10 shows the combined effects of the convergence and
ovalization modes on the predicted surface settlements

uy
uɛ

¼ 4ð12 nÞ R
H

22r
32 4n

�
�
x
H

�4
2 1

�
2 1
4ð12 nÞ



3
�
x
H

�2
2 1

��
R
H

�2�þ

�

x
H

�2 þ 1

�2

�

x
H

�2 þ 1

�3 (22)

where r5 2ud=uɛ 5 relative distortion of the tunnel cavity.
There is negligible variation of the resulting settlement distri-

bution with the embedment ratio, R=H, and only a small narrow-
ing of the settlement trough as Poisson’s ratio increases from

n5 0:0 to 0:5. The main parameter affecting the distribution of
surface settlement is the relative distortion of the tunnel cavity, r.
As r is increased from 0.0 (uniform convergence) to 3.0, there is
a marked narrowing of the settlement trough. For high values of r

Fig. 9. Comparison of exact and approximate analyses for surface displacements for (a) uniform convergence mode; (b) ovalization mode
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it is possible to achieve a first-order agreement with empirical
measurements. In contrast, when r, 0, the analyses predict that
maximum settlement does not occur above the centerline of the tunnel.

Effects of Yielding of Ground Mass

One of the key limitations of the analytical solutions is the as-
sumption that soil behavior can be approximated by linear elasticity.
The effects of soil plasticity can be understood by considering the
case of uniform convergence around a deep tunnel [equivalent to
conditions with K0 5 1:0; Eq. (2)]. Most recently, Schürch and
Anagnostou (2012) have also reported for tunnels inMohr-Coulomb
soils with nonisotropic stress states (focusing mainly on the ground
response curves). Classical plasticity solutions (e.g., Brown et al.
1983; Yu and Rowe 1999) obtain closed-form solutions for the soil
stresses and displacements due to cavity contraction in a linearly–
elastic, plastic material with Mohr-Coulomb yielding (c9, f9) and
nonassociative flow at constant dilation angle, c

ɛ pvol
gp

¼ 2sinc (23)

where ɛ p
vol 5 plastic volumetric strain; and gp 5 maximum plastic

shear strain.
For the case of undrained shear in low permeability clays

(c9→ su, f95 0�5c), the incompressibility constraint controls the
displacementfieldand there arenoeffects of plasticityon thedeformation
field (i.e., the displacementfield coincideswith the linear elastic solutions
reported in the preceding sections for a given cavity convergence.

In the more general case, dilative volumetric strains can produce
significant changes in the deformationwithin the plastic zone around
the tunnel cavity. In this case, the elastic solution will typically
underestimate the strains occurring at the tunnel cavity. The strain
necessary to cause yielding at the cavity is given by

uy
ɛ

R
¼ 2

�
Nf 2 1

�þ Y

2G
�
Nf þ 1

� (24)

where Y 5 ð2c9=p09Þ½cosf9=ð12 sinf9Þ�; Nf 5 ð11 sinf9Þ=ð1
2 sinf9Þ; G5G=p09; G 5 linear shear modulus; and p09 5 initial
mean effective stress. The radius of plastic yielding, Rp, can then be
obtained as

Rp

R
¼

�
upɛ
uyɛ

�1=ð1þbÞ
(25)

where upɛ 5 radial displacement at the tunnel cavity (neglecting
elastic strains within the plastic zone as noted by Kovári 1985); and
b5 ð11 sincÞ=ð12 sincÞ

Fig. 11(a) illustrates the dimensions of the plastic zone for
typical ranges of soil properties. The two principal parameters
affecting the size of the plastic zone are the preyield stiffness (G)
and the dilation angle, c [Fig. 11 assumes c5 ðf92fcvÞ, where
the constant volume friction angle, f∍cv 5 30�]. The plastic zone
increases in size with the soil stiffness and reduces with increased
dilation angle.

For situations where the plastic zone does not extend to the
ground surface, there is a simple link between the actual conver-
gence strain at the tunnel cavity and the equivalent elastic solution
that can be defined through a reduction factor, RF [Fig. 11(b)]

RF ¼ ueɛ
upɛ

¼
�
upɛ
uyɛ

�ð12bÞ=ð1þbÞ
(26)

For situations where plasticity extends to the ground surface,
there are no analytical solutions available for estimating the ground
movements. However, an intriguing approximation has been pro-
posed by González and Sagaseta (2001) based on the observation
that displacements within the plastic zone are functions of 1=rb

(neglecting elastic strain components). Hence, the displacements
around a deep tunnel [cf. Eq. (3a)] in a dilating plastic soil can be
written

Fig. 10. Comparison of surface settlement trough shapes for shallow tunnels in isotropic elastic soil
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Convergence:

uxðx, yÞ ¼ uɛ
xRa21�
x2 þ y2

�a
uyðx, yÞ ¼ uɛ

yRa21�
x2 þ y2

�a

8>>>><
>>>>:

(27)

where a5 ðb1 1Þ=2. It should be noted again that there is co-
incidence of the displacement fields for the linearly elastic and
perfectly plastic cases (c5 0�, b5 0).

Following this logic, solutions for a shallow tunnel can be found by
the approximate singularity superposition method as shown in Ap-
pendix III. The results retain many of the same features of the elastic
solution and the distribution of ground deformations is nowcontrolled
by two parameters, r ð5 2uɛ,=udÞ and a. Assuming a maximum
dilation rate, c5 30�, the parameter a ranges from 1.0–2.0. Fig. 12
illustrates the effects of the dilation angle on computed surface

settlements for a tunnel with embedment ratio, R=H5 0:45. The
results show that increasing the dilation causes a significant narrowing
of the surface settlement trough for the uniform convergence case
(r5 0). Further narrowing occurs when ovalization is included. The
results inFig. 12 showgoodagreement betweenempirical estimatesof
the trough shape [Eq. (1)] and the analytic solutions for r5 1:0.

Three-Dimensional Effects

The previous sections have shown that simplified analytical solutions
based on singularity superposition can provide a good approximation
for 2D ground deformations around shallow tunnels and can achieve
reasonable agreement with empirically observed settlement troughs
by accounting for different modes of deformation at the tunnel cavity
(relative distortion) or dilative volumetric strains (in free or partially
draining soils). It is also possible to account for anisotropy in soil

Fig. 11.Radial dimension of plastic zone for uniform convergence of deep tunnel in elastoplastic soil: (a) radius of plastic zone; (b) reduction factor for
equivalent elastic analysis
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stiffness (Zymnis et al. 2013) and this section illustrates the extension
for modeling 3D deformation fields around a tunnel heading.

Appendix IV summarizes the derivation of 3D ground move-
ments for a spherical cavity point contraction embedded at depth,H,
in an elastic half-space based on the method of singularity super-
position (after Sagaseta 1987; Sen 1950; Mindlin and Cheng 1950).
The displacement components can be expressed as follows:

ux ¼ VL

4p
f ðx, y, zÞ, uy ¼ VL

4p
gðx, y, zÞ, uz ¼ VL

4p
hðx, y, zÞ (28a)

where z 5 horizontal coordinate parallel to the tunnel axis; and
volume loss, VL, is linked to the radial convergence, uɛ

VL ¼ uɛ
4pR2 (28b)

and the functions f , g, and h are shown in Appendix V.
For a cavity located at an arbitrary position along the tunnel axis,

z5 z the displacements due to a unit ground loss (VL 5 1) are

Gxðx, y, z, zÞ ¼ 1
4p

f ðx, y, z2 zÞ (29a)

Gyðx, y, z, zÞ ¼ 1
4p

gðx, y, z2 zÞ (29b)

Gzðx, y, z, zÞ ¼ 1
4p

hðx, y, z2 zÞ (29c)

The 3D ground movements around a tunnel heading are then
obtained by assuming a volume loss distribution along the tunnel axis,
VðzÞ×dz, and integrating along these Green functions along the line

ux ¼
ð0
2‘

Gxðx, y, z, zÞVðzÞdz (30a)

uy ¼
ð0
2‘

Gyðx, y, z, zÞVðzÞdz (30b)

uz ¼
ð0
2‘

Gzðx, y, z, zÞVðzÞdz (30c)

These equations can be integrated numerically for prescribed
axial distributions of ground loss (e.g., to account for different
methods of tunnel excavation and support). This paper considers
the simplest case where the volume loss is uniformly distributed
with VðzÞ5V2D 5 2pRuɛ, along the length of the tunnel from
2‘# z# 0. In this case, the displacement field can be solved an-
alytically as follows:

ux ¼ V2D

4p

(
xðR12 zÞ
r21R1

þ ð32 4nÞxðR22 zÞ
r22R2

þ
xyðy2HÞ

h
2z
�
3R2

2 2 z2
�
2 4R3

2

i
r42R

3
2

)
(31a)

uy ¼ V2D

4p

(
ðyþ HÞðR12 zÞ

r21R1
þ
2yðy2HÞ2

h
z
�
3R2

22 z2
�
2 2R3

2

i
r42R

3
2

2
½ð32 4nÞðy2HÞ2 2H�ðR22 zÞ2 2ðR22 zÞðy2HÞ

r22R2

)

(31b)

Fig. 12. Effects of soil dilation on surface settlement trough shape
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uz ¼ V2D

4p

(
1
R1

þ ð32 4nÞ
R2

2
2yðy2HÞ

R3
2

)
(31c)

where r1 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 ðy1HÞ2

q
, r2 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1 ðy2HÞ2

q
, and

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2 þ ðyþ HÞ2

q
, R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2 þ ðy2HÞ2

q

The ground surface displacements can then be found as

uxjy¼0 ¼ V2D

p

ð12 nÞx
x2 þ H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2 þ H2

p
2 zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2 þ H2
p (32a)

uy

y¼0 ¼

V2D

p

ð12 nÞH
x2 þ H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2 þ H2

p
2 zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2 þ H2
p (32b)

uzjy¼0 ¼ V2D

p

ð12 nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2 þ H2

p (32c)

It is interesting to note that the surface settlements, uy, are
related to the transverse horizontal displacement components,
ux 5 xuy=H. Fig. 13 shows contours of surface displacements for
a tunnel with embedment, R=H5 0:2, while Figs. 14(a–c) ex-
amine the surface settlement distribution. The results show that
3D effects are limited to a zone around the tunnel heading
22# z=H# 2. For example, the longitudinal distribution, Fig. 14(b)
shows surface settlements occurring up to 2H ahead of the advanc-
ing tunnel heading and converging to a steady state for z=H# 22.
Centerline surface settlements at the tunnel heading (z=H5 0),
Fig. 14(b) correspond to approximately 50% of those occurring far
behind the heading (z=H, 22). There is little variation in the
normalized transverse settlement trough (uz=u0z ) [Fig. 14(c)] for
z=H# 0. These general features of behavior are related to
the assumption of a uniform ground loss along the tunnel axis and
can clearly be refined to represent different methods of tunnel
construction.

Conclusions

The analytical solutions presented in this paper describe the far field
ground movements caused by shallow tunneling processes (exca-
vation and support) as functions of deformations occurring at the
tunnel cavity in 2D for idealized modes of uniform convergence and
ovalization (defined by parameters uɛ and ud, respectively). Closed-
form solutions obtained by superposition of singularity solutions
(after Sagaseta 1987) provide a good approximation of the more
complete (exact) solutions obtained by representing the finite radial
dimensions of a shallow tunnel in an elastic soil (after Verruijt 1996),
while both sets of solutions generate parasitic vertical translation
components of the tunnel cavity (Fig. 7). This latter behavior has
been a source of confusion in prior applications and (semiempirical)
modifications of the analytical solutions (e.g., Loganathan and
Poulos 1998). The elastic solutions are able to replicate empirical
estimates of the transverse distribution of surface settlements only
for relatively large cavity distortions, r ð5 2uɛ=udÞ. 1.

Plastic yielding has no effect on the incompressible deformation
fields associated with (short-term) undrained shearing of low per-
meability clays. However, dilation of free- or partially-draining soils
can have a significant influence on the distribution of tunnel-induced
ground movements and may explain the very narrow settlement

troughs measured for tunnels in sands. This behavior appears to be
well described using approximate analytical solutions for plastic
soils with a constant angle of dilation.

The current paper also illustrates the extension of the analyses for
3D ground movements around a shallow tunnel heading. Funda-
mental solutions have been developed for uniform convergence of
a shallow spherical cavity in an elastic soil half-space. Results for
the case where ground loss is distributed uniformly along the tunnel
axis show that 3D effects are limited to a region within distance,
z=H5 62 of the tunnel heading. Further research is now needed to
obtained analytic solutions for ovalization of a shallow spherical
cavity and hence, to generalize the 3D analyses to account for
relative distortions along the tunnel axis.

Appendix I. Derivation of Displacements due to
Corrective Surface Tractions

The unbalanced shear stresses, txy, at the surface are calculated
according to the classical expression derived from theory of
elasticity

txy ¼ G



∂uy
∂x

þ ∂ux
∂y

�
(33)

where ux and uy 5 displacements due to the singularity solutions
[Eqs. (3a) and (3b)].

The Airy stress function, Fðx,yÞ, can then be determined from an
inverse Fourier transform

Fðx, yÞ ¼ i
2p

ð‘
2‘

TxyðvÞ y
v
ejvjyeivxdv (34)

where TxyðvÞ is the Fourier transform of the correction surface
tractions along the ground surface (plane with y5 0)

Txy ¼
ð‘
2‘

tðxÞe2ivxdx (35)

The corrective displacements [Eqs. (6a) and (6b)] are then obtained
from the Airy stress function displacements following standard
methods of elasticity (e.g., Boresi and Chong 1987)

ux ¼ 1
2G

h
ð12 nÞq12 ∂F

∂x

i
uy ¼ 1

2G



ð12 nÞq22 ∂F

∂y

� (36)

where

q1 þ iq2 ¼
ð
ðQ1 þ iQ2Þdz (37a)

Q1 ¼ =2F (37b)

and Q2 is the harmonic conjugate of Q1

∂Q1

∂x
¼ ∂Q2

∂y
;

∂Q1

∂y
¼ 2

∂Q2

∂x
(37c)

Appendix VI summarizes the specific results of Eqs. (33)–(37) for
the uniform convergence and ovalization singularity solutions.
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Fig. 13. Contours of 3D surface displacement components for shallow tunnel in elastic soil with uniform ground loss and R=H5 0:2, n5 0:25
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Appendix II. Fourier Coefficients for Boundary Deformations of Tunnel Cavity

Uniform Convergence

Ak ¼ 0 "k, 0

A0 ¼ 2iGuɛa

A1 ¼ 22iGuɛ

Ak ¼ 0 "k. 1

Ovalization

Ak ¼ 2Gudi
h
a2ðkþ1Þ�12a2�2i "k, 0

A0 ¼ 2Gudia
�
a2 2 2

�
A1 ¼ 2Gudia

2

Ak ¼ 0 "k. 1

Appendix III. Displacement Components for Tunnel in Plastic, Dilating Soil

Uniform Convergence Mode

ux
uɛR2a21

xh
x2 þ ðyþ HÞ2

ia2 xh
x2 þ ðy2HÞ2

ia þ 2xh
x2 þ ðy2HÞ2

ia2 4
ðy2HÞxyh

x2 þ ðy2HÞ2
iaþ1

8><
>:

uy
uɛR2a21

ðyþ HÞh
x2 þ ðyþ HÞ2

ia2 ðy2HÞh
x2 þ ðy2HÞ2

ia þ
4ðy2HÞx2 þ 2H

h
x22 ðy2HÞ2

i
h
x2 þ ðy2HÞ2

iaþ1 2
2ðy2HÞh

x2 þ ðy2HÞ2
ia

8><
>:

Ovalization Mode

ux
udR2a21 x�

h
x2 þ ðyþ HÞ2

i2
2

h
3ðyþ HÞ2 2 x2

ih
x2 þ ðyþ HÞ22R2

i
h
x2 þ ðyþ HÞ2

iaþ2

8><
>:

2

h
x2 þ ðy2HÞ2

i2
2

h
3ðy2HÞ2 2 x2

ih
x2 þ ðy2HÞ22R2

i
h
x2 þ ðy2HÞ2

iaþ2

þ 4
x2 þ y22H2h

x2 þ ðy2HÞ2
iaþ12 8y

y
�
x2 þ y2

�þ 2H
�
H22 x2

�
2 3yH2h

x2 þ ðy2HÞ2
iaþ2

)

uy
2udR2a21 ðyþ HÞ

h
x2 þ ðyþ HÞ2

i2
2

h
3x22 ðyþ HÞ2

ih
x2 þ ðyþ HÞ22R2

i
h
x2 þ ðyþ HÞ2

iaþ2

8><
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2 ðy2HÞ
h
x2 þ ðy2HÞ2

i2
2

h
3x2 2 ðy2HÞ2

ih
x2 þ ðy2HÞ22R2

i
h
x2 þ ðy2HÞ2

iaþ2

2 4
x2ð2H2 yÞ2 yðy2HÞ2h

x2 þ ðy2HÞ2
iaþ1 þ 8

ðy2HÞ
n
Hyðy2HÞ22 x2

��
x2 þ y2
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Appendix IV. Three-Dimensional Deformations due to
a Shallow Spherical Cavity Contraction

The displacements field due to a cavity contraction (or expansion) in
an infinite elastic space is a radial displacement field given by

ur ¼ uɛ
�
R
r

�2
(38)

where uɛ is related to the cavity volume as uɛ 5VL=4pR2. To ac-
count for a traction-free surface, additional displacements due to
the corrective stresses applied in the plane defined by y 5 0 (see
Fig. 15) need to be superimposed. This problem is a classical
problem of theory of elasticity and its solution can also be found in
Sen (1950) and Mindlin and Cheng (1950).

The solution is obtained by first defining the displacement field in
Eq. (38) as the gradient of a potential as follows:

Cc ¼
ð
urdr ¼2uɛ

R2

r
¼ 2uɛ

R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2 þ ðyþ HÞ2

q (39)

Hence, displacements in different directions are obtained as the
gradient of the potential in the direction of interest

ux ¼ ur
x
r
¼ ∂C

∂r
dr
dx

¼ ∂C
∂x

(40)

Corrective tractions are then evaluated by means of standard linear
elastic constitutive equations such that they oppose the surficial
tractions due to the cavity displacement field (see Appendix VII).
Following standard solution methods for theory of elasticity, the
stress field due to the corrective tractions is obtained in terms of
a corrective stress potential

Cc ¼ 2uɛ
R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2 þ ðy2HÞ2
q (41)

It is interesting to note that the corrective stress potential represents
a mirror image (with respect to the traction-free surface) of the po-
tential due to the cavity. The stress field due to the corrective trac-
tions is given in Appendix VII. The corresponding displacements
are thus calculated by integrating linear-elastic constitutive equa-
tions and the solution for the cavity contraction in elastic half space
is found by adding both displacement fields. The full solution for
displacements is given in Appendix V.

Fig. 14. 3D surface settlements for shallow tunnel in elastic soil with
uniform ground loss: (a) settlement trough for tunnel with R/H 5 0.2,
v 5 0.25; (b) longitudinal distribution along centerline; (c) transversal
settlement trough

Fig. 15. Spherical cavity contraction
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Appendix V. Three-Dimensional Displacement Fields for a Spherical Source at Depth H in an Elastic Half-Space

f ðx,y,zÞ xh
x2 þ z2 þ ðyþ HÞ2

i3=2 2 6
ðy2HÞyxh

x2 þ z2 þ ðy2HÞ2
i5=2 þ ð32 4nÞxh

x2 þ z2 þ ðy2HÞ2
i3=2

hðx,y,zÞ zh
x2 þ z2 þ ðyþ HÞ2

i3=22 6
ðy2HÞzyh

x2 þ z2 þ ðy2HÞ2
i5=2 þ ð32 4nÞzh

x2 þ z2 þ ðy2HÞ2
i3=2

gðx,y,zÞ ðyþ HÞh
x2 þ z2 þ ðyþ HÞ2

i3=22 2y
3ðy2HÞ22

h
x2 þ z2 þ ðy2HÞ2

i
h
x2 þ z2 þ ðy2HÞ2

i5=2 2
ð32 4nÞðy2HÞh

x2 þ z2 þ ðy2HÞ2
i3=2

)8>><
>>:

Appendix VI. Summary of Derivation of Corrective
Tractions

Convergence

For txyðxÞ
28GuɛRH

x

ðx2 þ H2Þ2
For Fðx, yÞ

4GuɛRy
H2 y

x2 þ ðy2HÞ2

For Q1ðx, yÞ

8GuɛR
ðy2HÞ22 x2h
ðy2HÞ2 þ x2

i2
For Q2ðx, yÞ

16GuɛRx
ðy2HÞh

ðy2HÞ2 þ x2
i2

For q1ðx, yÞ
8GuɛR

x
x2 þ ðy2HÞ2

For q2ðx, yÞ

28GuɛR
ðy2HÞ

x2 þ ðy2HÞ2

Ovalization

For txyðxÞ
16udHRGx
32 4n

�
x22H2

��
2
�
x2 þ H2

�
2 3R2

	
ðx2 þ H2Þ4

� 2
32udHRGx
32 4n

x22H2

ðx2 þ H2Þ3

For Fðx, yÞ

8udRG
32 4n

Hx22 ðy2HÞ�ðy2HÞ2 þ Hðy2HÞ þ x2
	

h
x2 þ ðy2HÞ2

i2

For Q1ðx, yÞ

2
16udRG
32 4n

H4 þ x42 y4 þ 2Hy
�
y22H2

�þ 6x2Hðy2HÞh
x2 þ ðy2HÞ2

i3
For Q2ðx, yÞ

32udRG
32 4n

x
2H

�
H22 x2

�
2 3yH2 þ y

�
x2 þ y2

�
h
x2 þ ðy2HÞ2

i3
For q1ðx, yÞ

16udRG
32 4n

x
x2 þ y2 2H2h
x2 þ ðy2HÞ2

i2
)8><

>:
For q2ðx, yÞ

16udRG
32 4n

x2ð2H2 yÞ2 yðy2HÞ2h
x2 þ ðy2HÞ2

i2

AppendixVII. SummaryofDerivationofDisplacements
due to Corrective Tractions for 3D Cavity

Corrective Tractions

sc
y


y¼0

¼ 2GuɛR
2 3H

22
�
x2 þ z2 þ H2

�
ðx2 þ z2 þ H2Þ5=2

tcyz


y¼0

¼ 6GuɛR
2H z

ðx2 þ z2 þ H2Þ5=2

tcxy


y¼0

¼ 6GuɛR
2H x

ðx2 þ z2 þ H2Þ5=2
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Stress Field due to Corrective Tractions

sc
y ¼ 4Gy ∂

3Cc

∂y3
2 2G ∂2Cc

∂y2

tcxy ¼ 4Gy ∂
3Cc

∂x∂y2
þ 2G ∂2Cc

∂x∂y

tcyz ¼ 4Gy ∂
3Cc

∂z∂y2
þ 2G ∂2Cc

∂z∂y

Displacement Field due to Corrective Tractions

ucx ¼ 2 ∂
∂x

�
y ∂C

c

∂y

�
þ ð32 4nÞ ∂C

c

∂x

ucz ¼ 2 ∂
∂z

�
y ∂C

c

∂y

�
þ ð32 4nÞ ∂C

c

∂z

ucy ¼ 2y ∂
2Cc

∂y2
2 ð32 4nÞ ∂C

c

∂y
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