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FLUID LIMIT FOR THE COARSENING PHASE

OF THE CONDENSING ZERO-RANGE PROCESS

INÉS ARMENDÁRIZ, JOHEL BELTRÁN, DANIELA CUESTA AND MILTON JARA

Abstract. We prove a fluid limit for the coarsening phase of the condensing zero-range process on a
finite number of sites. When time and occupation per site are linearly rescaled by the total number
of particles, the evolution of the process is described by a piecewise linear trajectory in the simplex
indexed by the sites. The linear coefficients are determined by the trace process of the underlying
random walk on the subset of non-empty sites, and the trajectory reaches an absorbing configuration
in finite time. A boundary of the simplex is called absorbing for the fluid limit if a trajectory started
at a configuration in the boundary remains in it for all times. We identify the set of absorbing
configurations and characterize the absorbing boundaries.

1. Introduction

The zero-range process was introduced in [31] as an interacting particle system on a graph, where
the jump rates of particles depend only on the occupation of the departure site. Once a particle

jumps, it changes its position according to a transition probability p. When the jump rates are
decreasing, particles spend more time in highly occupied sites and the dynamics favours the formation
of clusters. As the density diverges, in a typical stationary configuration, a macroscopic number of

particles accumulates on a single site, the condensate. During the past twenty years, this phenomenon
has been rigorously studied for the families of condensing zero-range processes with decreasing rates
introduced in [14, 15], and several results including the equivalence of ensembles, a law of large numbers

and a central limit theorem for the condensate size have been established in [24, 19, 3, 7, 4].

The next step is to study the time evolution of the process, which involves several time scales. The
slowest time scale is related to the dynamics of the condensate. When the graph V is finite and the

number of particles tends to infinity, starting from a stationary initial configuration with a condensate,
the position of the condensate follows a Markov chain on V with jump rates that are proportional
to the capacities between pairs of sites of the random walk with transition probabilities p. This

metastable description was first derived for reversible, supercritical systems [7], extended to totally
asymmetric dynamics [26], general non-reversible dynamics [30], and recently to critical, reversible
zero-range processes [27]. The analogous problem in the thermodynamical limit, when the number of

sites in V increases together with the number of the particles, was studied in [2].

Slower times scales are related to the coarsening phase that leads to a stationary state with a condensate
at a single site. Starting from an initial uniform distribution, sites exchange particles until only a few
accumulate the excess number of particles; these are the cluster sites. This transition occurs on a fast

hydrodynamic time scale. On a slower time scale, cluster sites interact, with some clusters growing
(macroscopically) at the expense of the others, up to the time when only one of them remains. The
different stages of this description were first predicted in [16, 17], which were followed by several studies

in the theoretical physics literature [16, 17, 29, 23, 18].

Beltrán, Jara and Landim [6] consider the second phase of the coarsening transition for zero-range
processes on a fixed graph V . They show that on a time scale of order N2, N the diverging number of

particles, the vector of linearly rescaled cluster sizes converges to an absorbed diffusion in the simplex
Σ = {

∑

i∈V ui = 1, ui ≥ 0, i ∈ V }. The vector is absorbed upon hitting a boundary, and thereafter, it
1

http://arxiv.org/abs/2302.05497v1


2 I. ARMENDÁRIZ, J. BELTRÁN, D. CUESTA AND M. JARA

evolves as a diffusion on a lower dimensional simplex. The process stops when the diffusion reaches a

vertex of Σ, the macroscopic manifestation of the condensed phase. These results confirm the previous
description, and identify the precise dynamics of the transition.

In this paper we establish the fluid dynamics of the initial phase of the coarsening process for a broad

family of zero-range processes on a fixed graph, including condensing zero-range processes [14, 15].
If time and occupation per site are linearly rescaled by the total number of particles N , the process
approximately follows an explicit piecewise linear trajectory in Σ, with velocities determined by the

rates of the random walk underlying the zero-range dynamics. The trajectory evolves in progressively
lower dimensional simplices until it eventually stabilizes when it arrives at an absorbing configuration.

Boundaries of the simplex are characterized as absorbing or non-absorbing. Inspired by the characteri-

zation of stochastic processes by their martingale properties, we identify the piecewise linear trajectory
as the unique solution to a generalized ODE that instantaneously exits non-absorbing boundaries. For
initial configurations on absorbing boundaries, the ODE formulation alone suffices to characterize the

trajectory, and the problem reduces to proving that weak limits satisfy the equation. To derive the
result for the general case, we show that the rescaled zero-range process exits non-absorbing boundaries
using a coupling construction that compares the process with an open queueing network.

It is a simple observation that when the jump rates out of non-empty sites are constant, the zero-range
process reduces to a closed Jackson network on the graph. Chen and Mandelbaum derive a fluid limit
theorem for this process when time is scaled linearly in the number of particles [11], and show that

under diffusive scaling it converges to a Brownian motion reflected at the boundaries of the simplex
[12]. The first result is a particular case of the fluid limit derived in this paper: closed Jackson networks
belong to the class of zero-range processes covered by our results. On the other hand, we see that the

macroscopic evolutions of Jackson networks and condensing zero-range processes already diverge on a
diffusive time scale, as the latter converge to diffusions absorbed at the boundaries [6].

Over the years, there have been several studies of the hydrodynamic limit of the zero-range process

describing the macroscopic evolution of the empirical density as the number of sites tends to infinity,
in different regimes [25, 21]. For condensing zero-range processes this is a difficult problem, as the
standard approach does not apply, and moreover the expected limiting partial differential equation is

not always well-posed; partial results are established in [32, 28].

The article is organized as follows.

In § 2 we introduce notation and state a series of results. We provide an explicit construction of the

trajectory of the fluid limit and state Theorem 2.9, our main result, in § 2.4.

In § 3 we propose a new characterization of the fluid limit as a weak solution (in some precisely defined
sense) to an ordinary differential equation that instantaneously exits non-absorbing sets, Definition

3.2, and identify the solution to the ORP described in § 2.6 as the unique solution to this problem.

We study the family of rescaled zero-range processes in § 4. We prove tightness in § 4.1, and show
that weak limits of the zero-range process are supported on solutions of the ODE, § 4.3. In order to
completely characterize fluid limits, it remains to prove that they exit non-absorbing boundaries. We

first establish this property when the zero-range process reduces to a system of queues (constant rates)
and extend it to the general case by a coupling argument in § 4.4. We collect all the information to
conclude the proof of our main result in § 4.5.

2. Setup and results

2.1. The zero-range process. Throughout this article we denote N0 = {0, 1, 2, . . . } and R+ = [0,∞).
Let us fix a finite set V and consider the zero-range process on V with jump rates

g : N0 → R+, such that g(0) = 0,
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and underlying random walk determined by an irreducible set of transition rates

r =
(

r(i, j)
)

i,j∈V
, so that r(i, i) = 0, ∀i ∈ V.

In this process, particles are indistinguishable and a particle leaves a given site i at rate r(i)g(n), where
n is the number of particles at i and r(i) is given in (2.1) below. Once a particle jumps from i, it

moves to a site j chosen with probability given by

p(i, j) :=
r(i, j)

r(i)
, where r(i) :=

∑

j∈V

r(i, j). (2.1)

Formally, the zero-range process (ηs, s ≥ 0) is a Markov process with state space NV
0 and generator

acting on each f : NV
0 → R by

Lf(η) =
∑

i,j∈V

g(η(i)) r(i, j) [f(ηi,j )− f(η)], η ∈ NV
0 ,

with

ηi,j(l) :=







η(i) − 1, for l = i,
η(j) + 1, for l = j,
η(l), for l 6= i, j.

Since the number of particles is preserved by these transitions, when the zero-range process (ηs, s ≥ 0)
starts with N particles, the rescaled process (ζNt , t ≥ 0) defined as

ζNt =
ηtN
N

, t ≥ 0, (2.2)

can be viewed as a Markov process with state space the standard simplex on the set of vertices V :

Σ =
{

u ∈ [0, 1]V :
∑

i∈V

u(i) = 1
}

.

We aim to study the sequence (ζNt , t ≥ 0), N ≥ 1, under the assumption that g(n) converges to a
strictly positive constant. Since such constant can be absorbed by the transition rates r, we may and

will assume that

lim
n→∞

g(n) = 1. (2.3)

We will also assume that

g(n) ≥ 1, n ∈ N. (2.4)

This assumption will only be used in the coupling construction in Section 4.4, to minimize technical
details, but the arguments can be adapted without much difficulty to the general case.

Denote by D(R+,Σ) the space of Σ-valued right continuous functions with left limits endowed with

the Skorokhod topology and the respective borel sigma field. In addition, let C(R+,Σ) stand for the
space of Σ-valued continuous trajectories. Consider the following sequence of discretizations of Σ:

ΣN =
{

u ∈ Σ : Nu ∈ NV
0

}

, N ∈ N.

For each N ∈ N and u ∈ ΣN , let PN
u be the law on D(R+,Σ) of the rescaled process (ζNt , t ≥ 0), when

the zero-range process (ηs, s ≥ 0) starts at Nu ∈ NV
0 .

Proposition 2.1. Under hypothesis (2.3), the family of probability laws
(

PN
u

)

N∈N,u∈ΣN
is sequentially

compact. In addition, any limit point is supported on C(R+,Σ).

Actually, we shall prove in our main result that the limit points of (PN
u ) are deterministic continuous

paths on Σ. The description of such paths makes use of the trace of the underlying random walk in a
fundamental fashion.
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2.2. Trace process. Let us recall the notion of the trace process. Let (Xk
s , s ≥ 0) stand for a

continuous-time random walk on V , with transition rates r and starting at k ∈ V . For each nonempty
B ⊆ V , let us denote by T k

B the hitting time of B starting at k:

T k
B = inf{s ≥ 0, Xk

s ∈ B}. In addition, denote T k
j = T k

{j}, for j ∈ V . (2.5)

Since r is irreducible, then T k
B is almost surely finite. Now, we define rA = (rA(i, j))i,j ∈A, for each

nonempty A ⊆ V , as rA(i, i) = 0, ∀i ∈ A, and

rA(i, j) = r(i, j) +
∑

k/∈A

r(i, k) P(T k
A = T k

j ), ∀i, j ∈ A, i 6= j. (2.6)

Trivially, rV = r. The set rA corresponds to the rates of an irreducible random walk on A, called
the trace process. A more detailed description and properties of the trace process can be found in [8],
Section 6.1. From now on, we will refer to rA as the trace of r on A.

We may easily compute rA, recursively. When A = V \ {k}, equation (2.6) reduces to

rA(i, j) = r(i, j) + r(i, k) p(k, j), ∀i, j ∈ A, i 6= j, (2.7)

where p(k, j) is given by (2.1). Since the trace of rA on any nonempty B ⊆ A coincides with rB (see
e.g. [8]) then (2.7) can be used repeatedly to compute the trace of r on any nonempty subset of V .

2.3. Minimal r-absorbing sets. In this subsection we introduce a terminology for a class of subsets
of V and state some of its properties. For each nonempty A ⊆ V , and i ∈ A, let us define

λA(i) :=
∑

j∈A

[rA(j, i) − rA(i, j)]. Observe that
∑

i∈A

λA(i) = 0. (2.8)

Definition 2.2. Let us say that a subset A of V is r-absorbing if A = V or

λA∪{j}(j) ≤ 0, ∀j ∈ V \A.

Notice that ∅ is trivially r-absorbing. We will be interested in the minimal r-absorbing set containing

a given S ⊆ V . For this purpose, the following lemma provides a key result.

Lemma 2.3. Let B be r-absorbing and let A be a proper subset of B. If λB(i) ≤ 0, ∀i ∈ B \ A, then
A is also r-absorbing.

As an immediate consequence of Lemma 2.3 we have the following result.

Lemma 2.4. Given S ⊆ V there exists an r-absorbing subset A such that

S ⊆ A and λA(i) > 0, ∀i ∈ A \ S. (2.9)

Proof. We provide an algorithm to generate such subset. Initialize with any r-absorbing A1 containing

S, for instance A1 = V . Compute

O1 := {i ∈ A1 \ S : λA1(i) ≤ 0}.

If O1 = ∅ then A1 is the desired subset. Otherwise, set A2 := A1 \ O1 and clearly A2 ( A1. By
Lemma 2.3, A2 is r-absorbing. Since S ⊆ A2, we may repeat the procedure. This process must stop

since V is finite and we get at the end the desired subset. �

We will show that the class of r-absorbing subsets is stable by intersection.

Lemma 2.5. If A and B are r-absorbing then A ∩B is r-absorbing.

This property permits us to define the minimal r-absorbing subset containing a given S.

Definition 2.6. For each S ⊆ V , we define A(S) as the intersection of all r-absorbing subsets of V
containing S.
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It follows from Lemma 2.3 that A(S) must satisfy (2.9). Actually, it will be very important to notice

that property (2.9) characterizes it.

Lemma 2.7. For any nonempty S ⊆ V , A(S) is the unique r-absorbing subset of V satisfying (2.9).

Therefore, the proof of Lemma 2.4 provides an algorithm to compute A(S).

2.4. The fluid limit. In this subsection we construct the set of continuous paths

ζu ∈ C(R+,Σ), u ∈ Σ,

that arises as the limit points of (PN
u ). Let us start introducing some ingredients. For each u ∈ Σ,

denote

S(u) := {i ∈ V : u(i) > 0} and A(u) := A
(

S(u)
)

. (2.10)

Also, define the set of vectors λu ∈ RV , u ∈ Σ as

λu(i) :=

{

λA(u)(i), for i ∈ A(u),

0, otherwise.

Let T u be the exit time from Σ of a path starting at u and with constant velocity λu:

T u := min{t ≥ 0 : u+ tλu 6∈ Σ}, where min∅ = ∞.

By Lemma 2.7, λu(j) > 0, ∀j ∈ A(u) \ S(u). Hence, in order to compute T u, it suffices to consider
the set of coordinates

S↓(u) := {i ∈ S(u) : λu(i) < 0}.

Since
∑

i∈A(u) λ
u(i) = 0 then

S↓(u) = ∅ ⇐⇒ λu is null ⇐⇒ T u = ∞. (2.11)

Furthermore, if S↓(u) is nonempty then

0 < min

{

−
u(i)

λu(i)
: i ∈ S↓(u)

}

= T u < ∞. (2.12)

Lemma 2.8. Given u ∈ Σ, if T u < ∞ then

S(v) = A(v) ( A(u), where v := u+ T uλu.

Proof. Since λu vanishes outside A(u), then S(v) ⊆ A(u). Now, for any j ∈ A(u) \ S(v) we have

0 = v(j) = u(j) + T uλu(j) =⇒ λA(u)(j) = −
u(j)

T u
≤ 0. (Recall that T u > 0.)

Since A(u) is r-absorbing, we may apply Lemma 2.3 to conclude that S(v) is r-absorbing. On the
other hand, since T u < ∞, then S↓(u) is nonempty. Thus, in virtue of (2.12), by taking any

i ∈ argmin

{

−
u(i)

λu(i)
: i ∈ S↓(u)

}

we have v(i) = 0, that is i 6∈ S(v). Since i ∈ S↓(u) ⊆ A(u), we are done. �

Now, for each u ∈ Σ, we compute a finite sequence of pairs

(Tn, vn) ∈ [0,∞)× Σ, n = 0, 1, . . . , f, (2.13)

as follows. Initialize with (T0, v0) = (0, u). Suppose (Tn, vn) has already been defined for n = 0, 1, . . . k.

If λvk is null, we stop and k equals f in (2.13). Otherwise, we compute

S↓(vk) = {i ∈ S(vk) : λ
vk(i) < 0} and T vk = min

{

−
vk(i)

λvk(i)
: i ∈ S↓(vk)

}

.
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By (2.11) and (2.12), we have 0 < T vk < ∞ and we define (vk+1, Tk+1) as

vk+1 := vk + T vkλvk and Tk+1 := Tk + T vk .

We now repeat the same procedure. By Lemma 2.8, the cardinality of A(vn) is strictly decreasing and

therefore, this process must stop.

We finally construct ζu as a concatenation of the rectilinear paths determined by (Tn, vn):

ζut =

{

vk + (t− Tk)λ
vk , if Tk ≤ t < Tk+1 and k < f,

vf , for all t ≥ Tf .
(2.14)

It is not difficult to verify from its construction that this family of paths satisfies the following property:

For all s, t ≥ 0 and u ∈ Σ, we have ζvt = ζus+t, where v = ζus . (2.15)

We may now state our main result which establishes a fluid limit for the zero-range process.

Theorem 2.9. Let uN ∈ ΣN , N ≥ 1, be a sequence converging to some u ∈ Σ. Under assumptions
(2.3)-(2.4), PN

uN
converges weakly to the Dirac measure δζu, where ζu ∈ C(R+,Σ) is defined in (2.14).

Hence, when time and occupation levels are rescaled linearly, the discrete, stochastic flow of individual
particles converges to a deterministic limit that evolves in the continuum. When the jump process
rates are constant, g(n) = 1{n≥1}, the zero-range process reduces to a closed Jackson network on the

set V , and the result was first derived by Chen and Mandelbaum in [11].

2.5. Absorbing faces and bottlenecks. Let us remark some important features of the fluid limit.
For each A ⊆ V , let us denote by ∂AΣ the A-face of Σ:

∂AΣ := {ζ ∈ Σ :
∑

j∈A

ζ(j) = 1}.

We start justifying our terminology of r-absorbing sets.

Remark 2.10. If A is r-absorbing then ∂AΣ turns out to be an absorbing face in the following sense:

for any u ∈ Σ and s ≥ 0,

ζus ∈ ∂AΣ =⇒ ζut ∈ ∂AΣ, ∀t ≥ s. (2.16)

Indeed, by Lemma 2.8, we have

S(ζut ) = A(ζut ) ⊆ A(ζus ), whenever 0 ≤ s < t. (2.17)

In particular,

S(ζut ) is r-absorbing, ∀t > 0. (2.18)

Then, ζus ∈ ∂AΣ implies that A(ζus ) ⊆ A and (2.16) follows from (2.17).

Notice now that, even if B is not r-absorbing, it could contain an r-absorbing set A. In that case, if
S(u) ⊆ A then ζut ∈ ∂BΣ, ∀t ≥ 0. Nevertheless, λA(B)(j) > 0, for all j ∈ A(B) \B, and so

Remark 2.11. If B is not r-absorbing and S(u) = B then ζu exits from ∂BΣ instantly:

inf{t > 0 : ζut 6∈ ∂BΣ} = 0.

We finish by providing a characterization of those faces where the fluid limit equilibrates. Let µ(i),

i ∈ V be the invariant distribution associated to r, i.e.
∑

i∈V

(

µ(i)r(i, j) − µ(j)r(j, i)
)

= 0, ∀i ∈ V.

Let M stand for the set of sites with maximal µ-measure:

M := {i ∈ V, µ(i) = max
j∈V

µ(j)}.
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Proposition 2.12. Let A be a nonempty subset of V . The following assertions are equivalent.

a) u ∈ ∂AΣ =⇒ ζut = u, ∀t ≥ 0.
b) A is r-absorbing and λA is null.

c) A ⊆ M.

In the terminology of Jackson networks, sites in M are called bottlenecks. The fact that the fluid

limit of closed networks equilibrates at a finite time, after which all nonbottlenecks remain empty, was
already proved by [11], see also §7.10 in [13].

2.6. Oblique reflection problem. In this subsection, we relate the fluid limit with the so-called
oblique reflection problem. Let p =

(

p(i, j)
)

i,j∈V
be an irreducible set of transition probabilities so

that p(i, i) = 0, for all i ∈ V . For each i ∈ V , let 1{i} ∈ RV stand for the indicator of i. Define the set
of vectors

wi :=
∑

j∈V

p(i, j)
(

1{i} − 1{j}
)

, i ∈ V. (2.19)

Denote by D(R+,R
V ) the space of RV -valued right continuous functions with left limits and let RV

+

stand for the nonnegative orthant {u ∈ RV : u(i) ≥ 0, ∀i ∈ V }.

Definition 2.13. Given ξ ∈ D(R+,R
V ), a pair ζ, ρ ∈ D(R+,R

V ) is said to solve the oblique reflection

problem (ORP) if

i) For each i ∈ V , the path ρt(i), t ≥ 0, is nondecreasing and

ρt(i) =

∫ t

0
1{ζs(i)=0}dρs(i), ∀t ≥ 0. (2.20)

ii) For all t ≥ 0, we have ζt = ξt +
∑

i∈V ρt(i)wi and ζt ∈ RV
+.

Roughly speaking, solving the ORP amounts to finding a constrained version ζ of an input path ξ
that is restricted to live in RV

+, so that, when ζ hits a face {u ∈ RV
+ : u(i) = 0}, threatening to go

negative, increments of ρ(i), the i-th coordinate of the so-called regulator ρ, push ζ along the direction

wi. Condition (2.20) restricts each coordinate ρ(i) to increase only at times t ≥ 0 when ζt(i) = 0. A
very interesting interpretation of the solution (ζ, ρ) as a temporal evolution of a Leontief economy can
be found in [10].

Notice that the ORP is determined by the irreducible set of transition probabilities p. In addition, let

us fix a vector λ ∈ RV satisfying
∑

i∈V

λ(i) = 0. (2.21)

The following result is an immediate consequence of Theorem 2.5 in [10] and we state it here for future
reference.

Proposition 2.14. For each u ∈ Σ, there exists a unique (ζλ,u, ρλ,u) solving the ORP with input

ξut = u+ tλ, t ≥ 0.

Furthermore, ζλ,u ∈ C(R+,Σ) and the map Γ : Σ → C(R+,Σ) given by Γ(u) = ζλ,u, is continuous
when C(R+,Σ) is endowed with the topology of uniform convergence on compact subsets of R+.

We claim that each ζλ,u, u ∈ Σ, coincides with the fluid limit ζu for a suitably chosen r.

Proposition 2.15. If r = (r(i, j))i,j∈V is related to p and λ by (2.1) and

λ = −
∑

i∈V

r(i)wi, (2.22)
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then ζλ,u = ζu, for all u ∈ Σ, where ζu is the path constructed in (2.14) using r.

We complement the previous proposition assuring that it is always possible to choose such r.

Lemma 2.16. Given an irreducible set of transition probabilities p, satisfying p(i, i) = 0, ∀i ∈ S and
a vector λ satisfying (2.21), there exists some r(i) > 0, i ∈ V , such that (2.22) holds.

3. Characterization of the fluid limit

In this section we propose a more suitable alternative to the ORP introduced in Subsection 2.6. In this
problem (see Definition 3.2), we make use of a family of test functions to characterize the behaviour of

a path. This feature fits with the martingale approach we shall use to prove Theorem 2.9. Additionally,
this alternative problem provides a natural connection between the paths constructed in (2.14) and
the solutions of the ORP.

Let us start introducing the space of test functions. Denote

C1(Σ,R) :=
{

f ∈ C1(U,R) : U open in RV ,Σ ⊂ U ⊆ RV
}

.

For each f ∈ C1(Σ,R) and v ∈ RV , we define v(f) : Σ → R as the derivative of f in direction v:

v(f)(u) =
∂f

∂v
(u), u ∈ Σ.

Recall that r is an irreducible set of transition rates on V . It determines the set of vectors

vi =
∑

k∈V

r(i, k)
(

1{k} − 1{i}
)

, i ∈ V. (3.1)

Definition 3.1. For each i ∈ V , let Di denote the family of functions f ∈ C1(Σ,R) satisfying

vi(f)(u) = 0, for all u ∈ Σ such that u(i) = 0.

In addition, for every nonempty B ⊆ V , let us denote DB := ∩i∈BDi.

The set of transition rates r also determines the vector

λ :=
∑

i∈V

vi, or equivalently λ(j) =
∑

i∈V

[

r(i, j) − r(j, i)
]

, j ∈ V. (3.2)

Observe that λ coincides with λV in (2.8) and also satisfies (2.22) if p corresponds to r as in (2.1).
Recall the notion of r-absorbing subsets of V introduced in Definition 2.2. Let us denote,

Σabs := {u ∈ Σ : S(u) is r-absorbing}

where S(u) is the support of u, as defined in (2.10).

Definition 3.2. Let us say that ζ ∈ C(R+,Σ) solves the (λ,DV )-problem if it satisfies the following
two conditions.

(A) For every f ∈ DV ,

f(ζt) = f(ζ0) +

∫ t

0
λ(f)(ζs) ds, ∀t ≥ 0.

(B) The path ζ enters instantly to Σabs, i.e. inf{t ≥ 0 : ζt ∈ Σabs} = 0.

The main goal of this section is to prove that, for each u ∈ Σ, the path ζu,λ introduced in Proposition
2.14 is the unique solution of the (λ,DV )-problem starting at u.
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3.1. Trace and harmonic extension. For each nonempty A ⊆ V and v,w ∈ RA we denote

〈v,w〉 =
∑

i∈A

v(i)w(i).

The Markov generator L : RV → RV associated to r is given by

Lw(i) = 〈vi, w〉, w ∈ RV , i ∈ V,

where vi is the vector given in (3.1). Let us say that w ∈ RV is harmonic on B ⊆ V if

〈vk, w〉 = 0, ∀k ∈ B.

Recall that (Xk
s , s ≥ 0) stands for a continuous-time random walk with transition rates r and starting

at k ∈ V , and we denote by T k
B the respective hitting time of B ⊆ V , as defined in (2.5). For each

nonempty A ⊆ V and i ∈ A, define the vector 1Ai ∈ RV as

1Ai (k) = P (T k
A = T k

i ), k ∈ V.

It is well known that 1Ai is the unique vector satisfying

{

1Ai = 1{i}, on A,

1Ai is harmonic on V \ A.

Given w ∈ RA, let us denote by wA ∈ RV its (unique) harmonic extension:
{

wA = w, on A,
wA is harmonic on V \ A.

(3.3)

It is easy to verify that

wA =
∑

i∈A

w(i)1Ai . (3.4)

Recall from Subsection 2.2 the notion of the trace of r on A, denoted by rA. For each nonempty
A ⊆ V , define the set of vectors v

A
i ∈ RA, i ∈ A as

v
A
i =

∑

k∈A

rA(i, k)
(

1{k} − 1{i}
)

.

The following lemma provides an alternative definition of vectors v
A
i .

Lemma 3.3. For any nonempty A ⊆ V , w ∈ RA and i ∈ A we have

〈vA
i , w〉 = 〈vi, w

A〉

where wA ∈ RV stands for the harmonic extension of w, as in (3.3).

Proof. For each i, j ∈ A, i 6= j we have

〈vA
i , 1{j}〉 = rA(i, j) = r(i, j) +

∑

k 6∈A

r(i, k)1Aj (k) =
∑

k∈V

r(i, k)1Aj (k) = 〈vi, 1
A
j 〉. (3.5)

Since v
A
i is orthogonal to any constant vector in RA and similarly to vi, it follows from (3.5) that

〈vA
i , 1{i}〉 = −

∑

j∈A\{i}

〈vA
i , 1{j}〉 = −

∑

j∈A\{i}

〈vi, 1
A
j 〉 = 〈vi, 1

A
i 〉.

Finally, the claim follows from (3.4). �
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3.2. Proof of Lemma 2.3. Recall the definition of the vector λA ∈ RA from (2.8) or equivalently,

λA =
∑

i∈A

v
A
i , for each nonempty A ⊆ V .

It follows from Lemma 3.3 that, for any nonempty A ⊆ V and w ∈ RA,

〈λA, w〉 = 〈λ,wA〉, where wA ∈ RV stands for the harmonic extension of w. (3.6)

The following lemma allows us to relate the vectors λA, A ⊆ V .

Lemma 3.4. Given A ( B ⊆ V , with A nonempty, we have

λA(j) =
∑

k∈B

λB(k)1Aj (k), ∀j ∈ A.

Proof. By using Lemma 3.3 we have

λA(j) =
∑

i∈A

〈vA
i , 1{j}〉 =

∑

i∈A

〈vi, 1
A
j 〉 =

∑

i∈B

〈vi, 1
A
j 〉 (3.7)

In the last equality we used that 1Aj is harmonic on B \A. Now, since 1Aj is also the harmonic extension

of 1Aj |B (restriction of 1Aj to B), then Lemma 3.3 provides

〈vB
i , 1

A
j |B〉 = 〈vi, 1

A
j 〉, for each i ∈ B (3.8)

Putting (3.7) and (3.8) together, we get the desired result. �

Proof of Lemma 2.3. We assume that B is r-absorbing, A is a proper subset of B and

λB(k) ≤ 0, ∀k ∈ B \ A. (3.9)

Fix first an arbitrary ℓ ∈ B \ A. Applying Lemma 3.4 for λA∪{ℓ} and λB , we get

λA∪{ℓ}(ℓ) =
∑

k∈B

λB(k)1
A∪{ℓ}
ℓ (k) =

∑

k∈B\A

λB(k)1
A∪{ℓ}
ℓ (k).

This last expression is nonpositive due to (3.9). Fix now an arbitrary j ∈ V \B. Applying Lemma 3.4
for λA∪{j} and λB∪{j} we get

λA∪{j}(j) = λB∪{j}(j) +
∑

k∈B\A

λB∪{j}(k)1
A∪{j}
j (k) ≤ λB∪{j}(j) +

∑

k∈B\A

λB∪{j}(k). (3.10)

Let us now apply Lemma 3.4 to relate λB and λB∪{j}:

λB(k) = λB∪{j}(j)1Bk (j) + λB∪{j}(k), for each k ∈ B. (3.11)

Recall that 1Bk (j) = P (T j
B = T j

k ). Then, by summing up all the terms in (3.11), for k ∈ B \A, we get

∑

k∈B\A

λB(k) = λB∪{j}(j)P (T j
B = T j

B\A) +
∑

k∈B\A

λB∪{j}(k). (3.12)

By using (3.12) in (3.10) and hypothesis (3.9) we obtain

λA∪{j}(j) ≤ λB∪{j}(j)P
(

T j
B = T j

A

)

+
∑

k∈B\A

λB(k) ≤ λB∪{j}(j).

Since B is r-absorbing then λA∪{j}(j) ≤ 0. We have thus shown that A is r-absorbing. �
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3.3. Absorption. The main feature of any ζ ∈ C(R+,Σ) satisfying (A) is the emergence of absorbing

faces in the sense of Remark 2.10. In this subsection, we prove a preliminary result in this direction.
Namely, in Lemma 3.7, we prove that if ζ ∈ C(R+,Σ) satisfies (A) and S = S(ζ0) is r-absorbing then
ζ does not exit ∂SΣ as long as its S-coordinates are strictly positive.

Given h ∈ DB, it will be useful to get a function f ∈ DV , so that f ≡ h and λ(f) ≡ λ(h) on a large
subset of Σ. This is guaranteed by the following lemma whose proof is very technical and we postpone
to Section 5.

Lemma 3.5. Let A ⊆ V be nonempty and B = V \ A. Given h ∈ DB and ǫ > 0, there exists f ∈ DV

such that

u ∈ Σ, min
i∈A

u(i) ≥ ǫ =⇒ f(u) = h(u) and λ(f)(u) = λ(h)(u). (3.13)

In the following lemma we show how λA arises as the velocity of a certain projection of ζ on RA.

Lemma 3.6. If ζ ∈ C(R+,Σ) satisfies (A) then, for any nonempty A ⊆ V and 0 ≤ s1 < s2,

min
i∈A

s1≤t≤s2

ζt(i) > 0 =⇒ 〈1Ai , ζt〉 = 〈1Ai , ζs1〉+ λA(i)(t− s1), ∀i ∈ A,∀t ∈ [s1, s2].

Proof. Fix some i ∈ A and consider h(u) = 〈1Ai , u〉, u ∈ Σ. Since, for all u ∈ Σ, we have

vj(h)(u) = 〈vj, 1
A
i 〉, ∀j ∈ V,

then h ∈ DV \A. Due to (3.6) we have

λ(h)(u) = 〈λ, 1Ai 〉 = λA(i), ∀u ∈ Σ.

Denote ǫ := min{ζt(j) : j ∈ A, s1 ≤ t ≤ s2}. By Lemma 3.5, there exists f ∈ DV such that

min
j∈A

u(j) ≥ ǫ =⇒ f(u) = 〈1Ai , u〉 and λ(f)(u) = λA(i).

Now, the desired result follows from applying (A) to function f . �

We now introduce some elements from linear algebra that we shall use in the proof of Lemma 3.7. Let
S be a nonempty proper subset of V and denote B = V \ S. Consider the set of vectors

eBj = 1
S∪{j}
j , j ∈ B.

Notice that, for any j, k ∈ B, we have

〈vk, e
B
j 〉 = 0, if k 6= j and 〈vj, e

B
j 〉 < 0.

Therefore, (eBj )j∈B , is linearly independent and, for each k ∈ B, we may write

1{k} =
∑

j∈B

αj
ke

B
j , where αj

k =
〈vj , 1{k}〉

〈vj , e
B
j 〉

· (3.14)

For all j, k ∈ B, it is simple to verify that

αk
k ≥ 0 and αj

k ≤ 0, if j 6= k. (3.15)

Lemma 3.7. Fix some ζ ∈ C(R+,Σ). Denote S = S(ζ0) and

T = inf
{

t ≥ 0 :
∏

i∈S ζt(i) = 0
}

.

If ζ satisfies condition (A) and S is r-absorbing then

ζt(j) = 0, ∀j ∈ V \ S and t ∈ [0, T ).
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Proof. Assume that B := V \ S is nonempty, otherwise the claim is trivial. Clearly,

〈eBj , 1〉 ≥ 1, ∀j ∈ B.

Define, for each j ∈ B and u ∈ Σ,

hj(u) =
〈eBj , u〉

〈eBj , 1〉
, so that 0 ≤ hj(u) ≤ 1.

Also, denote ‖u‖h := maxj∈B hj(u) and observe that

‖u‖h = 0 ⇐⇒ u(j) = 0, ∀j ∈ B. (3.16)

Let us assume that the claim is false and proceed by contradiction. By (3.16),

∃ δ > 0 such that sup
0≤t<T

‖ζt‖h > δ.

Define s2 := inf{0 ≤ t < T : ‖ζt‖h ≥ δ}. By continuity of ζ,

s2 > 0, hj(ζs2) ≤ δ, ∀j ∈ B and hk(ζs2) = δ, for some k ∈ B. (3.17)

Let us now prove that ζs2(k) ≥ δ. By using (3.14), we have

ζs2(k) = 〈1{k}, ζs2〉 =
∑

j∈B

αj
k〈e

B
j , ζs2〉 =

∑

j∈B

αj
k〈e

B
j , 1〉hj(ζs2).

By (3.17) and (3.15), the last expression is bounded below by

δ
∑

j∈B

αj
k〈e

B
j , 1〉 = δ〈1{k}, 1〉 = δ.

Now, ζs2(k) ≥ δ guarantees the existence of some s1 ∈ (0, s2), so that

ζt(i) > 0, for all t ∈ [s1, s2] and i ∈ S ∪ {k}.

Therefore, by Lemma 3.6,

〈eBk , ζs2〉 = 〈eBk , ζs1〉+ λS∪{k}(k)(s2 − s1).

Since S is r-absorbing then λS∪{k}(k) ≤ 0 and so

〈eBk , ζs1〉 ≥ 〈eBk , ζs2〉 =⇒ hk(ζs1) ≥ hk(ζs2) = δ.

This contradicts the minimality of s2. We are done. �

3.4. Starting at Σabs. In this subsection we shall prove that any solution of the (λ,DV )-problem
starting at u ∈ Σabs, must coincide with ζu constructed in (2.14). Our strategy will be to iterate the
result we state in the following lemma.

Lemma 3.8. Suppose that ζ ∈ C(R+,Σ) satisfies condition (A) and that S := S(ζ0) is r-absorbing.
Define,

λ̂S(i) :=

{

λS(i), for i ∈ S,
0, otherwise,

and T := inf
{

t ≥ 0 : ζ0 + tλ̂S 6∈ Σ
}

,

where inf ∅ = ∞. Then

ζt = ζ0 + tλ̂S , for all t ∈ [0, T ). (3.18)

Moreover, if T < ∞ then S(ζT ) is r-absorbing and a proper subset of S(ζ0).
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Proof. Consider

T̂ := inf
{

t ≥ 0 :
∏

i∈S ζt(i) = 0
}

, where inf ∅ = ∞.

By continuity of ζ, we have T̂ > 0. Fix an arbitrary T ′ < T̂ . Since ζt(i) > 0, for all i ∈ S and t ∈ [0, T ′]

then, by Lemma 3.6,

〈1Si , ζt〉 = 〈1Si , ζ0〉+ tλS(i), for all i ∈ S and t ∈ [0, T ′]. (3.19)

By Lemma 3.7, we conclude from (3.19) that

ζt = ζ0 + tλ̂S , for all t ∈ [0, T̂ ). (3.20)

We now show that T̂ = T . By (3.20) and definition of T̂ we have, for all t < T̂ ,
∏

i∈S

(

ζ0(i) + tλ̂S(i)
)

> 0 =⇒ ζ0 + tλ̂S ∈ Σ.

Therefore, T̂ ≤ T . So, it remains to analyse the case in which T̂ < ∞. By definition of λ̂S and T̂ , we
have

S(ζT̂ ) ⊆ S and S \ S(ζT̂ ) = {i ∈ S : ζT̂ (i) = 0} 6= ∅. (3.21)

In addition, for any i ∈ S \ S(ζT̂ ) we have

0 = ζT̂ (i) = ζ0(i) + T̂ λS(i) =⇒ λS(i) = −
ζ0(i)

T̂
< 0. (3.22)

Hence, for all i ∈ S \ S(ζT̂ ) and t > T̂ we have ζ0(i) + tλS(i) < 0. That is, T ≤ T̂ and so

T = inf
{

t ≥ 0 : ζ0 + tλ̂S 6∈ Σ
}

= inf
{

t ≥ 0 :
∏

i∈S ζt(i) = 0
}

.

Now, (3.18) follows from (3.20). For the final assertion, suppose that T < ∞. (3.21) implies that S(ζT )
is a proper subset of S. By Lemma 2.3 (proved in Subsection 3.2) and (3.22) we conclude that S(ζT )
is r-absorbing. �

Lemma 3.9. For each u ∈ Σabs, there exists at most one ζ ∈ C(R+,Σ) satisfying (A) and ζ0 = u.

Proof. Set T0 = 0, v0 = u, define

λv0(i) =

{

λS(v0)(i), for i ∈ S(v0),
0, otherwise,

and denote

T v0 := inf
{

t ≥ 0 : v0 + tλv0 6∈ Σ
}

where inf ∅ = ∞.

By Lemma 3.8,

ζt = v0 + tλv0 , for all t ∈ [0, T v0).

If T v0 = ∞, we are done. Otherwise, we set T1 := T v0 , v1 := ζT1 , define

λv1(i) =

{

λS(v1)(i), for i ∈ S(v1),
0, otherwise,

and denote

T v1 := inf
{

t ≥ 0 : v1 + tλv1 6∈ Σ
}

where inf ∅ = ∞.

Consider the path ζ̃ ∈ C(R+,Σ) defined by

ζ̃t = ζT1+t, t ≥ 0,

It is not difficult to check that ζ̃ satisfies (A). Lemma 3.8 assures that S(ζ̃0) is r-absorbing. Therefore,

we may apply Lemma 3.8 to ζ̃ and conclude that

ζt = v1 + (t− T1)λ
v1 , for all t ∈ [T1, T1 + T v1).
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If T v1 = ∞, we are done. Otherwise, we set T2 := T1 + T v1 , v2 := ζT2 and repeat the same procedure.

Since S(v0) ) S(v1) ) . . . this procedure must stop. We end up obtaining a finite sequence of pairs

(Tn, vn) ∈ R+ ×Σ, n = 0, 1, . . . , f,

and vectors

λvn(i) =

{

λS(vn)(i), for i ∈ S(vn),
0, otherwise,

so that, for each n < f ,

ζt = vn + (t− Tn)λ
vn , for t ∈ [Tn, Tn+1),

λvf is null and ζt = vf for all t ≥ Tf . �

Notice that at this point we are not allowed to use A(·) because we have not proven Lemma 2.5 yet.

Nevertheless, Lemma 3.8 and the proof of Lemma 3.9 make clear that

Remark 3.10. For u ∈ Σabs, the construction of ζu in (2.14) avoids the use of A(·) and is in force.

Furthermore, ζu is the only possible Σ-valued continuous path satisfying (A) and ζu0 = u.

Our next step is to relate the (λ,DV )-problem with the ORP.

3.5. Proof of Proposition 2.15. Consider the ORP introduced in Definition 2.13 and corresponding

to the set of transition probabilities p, related to r as in (2.1). For the vector λ given in (3.2) and each
u ∈ Σ, recall that (ζλ,u, ρλ,u) stands for the unique solution of the ORP with input

ξut = u+ tλ, t ≥ 0.

Lemma 3.11. For all u ∈ Σ, the path ζλ,u satisfies (A).

Proof. Fix an arbitrary f ∈ DV . To keep notation simple, denote ζ = ζλ,u and ρ = ρλ,u. By ii) in

Definition 2.13 we have that each ζ(j) is a function of bounded variation and

dζt(j) = λ(j)dt+
∑

i∈V

wi(j)dρt(i), for j ∈ V .

We may now apply the chain rule for bounded variation functions (see e.g. Theorem 3.96 in [1]) to get

df(ζt) = λ(f)(ζt) dt+
∑

i∈V

wi(f)(ζt) dρt(i) = λ(f)(ζt) dt−
∑

i∈V

vi(f)(ζt)

r(i)
dρt(i), (3.23)

where, for the last equality, we have used the relation

vi = −r(i)wi, with r(i) =
∑

j∈V

r(i, j), for each i ∈ V .

From definition of DV and (2.20), it follows that

vi(f)(ζt)

r(i)
1{ζt(i)=0} dρt(i) = 0 and

vi(f)(ζt)

r(i)
1{ζt(i)>0} dρt(i) = 0, (3.24)

for each i ∈ V . Putting (3.23) and (3.24) together we get the desired result. �

As an immediate consequence of this lemma and Remark 3.10, we conclude that,

Remark 3.12. If u ∈ Σabs then ζλ,u is the unique solution of the (λ,DV )-problem starting at u.

Furthermore, ζλ,u = ζu, ∀u ∈ Σabs.

Recall that we have already proved Lemma 2.3 and so Lemma 2.4 is in force at this point.
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Lemma 3.13. Let S be nonempty and A be r-absorbing such that

S ⊆ A and λA(j) > 0, ∀j ∈ A \ S. (3.25)

For any u ∈ Σ, such that S(u) = S, there exists some δ > 0 such that

S(ζλ,ut ) = A, ∀t ∈ (0, δ].

Proof. If S = A then, by Remark 3.12, ζλ,u = ζu and the assertion follows from the construction of
ζu. Suppose now that S ( A. Define

λ̂A(i) =

{

λA(i), for i ∈ A,

0, otherwise,

fix some u ∈ Σ such that S(u) = S and consider

T = inf{t ≥ 0 : u+ tλ̂A 6∈ Σ}.

By (3.25) and definition of λ̂A, we have 0 < T < ∞. Fix now some δ > 0 and a sequence sn > 0,

n ≥ 1, so that

δ + sn < T, ∀n ≥ 1 and sn ↓ 0. (3.26)

Define the sequences (un) and (T n) as

un := u+ snλ̂
A and T n = inf{t ≥ 0 : un + tλ̂A 6∈ Σ}.

By (3.25) and the fact that sn < T , we have S(un) = A. Then, by Remark 3.12, for all n ≥ 1,

ζλ,un
t = un + tλ̂A, ∀t ∈ [0, T n]. (3.27)

Due to the fact that sn < T < ∞, we have T n = T − sn and so, by (3.26),

δ < T n, for all n ≥ 1. (3.28)

Finally, from (3.28), (3.27) and the continuity of Γ, as stated in Proposition 2.14, we have

ζλ,ut = lim
n→∞

ζλ,un
t = u+ tλ̂A, ∀t ∈ (0, δ].

By (3.25), S(ζλ,ut ) = A, for all t ∈ (0, δ]. �

We may now provide the following characterization of the r-absorbing sets.

Lemma 3.14. A nonempty A ⊆ V is r-absorbing if, and only if, for all u ∈ ∂AΣ,

ζλ,ut ∈ ∂AΣ, ∀t ≥ 0. (3.29)

Proof. Let us first assume that A is r-absorbing and fix some u ∈ ∂AΣ. Denote S := S(u). If S = A

then, by Remark 3.12, ζλ,u = ζu and (3.29) follows from the construction of ζu. So, we may assume
that S ( A and denote by |A \ S| the cardinality of A \ S. Define a sequence (un) as

un(i) =







(1− 2−n)u(i) for i ∈ S,

(2n|A \ S|)−1 for i ∈ A \ S,
0 for i ∈ V \A,

so that S(un) = A, ∀n ≥ 1, and un → u. As we have already noticed, for all n ≥ 1, we have

ζλ,un
t = ζun

t ∈ ∂AΣ, ∀t ≥ 0. (3.30)

By letting n → ∞ in (3.30) and using the continuity of Γ as stated in Proposition 2.14, we get (3.29).

Assume now that A is not r-absorbing. By Lemma 2.4, there exists an r-absorbing set B such that

A ( B and λB(j) > 0, ∀j ∈ B \ A.

Take some u ∈ Σ, such that S(u) = A. By Lemma 3.13, there exists some δ > 0 such that S(ζλ,uδ ) = B
contradicting (3.29). We are done. �
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From this, it is now clear that the intersection of two r-absorbing subsets is still r-absorbing.

Proof of Lemma 2.5. Let A and B be r-absorbing subsets. Since ∅ is considered r-absorbing, we may
assume that S = A∩B is nonempty. Fix an arbitrary u ∈ ∂SΣ = ∂AΣ∩∂BΣ. By Lemma 3.14 applied

to subsets A and B we have

ζλ,ut ∈ ∂SΣ, ∀t ≥ 0.

Finally, Lemma 3.14 applied to S assures that S is r-absorbing. �

We have finally the notion of A(·) in force. Let us prove its characterization as stated in Lemma 2.7.

Proof of Lemma 2.7. Fix a nonempty S ⊆ V . By Lemma 2.3, A(S) is an r-absorbing set satisfying

S ⊆ A(S) and λA(S)(j) > 0, ∀j ∈ A(S) \ S.

Let A be an r-absorbing set satisfying (3.25). Fix some u ∈ Σ such that S(u) = S. According to
Lemma 3.13, there exists some δ > 0 such that

A = S(ζλ,uδ ) = A(S).

We are done. �

We have finally collected all the results used in Subsection 2.4 for the construction of

ζu ∈ C(R+,Σ), for all u ∈ Σ.

We are now ready to prove that ζu = ζλ,u, for all u ∈ Σ.

Proof of Proposition 2.15. Fix an arbitrary u ∈ Σ, a sequence sn > 0, n ≥ 1, such that sn ↓ 0, and
denote un := ζusn , n ≥ 1. By property (2.15),

ζun
t = ζusn+t, for all t ≥ 0 and n ≥ 1. (3.31)

As we have already noticed in (2.18), we have un ∈ Σabs and then, by Remark 3.12,

ζλ,un = ζun , ∀n ≥ 1. (3.32)

By using (3.31), (3.32) and the continuity of Γ as stated in Proposition 2.14, we get

ζut = lim
n→∞

ζun
t = lim

n→∞
ζλ,un
t = ζλ,ut ,

for any t ≥ 0. We are done. �

3.6. Well-posedness of the (λ,DV )-problem. We may finally prove the main result of this section.

The uniqueness part of Proposition 3.15 below is crucial in our approach to get the fluid limit for the
zero-range process.

Proposition 3.15. For any u ∈ Σ, the unique solution of the (λ,DV )-problem that starts at u is
ζλ,u = ζu.

Proof. Suppose that ζ ∈ C(R+,Σ) solves the (λ,DV )-problem and ζ0 = u. According to Remark 3.12,
if u ∈ Σabs then ζ = ζu = ζλ,u. Assume then that u ∈ Σ \ Σabs. According to (B), there exists a

sequence sn ↓ 0 so that

un := ζsn ∈ Σabs, for all n ≥ 1. (3.33)

Consider the sequence of paths

ζ
(n)
t := ζsn+t, t ≥ 0.
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It is simple to verify that each ζ(n) satisfies (A). Therefore, by (3.33) and Remark 3.12 we have

ζ(n) = ζλ,un , ∀n ≥ 1, and so

ζt = lim
n→∞

ζ
(n)
t = lim

n→∞
ζλ,un
t = ζλ,ut , ∀t ≥ 0.

In the last equality, we have used the continuity of Γ as stated in Proposition 2.14. We have thus

proved uniqueness for the (λ,DV )-problem. By Lemma 3.11, it remains to show that ζλ,u satisfies
(B), when u ∈ Σ \ Σabs. But this follows immediately from the fact that ζλ,u = ζu, Proposition 2.15,
and (2.18). �

3.7. Remaining results. We finish this section by proving Lemma 2.16 and Proposition 2.12, which
complete the description of the fluid limit ζu, u ∈ Σ.

Proof of Lemma 2.16. Fix an irreducible set of transition probabilities p on V satisfying p(i, i) = 0,

∀i ∈ V , and recall the definition of the set of vectors wi, i ∈ V , given in (2.19). Let µ(i), i ∈ V be the
invariant distribution corresponding to p so that

∑

i∈V

µ(i)wi = 0 (3.34)

Consider the subspace orthogonal to the constant 1 ∈ RV :

1
⊥ := {v ∈ RV : 〈1, v〉 = 0}

and the closed convex cone

C :=
{

∑

i∈V

aiwi : ai ≥ 0,∀i ∈ V
}

⊆ 1
⊥.

The polar cone of C respect to 1
⊥ is

C∗ :=
{

v ∈ 1
⊥ : 〈v, u〉 ≤ 0,∀u ∈ C

}

.

If v ∈ C∗ then

µ(i)〈wi, v〉 ≤ 0, ∀i ∈ V.

From this fact and (3.34) it follows that 〈wi, v〉 = 0, i ∈ V , and therefore

v(i) =
∑

j∈V

p(i, j)v(j).

Since p is irreducible then v is constant. But v ∈ 1
⊥ and so v is null. We have proved that C∗ = {0},

which in turn implies that C = 1
⊥. Therefore, there exists some ai, i ∈ V , such that

−λ =
∑

i∈V

aiwi =
∑

i∈V

(ai + sµ(i))wi, ∀s ∈ R,

where the second identity holds by (3.34). By choosing a sufficiently large s > 0, we get r(i) :=
ai + sµ(i) > 0, ∀i ∈ V as desired. �

We now aim to prove Proposition 2.12. Let µ(i), i ∈ V be the invariant distribution corresponding to
the transition rates r and denote

M :=
{

i ∈ V : µ(i) = max
k∈V

µ(k)
}

.

Since r is irreducible then, for all nonempty B ⊆ V , the trace rB is also irreducible and µ(i), i ∈ V , is
an invariant measure for rB , that is

∑

i∈B

µ(i)rB(i, j) = µ(j)
∑

i∈B

rB(j, i), ∀j ∈ B.
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Therefore,

λB(j) =
∑

i∈B

[

rB(i, j) − rB(j, i)
]

=
∑

i∈B

(

1−
µ(i)

µ(j)

)

rB(i, j), ∀j ∈ B. (3.35)

The following lemma is a straightforward consequence of (3.35).

Lemma 3.16. For any nonempty B ⊆ V we have

λB is null ⇐⇒ µ is constant on B.

Proof. Assume that λB is null. Therefore, for each j ∈ B,

∑

i∈B

(

1−
µ(i)

µ(j)

)

rB(i, j) = 0 (3.36)

Denote

MB := {j ∈ B : µ(j) = max
i∈B

µ(i)}.

Suppose that MB ( B. Fix some i0 ∈ B \MB . Since rB is irreducible,

rB(i0, j0) > 0, for some j0 ∈ MB . (3.37)

Since
(

1−
µ(i)

µ(j0)

)

rB(i, j0) ≥ 0, ∀i ∈ B,

then, from (3.36) and (3.37), it follows that µ(i0) = µ(j0), which contradicts i0 ∈ B \MB. Therefore
µ is constant on B. The converse follows immediately from (3.35). �

Proof of Proposition 2.12. We first prove that a) and b) are equivalent. Assume that a) holds. By
Lemma 3.14, A is r-absorbing. Besides, by construction of ζu, λA must be null. That proves a) ⇒ b).

b) ⇒ a) is obvious from the construction of ζu. Now, let us prove that b) and c) are equivalent.
Assuming b), by Lemma 3.16, µ is constant on A. To conclude c), it remains to show that A ∩M is
nonempty. Suppose that A ∩M = ∅ and fix some j ∈ M. Then

1−
µ(i)

µ(j)
> 0, ∀i ∈ A. (3.38)

Since rA∪{j} is irreducible, there exists some i ∈ A such that rA∪{j}(i, j) > 0. From this fact, (3.38)
and (3.35), we have that

λA∪{j}(j) =
∑

i∈A

(

1−
µ(i)

µ(j)

)

rA∪{j}(i, j) (3.39)

turns out to be strictly positive, contradicting that A is r-absorbing. Hence b) ⇒ c). Finally assume

that c) holds. By Lemma 3.16, λA is null. For j ∈ V \ A, we may apply (3.39) and the fact that
µ(j) ≤ µ(i), ∀i ∈ A, to conclude that

λA∪{j}(j) ≤ 0.

Thus A is r-absorbing. By the fact that λA(i) = 0, we conclude that ζut = u, t ≥ 0. We are done. �

4. Fluid limit for the zero-range process

We will denote by LN the generator of the Markov process ζN , given in (2.2), which acts on a test

function f : ΣN → R by

LNf(u) = N
∑

i,j∈V

g(Nu(i)) r(i, j)
[

f
(

u+
1{j} − 1{i}

N

)

− f(u)
]

, u ∈ ΣN .
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4.1. Tightness.

Proof of Proposition 2.1. Since ΣN is finite, for all N ≥ 1, then, in order to prove Proposition 2.1, it
is enough to consider an arbitrary sequence uN ∈ ΣN , N ≥ 1 and show that

(PN
uN

)N∈N is tight and every limit point is supported on C(R+,Σ). (4.1)

Since Σ is compact, by Theorems 13.2 and 13.4 in [9], assertion (4.1) follows from,

lim
δ→0

lim sup
N→∞

P
[

sup
s, t<T,
|s−t|<δ

‖ζNt − ζNs ‖ > ǫ
]

= 0, for all ǫ > 0 and T > 0, (4.2)

where ζN is starting at uN . Let us denote fj(u) = u(j), j ∈ V , u ∈ Σ. For each j ∈ V , we have

ζNt (j) = ζN0 (j) +

∫ t

0
LNfj(ζr) dr +MN,j

t , t ≥ 0, (4.3)

where MN,j is a martingale with respect to the filtration generated by ζN . By using (4.3), we can
bound the probability in (4.2) by

∑

j∈V

P
[

sup
s, t<T,
|s−t|<δ

∣

∣

∫ t

s
LNfj(ζr) dr

∣

∣ ≥
ǫ

2|V |

]

+
∑

j∈V

P
[

sup
0≤s≤T

|MN,j
s | ≥

ǫ

4|V |

]

, (4.4)

where |V | denotes the cardinality of V . Now, it is clear that

LNfj(u) =
∑

i∈V

[

g(Nu(i)) r(i, j) − g(Nu(j))r(j, i)
]

is bounded and so, the first term in (4.4) vanishes as δ → 0. On the other hand, by Doob’s and

Chebyshev’s inequalities, the probability in the second term of (4.4) is bounded by

26 |V |2

ǫ2
E
[

(MN,j
T )2

]

=
26 |V |2

ǫ2
E
[

∫ T

0

(

LN (fj)
2(ζNs )− 2ζNs (j)LNfj(ζ

N
s )

)

ds
]

. (4.5)

The above equality is shown, for instance, in [25], Appendix 1.5. An elementary computation shows
that

LN (fj)
2(u)− 2u(j)LNfj(u) ≤

C

N
, ∀u ∈ ΣN , (4.6)

for a positive constant C. Therefore, by (4.5) and (4.6) the second term in (4.4) vanishes as N → ∞. �

4.2. Convergence of LN on DV .

Lemma 4.1. For any f ∈ DV we have

lim
N→∞

sup
u∈ΣN

∣

∣LNf(u)− λ(f)(u)
∣

∣ = 0.

Proof. Fix f ∈ DV . For each u ∈ ΣN , we approximate f by its first-order Taylor polynomial to get

LNf(u) = N
∑

j, k∈V

g(Nu(j)) r(j, k)
[〈

∇f(u),
1{k} − 1{j}

N

〉

+
RN

j,k(u)

N

]

where

RN
j,k(u) = 〈∇f(v)−∇f(u), 1{k} − 1{j}〉,

for some v, satisfying ‖v − u‖ ≤ 2
N . Since ∇f is continuous on the compact set Σ,

lim
N→∞

sup
u∈Σ

|RN
j,k(u)| = 0, for each j, k ∈ V . (4.7)

Denote

RN (u) :=
∑

j, k∈V

g(Nu(j)) r(j, k)RN
j,k(u)
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so that

LNf(u)− λ(f)(u) =
∑

j∈V

(g(Nu(j)) − 1)vj(f)(u) +RN (u). (4.8)

Let M1 and M2 be positive constants such that

max
j∈V

sup
u∈Σ

|vj(f)(u)| < M1 and sup
n∈N0

|g(n) − 1| < M2. (4.9)

For an arbitrary ǫ > 0, there exists some δ > 0 such that, for all j ∈ V ,

|u(j)| < δ =⇒ |vj(f)(u)| <
ǫ

M2
, (4.10)

and there exists some N0 ∈ N such that

n ≥ N0δ =⇒ |g(n)− 1| <
ǫ

M1
. (4.11)

From (4.9), (4.10) and (4.11), it follows that

lim
N→∞

sup
u∈Σ

|g(Nu(j)) − 1||vj(f)(u)| = 0, ∀j ∈ V. (4.12)

Finally, by using (4.12) and (4.7) in equation (4.8) we obtain the desired result. �

4.3. Fluid limits satisfy condition (A). Let us fix a sequence uN , N ≥ 1, so that un → u. In
virtue of Proposition 2.1, we may assume that

PN
uN

converges weakly to some probability P in C(R+,Σ).

Thanks to the Skorokhod representation theorem, there exists a sequence of random paths ζN , N ≥ 1,
and ζ so that

ζN ∼ PN
uN

, ζ ∼ P

and ζN converges to ζ in the Skorokhod topology, almost surely. But, since ζ is almost surely contin-

uous, then (see, for instance, Proposition 1.17, § Vl in [22])

ζN converges to ζ uniformly in compact subsets of R+, (4.13)

with probability one.

Proposition 4.2. The random path ζ satisfies condition (A), almost surely.

Proof. Let f ∈ DV . Let us first prove that

Mf
t = f(ζt)− f(ζ0)−

∫ t

0
λ(f)(ζs) ds, t ≥ 0,

determines a martingale with respect to the filtration generated by ζ:

Ft := σ(ζs : 0 ≤ s ≤ t), t ≥ 0.

Fix some s ≥ 0, k ∈ N, times (s1, s2, . . . , sk) ∈ [0, s]k, continuous functions Ψi : Σ → R, i = 1, . . . , k
and define Ψ(X) = Ψ1(Xs1)Ψ2(Xs2) · · ·Ψk(Xsk), for X ∈ D(R+,Σ). In virtue of (4.13), we have that

E
[

Ψ(ζ)
(

f(ζt)− f(ζs)−

∫ t

s
λ(f)(ζr) dr

)]

(4.14)

is the limit of

E
[

Ψ(ζN)
(

f(ζNt )− f(ζNs )−

∫ t

s
λ(f)(ζNr ) dr

)]

, as N → ∞.

But, for all N ≥ 1, we have

E
[

Ψ(ζN)
(

f(ζNt )− f(ζNs )−

∫ t

s
LNf(ζNr ) dr

)]

= 0.
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So, by Lemma 4.1, the expected value in (4.14) vanishes. Then, we conclude that Mf
t , t ≥ 0 is a

(Ft)-martingale, for any f ∈ DV . Now, DV is an algebra, that is

f, g ∈ DV =⇒ fg ∈ DV .

Therefore, (see for instance Lemma 6.7 in [5]) for any f, g ∈ DV , we have that

Mf
t M

g
t −

∫ t

0
Γ(f, g)(ζs) ds, t ≥ 0,

is a (Ft)-martingale, where

Γ(f, g) = λ(fg)− gλ(f)− fλ(g).

By Leibniz rule, Γ vanishes and so E[(Mf
t )

2] = 0, for all t ≥ 0 and f ∈ DV . We conclude that

f(ζt)− f(ζ0)−

∫ t

0
λ(f)(ζs) ds = 0, ∀t ≥ 0,

almost surely, as desired. �

4.4. Coupled zero-range processes. We introduce a coupling method that will allow us to con-
struct and compare zero-range processes associated to different rate functions, for all initial particle
configurations, in the same probability space.

Graphical representation Independently for each site i ∈ V , consider an intensity 1-Poisson

process Γi on the first quadrant {(t, u) ∈ [0,∞)×[0,∞)}, and an independent sequence of i.i.d. random

variables
(

Y i
n

)

n≥1
taking values in V with distribution (p(i, j))j∈V , with p(i, j) = r(i,j)

r(i) , (r(i, j))i,j∈V

the rates of the random walk. Let Γ = (Γi)i∈V . We will now give an explicit construction of the
zero-range process (ηt, t ≥ 0) associated to an initial configuration η0, a bounded rate function γ(n)
and the underlying

(

r(i, j)
)

i,j∈V
random walk. Assume that the zero-range process (ηs, s < t) has

been built up to time t−, and that up to time t− exactly m particles have exited site i. By the fact
that (γ(n))n≥0 is bounded, m < ∞ with probability 1. Then, if the Poisson point process Γi has an

atom at (t, u) and ηt−(i) ≥ 1, the site i will lose a particle if r(i)γ
(

ηt−(i)
)

≥ u. If that is the case, the

particle will jump to the position Y i
m+1.

The sequence of i.i.d random variables
(

Y i
n

)

n≥1
associated to each site i ∈ V works as an ordered stack

of instructions prescribing the next position of each particle that jumps out of i, independently of the
time at which the jump is performed.

Remark 4.3. Let (ηt, t ≥ 0) and (σt, t ≥ 0) be coupled versions of zero-range processes with rates

(g(n)
)

as in (2.3)-(2.4), and
(

1n≥1

)

, respectively, such that their initial configurations η0, σ0 ∈ NV
0

satisfy

η0(i) ≥ σ0(i), i ∈ V. (4.15)

Given i ∈ V , let

Jt(η, i) = #{0 ≤ s ≤ t, ηs(i) = ηs−(i) + 1} (4.16)

and Jt(σ, i) = #{0 ≤ s ≤ t, σs(i) = σs−(i) + 1}

be the discrete processes counting the number of particles that arrive at i over the interval [0, t], for
the η and σ processes, t ≥ 0. With the graphical construction above and initial configurations as in
(4.15), the process (ηt, t ≥ 0) goes through the instructions (Y i

n)i∈V, n≥1 faster that (σt, t ≥ 0), and

Jt(σ, i) ≤ Jt(η, i) for all t ≥ 0, for a.e. realization of (ηt, t ≥ 0), (σt, t ≥ 0), i ∈ V. (4.17)



22 I. ARMENDÁRIZ, J. BELTRÁN, D. CUESTA AND M. JARA

We now consider a family of particularly simple initial configurations, so that for a process started

from such a configuration, coordinates that are initially non-zero remain positive for all times, and
they operate as sources. Given a set S ⊂ V , define θS ∈ (N0 ∪ {+∞})V by

θS(i) =

{

0 i ∈ V \ S,
+∞ i ∈ S.

We also consider extended rate functions: for γ : N0 → R≥0, let

γ̄(n) =

{

γ(n), n ∈ N0,
1, n = +∞.

We provide a proof of the following result to keep the presentation self-contained. Alternatively, it is
a consequence of the results in [11].

Lemma 4.4. Let S ⊂ V be non r-absorbing and C := A(S) \ S, A(S) the set in Definition 2.6. Let

(σ
(S)
t , t ≥ 0) be the zero-range process with initial configuration θS and extended rates 1̄n≥1, constructed

with the graphical representation. Let δ > 0. There exists 0 < tδ < ∞ such that

P
(

inf
tδ≤t

σ
(S)
t (j)

t
≥

λA(S)(j)

2

)

≥ 1− δ, j ∈ C. (4.18)

Proof. By the martingale decomposition of the zero-range process,

σ
(S)
t (j) = λ(j)t+Mt(j) + [(I − pt)Rt](j), t ≥ 0, j ∈ V \ S, (4.19)

where
(

Mt(j), t ≥ 0
)

is a martingale, pt is the transpose of the matrix p with entries pij = p(i, j),

i, j ∈ V , and Rt =
(

Rt(k)
)

k∈V
is defined as

Rt(k) = r(k)

∫ t

0
1
σ
(S)
s (k)=0

ds, k ∈ V.

Let now n ∈ N. Changing variables in (4.19) we get

σ
(S)
2nt(j)

2n
= λ(j)t+

M2nt(j)

2n
+ [(I − pt)Rn

t ](j), t ≥ 0, j ∈ V \ S, (4.20)

Rn
t (k) := r(k)

∫ t
0 1σ

(S)
2ns

(k)=0
ds. From Chebychev’s and Doob’s L2 inequalities it follows that for any

time T > 0,

P
(

sup
0≤t≤T

|M2nt(j)|

2n
≥

1

2n/3

)

≤ K
T

2n/3
, j ∈ V \ S,

where K is a positive constant that does not depend on n or T .

We will now compare the process
(σ

(S)
2nt
2n , t ≥ 0

)

in (4.20) with the first coordinate of the solution
(

(ζλ,θSt , ρλ,θSt ), t ≥ 0
)

to the ORP in the orthant R
V \S
+

ζλ,θSt (j) = λ(j)t+ [
(

(I − pt)ij
)

i,j∈V \S
ρλ,θSt ](j), t ≥ 0, j ∈ V \ S. (4.21)

It follows from the fact that p is irreducible that
(

ptij
)

i,j∈V \S
is a non-negative matrix with zeros on

the diagonal and spectral radius strictly less than 1. By Theorem 1 in [20], the solution to (4.21) is
unique.

On the other hand, by Proposition 2.15, the unique solution
(

(zt, yt), t ≥ 0
)

to the ORP in Σ,

zt = x0 + λt+ (I − pt)yt, x0 ∈ Σ, S(x0) = S, (4.22)

satisfies

zt(i) = x0(i) + λA(S)(i) t, i ∈ A(S),

zt(j) = 0, j ∈ V \ A(S),
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for t ≤ τ = inf{s ≥ 0,
∏

i∈S(x0(i) + λA(S)(i)s) = 0}. In particular, for t ≤ τ ,

(I − pt)yt = (λA(S) − λ)t and yt(i) = 0, i ∈ A(S),

and denoting by QS ∈ RV \S×V \S the inverse of the submatrix
(

(I − pt)ij
)

i,j∈V \S
, it follows that

yt(j) =
[

QS
(

λA(S)(i)− λ(i)
)

i∈V \S

]

(j) × t, t ≤ τ, j ∈ V \ S. (4.23)

Combining representation (4.23) of
(

yt, 0 ≤ t ≤ τ
)

with the properties it satisfies as part of the solution

to the ORP in (4.22), we conclude that the vector QS
(

λA(S)(i) − λ(i)
)

i∈V \S
∈ RV \S is such that its

coordinates in A(S) \ S vanish, while those in V \ A(S) are non-negative. For t ≥ 0, let us define

ρt = QS
(

λA(S)(i)− λ(i)
)

i∈V \S
× t and ζt = λt+ (

(

I − pt)ij
)

i,j∈V \S
ρt ,

so that

ζt(i) = λA(S)(i) t, i ∈ C,

ζt(j) = 0, j ∈ V \ A(S).

The pair
(

(ζt, ρt), t ≥ 0) above verifies the conditions of the ORP (4.21), and by uniqueness of the
solution, we conclude that

ζλ,θSt (i) =

{

λA(S)(i) t i ∈ C

0 i ∈ V \ A(S)
, t ≥ 0.

Let 0 < t0 < T
2 , and 0 < ǫ < t0

2 minj∈C λA(S)(j). By the continuity in the input function of the

reflection mapping, the processes in (4.20) and (4.21) are close in the topology of uniform convergence
over compact intervals, if the martingale terms are small. That is, there exists n0 so that if n ≥ n0,
1

2n/3 is small enough that

sup
0≤t≤T

∣

∣

∣

σ
(S)
2nt(j)

2n
− ζλ,θSt (j)

∣

∣

∣
≤ ǫ, j ∈ V \ S, (4.24)

in the set On = ∩j∈V \S

{

sup0≤t≤T
|M2nt(j)|

2n ≤ 1
2n/3

}

. It follows from (4.24) that for realizations in On,

sup
t0≤t≤T

∣

∣

∣

σ
(S)
2nt(j)

2nt
− λA(S)(j)

∣

∣

∣
≤

ǫ

t0
≤

1

2
min
j∈C

λA(S)(j), and inf
t0≤t≤T

σ
(S)
2nt(j)

2nt
≥

λA(S)(j)

2
, (4.25)

j ∈ C. From (4.25) and the choice t0 <
T
2 that for realizations in ∩n≥n0On, we conclude that

inf
s≥2n0 t0

σ
(S)
s (j)

s
≥

λA(S)(j)

2
, j ∈ C,

with P
(

(∩n≥n0On)
c
)

≤ KT
∑

n≥n0

1
2n/3 . Choose n0 so that this series is bounded by δ, and let

tδ := 2n0t0 to obtain (4.18). �

The following result implies that limits of the rescaled zero-range process instantaneously exit non

r-absorbing boundaries. Let (ζNt , t ≥ 0) be the process with law PN
ζ0

defined in (2.2).

Lemma 4.5. Let S ⊂ V be non-absorbing, C = A(S) \ S. For any pair of times 0 < s < t, a > 0 and

0 < b <
minj∈C λA(S)(j)

12
t−s
4 ,

lim sup
N→∞

sup
ζN0 ∈ΣN

PN
ζN0

(

{

inf
s<l<t

ζl(i) > a, i ∈ S
}

∩
{

inf
j∈C

inf
s+3t

4
<l<t

ζl(j) < b
}

)

= 0. (4.26)
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Proof. Given an initial configuration ζN0 ∈ ΣN , construct ζNl =
ηNNl
N , l ≥ 0, where (ηNu , u ≥ 0) is

obtained with the graphical representation. Fix δ > 0 and j ∈ C.

For u > 0, let Hu(Γ) denote the shift of the family of Poisson point processes (Γi)i∈V by u, so that

Hu(Γ)
i has an atom at (v, x) if and only if Γi has an atom at (u + v, x). Let

(

σ
(S),u
v , v ≥ 0

)

be the
zero-range process with rates 1̄k≥1 and initial configuration θS obtained from the graphical construction
that uses the atoms of Hu(Γ).

Given 0 < s < t, on the event GS,N
a (s, t) := {infs<l<t ζ

N
l (i) > a, i ∈ S}, all sites i ∈ S are occupied by at

least one ηN -particle over the period (Ns,Nt), and therefore every Γi-atom in the strip (Ns,Nt)×[0, 1]

causes the exit of an ηN -particle from site i. That is, no jump attempt used by (σ
(S),Ns
u ) from sites in

S is missed by (ηNNs+u), u ∈ (0, N(t− s)), and a bound similar to (4.17) holds for the arrival processes

defined in (4.16): Ju(σ
(S),Ns, j) ≤ JNs+u(η

N , j) − JNs(η
N , j), 0 < u < N(t− s).

Define ǫ := λA(S)(j)
2 > 0. Let m0 ∈ N be such that g(n) < 1+ ǫ

2 if n ≥ m0, and n0 = n0(δ) ∈ N as in the
proof of Lemma 4.4. Let O(n0) := ∩n≥n0On, with On defined below equation (4.24). For configurations

in GS,N
a (s, t) such that, additionally, HNs(Γ) ∈ O(n0), and times 2n0t0 ≤ t1 ≤ u ≤ N(t − s), with t0

as in the proof of Lemma 4.4 and t1 that we fix below, we have

ηNNs+u(j) ≥ ηNNs(j) + JNs+u(η
N , j) − JNs(η

N , j) −#
{

0 ≤ v ≤ u, ηNNs+v(j) = ηNNs+v−(j) − 1
}

≥ Ju(σ
(S),Ns, j) −#

{

0 ≤ v ≤ u, ηNNs+v(j) = ηNNs+v−(j)− 1
}

by (4.17)

≥ Ju(σ
(S),Ns, j) −#

{

0 ≤ v ≤ u, σ(S),Ns
v (x) = σ

(S),Ns
v− (j) − 1

}

(4.27)

−HNs(Γ)
j
(

[0, 2n0t0]× [0, 1]
)

(4.28)

−HNs(Γ)
j
(

[0, t1]×
[

1 + ǫ
2 ,max

m
g(m)

])

(4.29)

−HNs(Γ)
j
(

[t1, u]×
[

1 + ǫ
2 ,max

m
g(m)

])

1{
min

t1≤v≤u
ηNNs+v(j) < m0

} (4.30)

−HNs(Γ)
j
(

[0, u] ×
[

1, 1 + ǫ
2

])

. (4.31)

The first line on the right above, (4.27), equals σ
(S),Ns
u (j). The second line, (4.28), accounts for Poisson

atoms that may have determined jumps for ηNNs+·(j) but were missed by σ
(S),Ns
· (j), because at the

time of the jump the queue at j was empty: after time 2n0t0, on the other hand, on the set O(n0),
the queue is busy at all times, and no jumps are missed. The expression in (4.30) counts the atoms of

HNs(Γ)
j that determine an exit for ηNNs+·(j) only when there are less than than m0 particles at the

site and g(ηNNs+·(j)) ≥ 1 + ǫ
2 , and (4.29) and (4.31) count the remaining atoms of HNs(Γ)

j that may

cause an exit from ηNNs+·(j).

Let now t1 = t1(δ) >
6m0
ǫ be such that

1. P
(

HNs(Γ)
j
(

[0, 2n0t0]× [0, 1]
)

> ǫ t1
6

)

= P
(

Γj
(

[0, 2n0t0]× [0, 1]
)

> ǫ t1
6

)

< δ2, where the identity
between these probabilities holds due to the translation invariance of Poisson processes,

2. P
(

HNs(Γ)
j
(

[0, u]×
[

1, 1+ ǫ
2

])

≤ 2
3ǫu, u ≥ t1

)

= P
(

Γj
(

[0, u]×
[

1, 1+ ǫ
2

])

≤ 2
3ǫu, u ≥ t1

)

≥ 1−δ2.

Note that by the LLN for Poisson processes 1
uΓ

j([0, u] × [1, 1 + ǫ
2 ])

a.s.
−−−−→
u→∞

ǫ
2 < 2

3ǫ, hence the

inequality will hold if t1 is chosen large large enough.

Denote

E(δ) :=
{

Γ ∈ O(n0)}∩
{

Γj
(

[0, 2n0t0]× [0, 1]
)

≤ 1
6ǫt1

}

∩
{

Γj
(

[0, u]×
[

1, 1 + ǫ
2

])

≤ 2
3ǫu, u ≥ t1

}

(4.32)

∩
{

Γj
(

[0, t1]×
[

1 + ǫ
2 ,max

m
g(m)

])

= 0
}

.



FLUID LIMIT FOR CONDENSING ZERO-RANGE PROCESSES 25

For a configuration ω ∈ GS,N
a (s, t) ∩ {HNs(Γ) ∈ E(δ)}, it follows from (4.27)-(4.31), (4.32) and the

choice of ǫ, that

ηNNs+u(j) ≥ σ
(S),Ns
u (j)− 1

6ǫt1 −
2
3ǫu−HNs(Γ)

j
(

[t1, u]×
[

1 + ǫ
2 ,max

m
g(m)

])

1{
min

t1≤v≤u
ηNNs+v(j) < m0

}

≥ 1
6ǫ u−HNs(Γ)

j
(

[t1, u]×
[

1 + ǫ
2 ,max

m
g(m)

])

1{
min

t1≤v≤u
ηNNs+v(j) < m0

},

t1 ≤ u ≤ N(t − s). Since t1 > 6m0
ǫ , the first term on the right above is strictly greater than m0 for

u ≥ t1, and then

ηNNs+u(j) ≥
1

6
ǫu t1 ≤ u ≤ N(t− s), ω ∈ GS,N

a (s, t) ∩ {HNs(Γ) ∈ E(δ)}. (4.33)

So far, we showed that ηNNs+·(j) grows at least linearly, for a macroscopic time interval, when the

configuration belongs to the set GS,N
a (s, t) ∩ {HNs(Γ) ∈ E(δ)}. Among the conditions in definition

(4.32), the one on the last line is the most restrictive. Therefore, in order to extend this result

to a set with almost full probability PN
ζN0

(GS,N
a (s, t)), instead of requiring that Γj have no marks in

[1+ ǫ/2,max g(m)] over the interval [Ns,Ns+ t1], we wait for the first stretch of time having length t1
where this constraint occurs, and couple with the queue from this time forward. We do this rigorously
below.

Consider the stopping time

τN = Ns+ inf
{

u ≥ t1, HNs(Γ)
j
(

[u− t1, u]×
[

1 + ǫ
2 ,max

m
g(m)

])

= 0
}

,

so that the shifted process HτN−t1(Γ) satisfies the condition on the third line of the definition of E(δ)

in (4.32). Note that P (τN < ∞) = 1 by Borel-Cantelli’s lemma. Let

ΘN (δ) =
{

Γ = (Γi)i∈V : HτN−t1(Γ) ∈ E(δ)
}

.

By an argument similar to the one leading to (4.33), for realizations in GS,N
a (s, t) ∩ΘN (δ) we get

ηNτN+v(j) ≥
1

6
ǫ v ≥

λA(S)(j)

12
v, 0 ≤ v ≤ max(Nt− τN , 0).

If, morever, {τN ≤ N s+t
2 }, and we write u = τN + v, it follows that

ηNu (j) ≥
λA(S)(j)

12

[

u− τN
]

≥
λA(S)(j)

12

(

u−N s+t
2

)

, N s+t
2 < u < Nt,

or, in terms of ζNl =
ηNNl
N , with l = u

N ,

ζNl (j) ≥
λA(S)(j)

12
(l − s+t

2 ), s+t
2 < l < t.

To summarize,
{

inf s+t
2

<l<t
ζNl (j)

l− s+t
2

≥ λA(S)(j)
12

}

holds in the event GS,N
a (s, t) ∩ ΘN (δ) ∩ {τN ≤ N s+t

2 }.

Let us estimate the probability of this event.

Denote by FτN the σ-algebra associated to τN . We have

P
(

ΘN (δ)
)

= E
[

P
(

{

(σS,τN−t1
u , u ≥ 0) ∈ O(n0)

}

∩
{

HτN−t1(Γ)
j
(

[0, 2n0t0]× [0, 1]
)

≤ 1
6ǫt1

}

∩
{

HτN−t1(Γ)
j
(

[0, u]×
[

1, 1 + ǫ
2

])

≤ 2
3ǫu, u ≥ t1

}

∣

∣

∣
FτN

)]

= P
(

{

(σ(S)
u , u ≥ 0) ∈ O(n0)

}

∩
{

Γj
(

[0, 2n0 t0]× [0, 1]
)

≤ 1
6ǫt1

}

∩
{

Γj
(

[0, u] ×
[

1, 1 + ǫ
2

])

≤ 2
3ǫu, u ≥ t1

}

)

, (4.34)

as the joint distribution of

(σ(S),τN−t1
u , u ≥ 0),HτN−t1(Γ)

j
(

[0, 2n0t0]× [0, 1]
)

,
(

HτN−t1(Γ)
j
(

[0, u] ×
[

1, 1 + ǫ
2

])

, u ≥ t1
)

(4.35)
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given FτN , is a.s. equal to the joint distribution of

(σ(S)
u , u ≥ 0), Γj

(

[0, 2n0t0]× [0, 1]
)

,
(

Γj
(

[0, u] ×
[

1, 1 + ǫ
2

])

, u ≥ t1
)

.

This holds because τN is determined by the distribution of Γj-Poisson atoms in R+× [1+ ǫ
2 ,max g(m)],

while the processes and the variable in (4.35) depend on the Γk-atoms in R+ × [0, 1 + ǫ
2 ], k ∈ V , and

the intersection of these regions has Lebesgue measure zero. The claim follows from the independence

of the distribution of Poisson atoms in domains having measure zero intersection, and the translation
invariance of Poisson processes.

The events described in the last two lines of (4.34) are determined by the distribution of Poisson
marks in sets that have measure zero intersection, hence they are independent. It follows from (4.34),

properties 1. and 2. of t1, and Lemma 4.4, that

P
(

ΘN (δ)
)

≥ [P (O(n0))− δ2]× (1− δ2) ≥ 1− 3δ.

On the other hand,

P
(

τN ≤ N s+t
2

)

= P
(

inf
{

u ≥ t1, Γ
j
(

[u− t1, u]×
[

1 + ǫ
2 ,max

m
g(m)

])

= 0
}

≤
N(t− s)

2

)

→ 1

hence P
(

τN ≤ N s+t
2

)

≥ 1− δ if N ≥ Nδ large enough. For N ≥ Nδ we get

P
(

GS,N
a (s, t) ∩ΘN(δ) ∩ {τN ≤ N s+t

2 }
)

≥ P
(

GS,N
a (s, t)

)

− 4δ,

and therefore

PN
ζN0

(

{

inf
s<l<t

ζl > a, i ∈ S
}

∩
{

inf
s+t
2

<l<t

ζl(j)

l − s+t
2

<
λA(S)(j)

12

}

)

≤ 4δ.

We restrict the set of times in the second event to s+3t
4 ≤ l ≤ t, recall that 0 < b <

minj∈C λA(S)(j)
12

t−s
4 ,

and add the probabilities above over j ∈ C, to obtain

PN
ζN0

(

{

inf
s<l<t

ζl > a, i ∈ S
}

∩
{

inf
j∈C

inf
s+3t
4

<l<t
ζl(j) < b

}

)

≤ 4δ|V |, (4.36)

|V | the cardinality of V. The bound in (4.36) does not depend on the initial configuration, hence we
might take the supremum over ζN0 and then the limit superior as N → ∞. As δ is arbitrary, the result
follows. �

4.5. Fluid limits satisfy condition (B). In this section we prove our main result.

Proof of Theorem 2.9. We may assume that the full sequence PN
uN

converges weakly to a probability P

on C(R+,Σ).

Let S0 = S(u). If S0 is r-absorbing the result follows from Proposition 4.2 and Remark 3.10.

Otherwise, for δ > 0, define S : [0, δ] → P(V ) by St := S(ζt), P(V ) the power set of V . Let |A| denote
the cardinality of A ∈ P(V ). Notice that if (ζt, t ≥ 0) is continuous and t0 ∈ [0, δ] is a local maximum

of |St|, then St is constant in an open neighbourhood of t0. Consider the family of intervals

I =
{

(s, t) : 0 ≤ s < t ≤ δ, |Sr| = max
l∈[0,δ]

|Sl| if s < r < t
}

, (4.37)

and let

sδ = min
{

0 ≤ s : there is s < t ≤ δ, (s, t) ∈ I, and t− s = max
(s′,t′)∈I

t′ − s′
}

.

Since [0, δ] is a bounded interval, the maximum in the definition above is achieved, and there are

finitely many intervals in I with this length, hence sδ is well-defined. Let tδ be the right endpoint of
the interval associated to sδ, (sδ, tδ) ∈ I , set τδ :=

sδ+tδ
2 ∈ (sδ, tδ). We claim that

Sτδ = S(ζτδ) ∈ Σabs, P-a.s.. (4.38)
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Consider Nδ = {ζt, t ≥ 0, Sτδ is not r-absorbing}. By the observation preceding (4.37), we have

Nδ ∩ C(R+,Σ) ⊆
⋃

0≤s<t<δ
s, t∈Q

G⊆V not r-absorbing

{

S(ζr) = G, s ≤ r ≤ t
}

,

and, recalling that P is supported on C(R+,Σ), to conclude that P(Nδ) = 0 it suffices to show that

P
(

S(ζr) = G, s ≤ r ≤ t
)

= 0,

for any choice of times s, t ∈ Q, 0 < s < t < δ, and non r-absorbing set G ∈ P(V ). Now

P
(

S(ζr) = G, s ≤ r ≤ t
)

= lim
a↓0

lim
b↓0

P
(

{ inf
s≤r≤t

ζr(i) > a, i ∈ G} ∩
{

inf
s≤r≤t

∑

i∈G

ζr(i) > 1− b
}

)

≤ lim
a↓0

lim
b↓0

lim inf
N→∞

P
(

{ inf
s≤r≤t

ζNr (i) > a, i ∈ G} ∩
{

inf
s≤r≤t

∑

i∈G

ζNr (i) > 1− b
}

)

≤ lim
a↓0

lim
b↓0

lim inf
N→∞

P
(

{ inf
s≤r≤t

ζNr (i) > a, i ∈ G} ∩
{

sup
j∈A(G)\G

sup
s+3t

4
≤r≤t

ζNr (j) < b
}

)

= 0

by (4.26) in Lemma 4.5. The second line above follows from the Portmanteau theorem and the remark

in (4.13), as the set {infs≤r≤t ζr(i) > a, i ∈ G} ∩
{

infs≤r≤t
∑

i∈G ζr(i) > 1 − b
}

is open in D(R+,Σ)
with the local uniform topology. Then (4.38) holds.

Sicen τδ ≤ δ, and δ is arbitrary, (4.38) implies that P
(

{inft≥0, ζt ∈ Σabs} = 0
)

= 1, i.e. P is supported

on paths that satisfy condition (B) in Definition 3.2. Proposition 4.2 establishes that (ζt, t ≥ 0) also
satisfies condition (A), P-a.s.. The result then follows from the uniqueness and identification of the
solution to the (λ,D(V ))-problem, Proposition 3.15. �

5. Perturbations to DV

We adapt the proof of the proof of Lemma 4.4 in [6] to derive Lemma 3.5.

We will need the following result.

Lemma 5.1 (Lemma 4.1 in [6]). Let D ⊆ V be nonempty. There exist a nonnegative function

ID : Σ → R in DD and constants c and C such that

c‖ζ‖2D ≤ ID(ζ) ≤ C‖ζ‖2D, (5.1)

with ‖ζ‖2D =
∑

j∈D
ζ(j)2 and 0 < c ≤ C < ∞.

Proof of Lemma 3.5. Let φ ∈ C∞(R, [0, 1]) such that φ(x) = 0, x ≤ 1
3 , and φ(x) = 1, x ≥ 1. Let

λ := c
3C , c and C the constants in (5.1), and ǫ̃ :=

(

cλ|B|+1

2

)
1
2 ǫ

2 . For ∅ 6= D ⊆ V , define

ΦD(ζ) = φ
(λ|D|ID(ζ)

ǫ̃2
− 1

)

,

|D| the cardinality of D. By Lemma (5.1), it is simple to check that this function satisfies

i) ΦD(ζ) = 0 if ‖ζ‖2D ≤ 4
3

1
Cλ|D| ǫ̃

2,

ii) ΦD(ζ) = 1 if ‖ζ‖2D ≥ 2
cλ|D| ǫ̃

2,

iii) ΦD(ζ) ∈ DD.

Define

Φk(ζ) =
∏

D⊆B

ΦD∪{k}(ζ), k ∈ S, Φ(ζ) =
∏

k∈S

Φk(ζ), and let f(ζ) = h(ζ)Φ(ζ).
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It follows from the choices of λ and ǫ̃ and property ii) above that ζ(k) ≥ 1
2ǫ implies Φk(ζ) = 1, k ∈ S,

and hence Φ ≡ 1 in a neighbourhood of {u ∈ Σ, mini∈A u(i) ≥ ǫ}. This establishes (3.13).

Let us now verify that f ∈ DV . Let k ∈ S and ζ ∈ Σ with ζ(k) = 0. If ξ ∈ Σ is such that
‖ξ − ζ‖2 < 4

3
1
Cλ ǫ̃2 then in particular |ξk|

2 < 4
3

1
Cλ ǫ̃2, and i) implies Φ{k}(ξ) = Φ∅∪{k} = f(ξ) = 0.

This shows that f ≡ 0 in a neighbourhood of ζ, hence ∇f(ζ) = 0 and the boundary condition
〈∇f(ζ), vk〉 = 0 is trivially satisfied, proving that f ∈ DA.

Let us now check that f ∈ DB. Given j ∈ B, we have

〈∇f(ζ), vj〉 = Φ(ζ) 〈∇h(ζ), vj〉+ h(ζ)
∑

k∈S

∑

D⊆B

(

∏

k′∈S, D′⊆B
D′∪{k′}6=D∪{k}

ΦD′∪{k′}(ζ)
)

〈∇ΦD∪{k}(ζ), vj〉. (5.2)

Let ζ ∈ Σ such that ζ(j) = 0. The first term above vanishes since by hypothesis h ∈ DB . Also, we
claim that each term in the double sum on the right hand side vanishes as well. To see this, notice
that if the set D ⊆ B is such that j ∈ D, then ΦD∪{k} ∈ DD∪{k} by iii), and 〈∇ΦD∪{k}(ζ), vj〉 = 0. If,

on the other hand, j /∈ D, then ΦD∪{j, k} is one of the factors in the product in front of the brackets,

(
∏

D′⊆B
D′ 6=D

ΦD′∪{k}(ζ)) 〈∇ΦD∪{k}(ζ), vj〉 = (
∏

D′ 6=D
D′ 6=D∪{j}

ΦD′∪{k}(ζ))ΦD∪{j, k}(ζ) 〈∇ΦD∪{k}(ζ), vj〉. (5.3)

Now, by i) and ii),

ΦD∪{j, k}(ξ) = 0 if ‖ξ‖2D∪{j, k} ≤
4
3

1
Cλ|D|+2 ǫ̃

2, (5.4)

ΦD∪{k}(ξ) = 1 if ‖ξ‖2D∪{k} ≥
2

cλ|D|+1 ǫ̃
2 and ∇ΦD∪{k} ≡ 0 on ‖ξ‖2D∪{k} > 2

cλ|D|+1 ǫ̃
2. (5.5)

With the choice of λ = c
3C we have 4

3
1

Cλ|D|+2 > 2
cλ|D|+1 . If ζ ∈ Σ is such that ζ(j) = 0 then

‖ζ‖D∪{j, k} = ‖ζ‖D∪{k}, either (5.4) or (5.5) holds, and in both cases the expression in (5.3) vanishes.
This completes the proof of our claim, and it follows from (5.2) that 〈∇f(ζ), vj〉 = 0 when ζ(j) = 0. �
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