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Valeria Scardino,1,2,5 Juan I. Di Filippo,2,3,5 and Claudio N. Cavasotto2,3,4,6,*

SUMMARY

A crucial component in structure-based drug discovery is the availability of high-
quality three-dimensional structures of the protein target. Whenever experi-
mental structures were not available, homology modeling has been, so far, the
method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based pro-
tein structure prediction method, has shown impressive results in terms of model
accuracy. This outstanding success prompted us to evaluate how accurate AF
models are from the perspective of docking-based drug discovery. We compared
the high-throughput docking (HTD) performance of AF models with their corre-
sponding experimental PDB structures using a benchmark set of 22 targets.
The AF models showed consistently worse performance using four docking pro-
grams and two consensus techniques. Although AlphaFold shows a remarkable
ability to predict protein architecture, this might not be enough to guarantee
that AF models can be reliably used for HTD, and post-modeling refinement stra-
tegies might be key to increase the chances of success.

INTRODUCTION

A crucial component in molecular docking is the availability of three-dimensional (3D) structures of the pro-

tein target. Although the number of deposited structures in the PDB1 is continuously increasing (�199,000

in November 2022), the gap between non-redundant protein sequences and experimental structures is

steadily widening. For the last 20 years, the structural genomics consortia initiatives2,3 have been acceler-

ating the characterization of representative protein structures, mainly from families poorly represented in

the PDB.

Whenever experimental structures were not available, or easily obtainable, in silico homology modeling

has been widely used to obtain a reliable 3D representation of the target (or at least, of the binding site)

for docking-based drug discovery endeavors.4 Homology modeling is a computational methodology to

characterize an unknown protein structure (the target) using a related homologous protein whose exper-

imental structure (the template) is known.5 This methodology is based on the underlying assumption

that proteins with similar sequences should display similar structures.6 The use of homology models in

docking projects is already consolidated with a performance comparable to experimental structures.7–10

Although the quality of homology models depends on several aspects, such as target-template sequence

similarity, accuracy of the alignment, and the choice and resolution of the template, it is acknowledged that

the post-modeling refining process is critical to obtain a reliable 3D representation of the binding site

(BS).11–14 This can be understood in view of the dependence of the binding site structure on the bound

ligand, what highlights the importance of accounting for protein flexibility, at least at a binding site level,

in the homologymodeling process.15–17 Thus, it is natural to incorporate information about existing ligands

in co-modeling the binding site, such as in the ligand-steered homology method,16,18 in which the six rigid

coordinates of the ligand, the conformational space of the ligand torsional angles, and the binding site

sidechains are optimized through flexible-ligand—flexible-receptor Monte-Carlo-based docking.19 Similar

approaches have been published, showing that refined models display an enhanced performance in high-

throughput docking (HTD).20–23

Recently, the implementation of DeepMind’s artificial intelligencemodel, AlphaFold (AF),24 set a milestone

within the field of protein structure prediction. The astonishing and outperforming results within the 14th

Critical Assessment of protein Structure Prediction (CASP14)25,26 set AlphaFold as the breakthrough of the
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year by Science (doi.org/10.1126/science.acx9810) and method of the year by Nature.27 AlphaFold predic-

tions have gained a notorious importance; not only the structure prediction of the entire human proteome

has been already carried out28 but a collaboration between DeepMind and the European Molecular

Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI) led to the creation of the AlphaFold

Protein Structure Database,29,30 which, at the time of writing (November 2022), contains over 200 million

predicted structures. Evidently, the great excitement driven by AF is leading to a paradigm shift in the field

of structural biology.31 Even the PDB, which contains experimentally determined structures, has incorpo-

rated AF predictions.32 Furthermore, not only different implementations of AF with specific refinements

are being actively developed33,34 but also developments implementing AF model predictions are

emerging at a fast pace,35,36 including coupling AlphaFold with cryogenic electron microscopy maps for

structure determination,37 molecular replacement,38,39 NMR structural refinements,40 prediction of pro-

tein-DNA binding sites,41 protein design,42,43 and the prediction of protein-protein interactions,44 among

others.

Remarkably, ‘‘AlphaFold is trained to predict the structure of proteins as they might appear in the PDB’’

(https://alphafold.ebi.ac.uk/faq); moreover, ‘‘backbone and side chain coordinates are frequently consistent

with the expected structure in the presence of ions (e.g., for zinc-binding sites) or co-factors (e.g., side chain

geometry consistent with heme binding)’’ (https://alphafold.ebi.ac.uk/faq). These facts, and the public and

impressive success of AF in terms of overall model accuracy, prompted us to evaluate how accurate and useful

as-is AF models are in the context of docking-based drug discovery, as an alternative to using PDB structures.

On 22 diverse proteins we compared the performance of AF models (extracted from the AlphaFold Protein

Structure Database) versus PDB structures in HTD. We conclude that despite an overall very good accuracy

in reproducing protein topology and the binding site, HTD on AF models exhibits a consistent worse perfor-

mance compared with experimental structures, with zero enrichment factors in several proteins.

RESULTS

We selected a benchmark set of 22 targets from diverse protein families used in an earlier work45 (Table 1).

Considering what has been said earlier of AF models in terms of their representativity of ligand-bound

complexes, to evaluate the performance of as-is AF models in HTD we chose to compare with holo PDB

structures. Because AlphaFold does not predict the positions of co-factors, metals, ligands, ions, or water

molecules, to compare structures on an equal standing, we stripped PDB structures from water molecules,

ions, co-factors, etc.; we also avoided any co-refinement of the PDB structure with the native or other li-

gands, what would also have enhanced the outcome. AF-modeled structures were obtained from the

AlphaFold Protein Structure Database.30 Four docking programs were used, AutoDock 4, ICM, rDock,

and PLANTS, which have different search algorithms and scoring functions. We evaluated the HTD perfor-

mance of AFmodels using two proven effective consensus techniques, ECR46 and PRC.45 Although the ECR

is a ranking-based consensus method, PRC is a combination of both ranking- and docking-based

consensus, which has shown a remarkable performance improvement over previous consensus methods

and individual docking programs. In addition, we docked native ligands present in crystal structures to

compare with their poses on AF models.

The topology of AF models is analyzed to assess whether they are suitable for HTD

The comparison of AFmodels to PDB structures is shown in Table 2. The pLDDTmetric, as well as the RMSD

values between backbones of the entire structure and within the binding site residues are displayed. Most

AF models show very good overlap to their corresponding PDB structures measured using backbone

RMSD for the complete protein and also for binding site residues (cf. columns 3–5 from Table 2). Some tar-

gets show subtle differences in certain secondary structure elements that interfere with the binding site,

and a few of them show structural differences that directly impede carrying out docking within the binding

site; for example, in RENI, where the pocket in the AF structure is blocked by the N-terminal loop, which

adopts a completely disordered conformation compared with their corresponding residues in the crystal

structure (see Figure 1).

Nuclear receptors ESR1, ANDR, and PRGR could be found in two structurally different biological conforma-

tions (agonist and antagonist-bound) in the PDB. In the case of ESR1, from visual inspection of the AF

model, we found that helix 12 (H12) was pulled toward binding site, with a topology that corresponds

best to an agonist-bound conformation. Thus, the agonist-bound PDB structure 3ERD had a more

adequate backbone superposition than the corresponding antagonist-bound PDB (3ERT), as shown in
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Figure 2, and therefore it was chosen for comparison. AF models of ANDR and PRGR were also in the

agonist-bound conformation.

In the case of KPCB, where the AFmodel and the PDB structure had differences at the sequence level in the

C-terminal section, we generated the modeled structure with the available AF Colab Notebook (https://

github.com/deepmind/alphafold) using the PDB 2I0E sequence as input. However, almost no differences

were observed between our generated model and the AF Protein Structure Database model. In both AF

structures the C-terminal loop (C622:H636) is pulled toward the inside of protein, making near contact

to the binding site and modifying its topology. In this case, however, because the binding pocket is not

blocked, we still used the modeled AF structure for HTD to evaluate its performance.

Protein kinases CDK2, IGFR1 and ABL1 show, on average, very good RMSD compared with their PDB struc-

tures. The AF model of CDK2 has large differences within the activation loop (containing the DFG motif)

and the C-helix (compared with PDB 1FVV). In the case of ABL1, the Gly-rich loop is modeled toward bind-

ing site (compared with PDB 2HZI). In KITH, two possible conformations of the flexible loop formed by

K49:S68 can be found depending on the ligand bound, as stated by Kosinska and co-workers.47 We found

that although PDB 2B8T has a high backbone superposition to AF model of 4.11 Å in the binding site, PDB

2UZ3 has a better overlap showing an RMSD of 0.69 Å (cf. Table 2). Therefore, the latter PDB structure was

used to compare AF model performance.

For the rest of the targets, very subtle differences were observed from the backbone superposition that are

detailed in Table 2.

Small variations in the AF-modeled side chains could have a very large impact on the results

obtained in molecular docking

Table 3 shows the results of HTD using AF structures. The EF at 1% (EF1) is displayed for ICM, which on

average was the best performing program. Column 2 shows the results obtained with the ECR consensus

Table 1. Target proteins used for HTD

Receptor Receptor code PDB Resolution (Å)

b2 adrenergic receptor ADRB2 4LDO 3.2

Androgen Receptor ANDR 2AM9 1.6

Cyclin-dependent kinase 2 CDK2 1FVV 2.8

Cyclooxygenase-1 COX1 2OYU 2.7

Estrogen receptor a ESR1 3ERD 2.0

Fatty-acid-binding protein 4 FABP4 2NNQ 1.8

Heat shock protein 90 a HSP90a 1UYG 2.0

Insulin-like growth factor 1 receptor IGF1R 2OJ9 2.0

Leukocyte-function associated antigen 1 LFA1 2ICA 1.6

Progesterone receptor PRGR 3KBA 2.0

Protein kinase C b KPCB 2I0E 2.6

Protein-tyrosine phosphatase 1B PTN1 2AZR 2.0

Purine nucleoside phosphorylase PNPH 3BGS 2.1

Renin RENI 3G6Z 2.0

Tyrosine-protein kinase ABL ABL1 2HZI 1.7

Urokinase-type plasminogen activator UROK 1SQT 1.9

Dopamine D3 receptor DRD3 3PBL 2.8

Thymidine kinase KITH 2UZ3 2.5

Phosphodiesterase 5A PDE5A 1UDT 2.3

Coagulation factor VII FA7 1W7X 1.8

Hexokinase type IV HXK4 3F9M 1.5

Dihydroorotate dehydrogenase PYRD 1D3G 1.6
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Table 2. Analysis of AF structural models and comparison to their corresponding experimental structures

Receptor pLDDTa
Backboneb

RMSD (Å)

Backbonec

RMSD (Å)

Binding site

backbone

RMSD (Å) General comments

ABL1 92 G 5 1.43 0.47 0.79 The Gly-rich loop is pulled

toward the binding pocket.

PNPH 95 G 3 1.69 0.50 0.85 The N55:G66 loop is modeled

toward the interior of the protein,

near but not in contact

with the ligands.

ADRB2 97 G 2 2.53 2.06 0.81 PDB has missing residues K1232:S1262,

which are included in the AF model.

IGF1R 82 G 16 1.84 1.29 1.64 The Gly-rich loop is in a conserved

position, whereas the DFG loop

(D1123:E1132) is pulled toward

the outside of the protein.

CDK2 92 G 4 3.73 2.04 0.71 Large backbone differences in

the activation loop and C-helix.

COX1 96 G 1 0.59 0.49 0.61 PDB has D164G and S193G

mutations, which have no effect

on the binding site; the AF model

and the PDB structure lack the heme

group near the pocket, which does

not affect docking.

PRGR 95 G 1 0.61 0.52 0.47 —

ANDR 95 G 1 0.61 0.44 0.16 —

LFA1 85 G 12 0.73 0.68 1.52 Helix a7 (D297:I306) is pulled toward

the inside of the protein, narrowing

the binding cavity space.

PTN1 96 G 6 0.34 0.27 0.22 —

UROK 72 G 17 1.32 0.46 0.95 PDB has M36I mutation (far from pocket).

PDB has crystal waters important for

ligand binding.

FABP4 96 G 3 0.46 0.39 0.47 PDB has crystal waters important for

ligand binding.

KPCB 92 G 5 2.71 2.50 1.4 Residues T500 and S660 are

phosphorylated in the PDB but

are far from binding site. There is a

sequence difference within the

C-terminal region (C622:H636),

and the backbone is pulled toward

the inside of the binding site.

HSP90 94 G 5 9.23 4.91 4.56 High backbone RMSD of the whole

protein. There is a large difference

in the position of residues N106:G137,

near binding site. PDB has crystal

waters important for ligand binding.

ESR1 96 G 2 1.36 0.38 0.29 The AF model is in the agonist-bound

conformation.

(Continued on next page)
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method. Moreover, the EF and HR results of PRC consensus method as well as the RMSD values of native

ligand docking are also displayed. It can be readily seen that the AF models had a very low performance.

On average, EF1 values of 8.4 and 8.8 were obtained with ICM and ECR, respectively. The same trend is

observed with the PRC, where an average EF of 8.9 was obtained, with a low average HR of 0.16. Many tar-

gets had EF results less than 3.0 and even 0.0 in some cases. It should be noted that the PRC method pro-

vided, on average, better EFs on AF models than single docking programs, and the consensus ECR, what

constitutes a small-scale validation of the PRC on protein models.

Table 4 shows a comparison of the results obtained in AF models versus PDB structures using the two

consensus methods. It can be seen that, in general, AF models greatly worsen the HTD performance

compared with their corresponding crystal structures. The same is also true for the four docking programs

individually as seen in Table S1. PRGR, PTN1, DRD3, and KITH were the cases that obtained similar results

to the PDB structures. UROK, KPCB, ANDR, FABP4, ADRB2, and PYRD show the largest ECR EF1 decrease

compared with docking on PDB structures, followed by PNPH and LFA1. Consistent with this, Table 5 shows

that although most PDB structures achieved very low native ligand docking RMSD values, the opposite

trend was found for AF models.

Although the AF models used to perform HTD exhibit, in general, an adequate backbone superposition in

the binding site to their corresponding PDB structures (cf. RMSD values in Table 2), some striking variations

at the side-chain level within the binding site can be observed (cf. Column 6 in Table 4).

In UROK, differences can be observed at the backbone level for ligand binding residues N143, S144, and

T145, which are pulled further into the pocket in the AF model with a backbone RMSD value of 2.3 Å, thus

shrinking the available space for ligand binding. Moreover, deviations are also observed in side chains of

Q194 and S192, as shown in Figure 3A. Regarding KPCB, the binding site of the AF model is also modified

Table 2. Continued

Receptor pLDDTa
Backboneb

RMSD (Å)

Backbonec

RMSD (Å)

Binding site

backbone

RMSD (Å) General comments

RENI 84 G 13 7.76 0.59 10.24 AF model shows a disordered N-terminal

loop, which blocks the binding cavity

and prevents using the AF structure

for docking.

DRD3 93 G 3 1.09 0.51 0.35 Big difference in the modeled structure

between residues R219:G320, far from the

binding site.

KITH 94 G 6 0.75 0.63 0.69 —

PDE5A 95 G 3 1.45 1.02 0.43 PDB has a gap between residues

Y664:Y676. AF model shows a difference

in the position of those two residues,

which are pulled toward the outside

of the protein expanding the binding

site. PDB has crystal waters important for

ligand binding.

FA7 73 G 16 1.53 0.71 1.02 —

HXK4 90 G 6 1.38 0.95 1.70 V62:G71 loop is pulled toward the inside

of the binding site, narrowing the space

available for ligand binding.

PYRD 98 G 1 0.55 0.37 0.40 —

The pLDDT metric is reported for residues within the binding site as a measure of model confidence: pLDDT >90: highly confident prediction; 70 < pLDDT<90:

confident prediction; 50 < pLDDT<70: low confident prediction; pLDDT<50: should not be interpreted. Reported values correspond tomean and SD. The RMSD

values calculated at the backbone level are also displayed.
aPer residue Local Distance Difference Test (pLDDT) for residues in the BS (see STAR Methods).
bConsidering all protein amino acids.
cConsidering only amino acids involved in secondary structure motifs.
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at the backbone level, with residues from C-terminal region C622:H636 pulled inside the protein, inter-

fering with the BS. As expected, this had a huge impact on HTD results. For ANDR, variations can be

noticed in Q711 and T877 side chains, shown in Figure 3B. Although for Q711 it was shown by Pereira

de Jesús et al.48 that it can appear in both conformations, T877 is essential for ligand binding, making

important interactions with the native ligand in the crystallized PDB structure. In HSP90, a very poor perfor-

mance was obtained, using both the AF model and the PDB structure without crystallized waters. It should

be noted that the PDB structure with waters had a PRC EF of 15.4 in a previous study,45 which shows how

critical it is to include them for HTD. In PYRD, L68 side chain points into the binding pocket, interfering in

ligand binding, whereas it points away in the PDB structure. Small variations are also observed in the side

chains of residues R136, Y147, H56, and T360.

In the case of FABP4, although most of the side chains are correctly modeled, F57 is pulled further back,

thus opening more space within the BS. This residue participates in important hydrophobic interactions

with the native ligand in the PDB. For PNPH, almost only one significant difference is found in theOH group

from S33, which is pulled 2.7 Å further into the pocket in the AFmodel, as shown in Figure 3C. This might be

critical, as serine residues are often involved in important interactions for ligand binding. Figure 3D shows

Figure 1. AF model of RENI receptor (cyan) showing an obstructed binding site

The N-terminal loop containing residue N80 is blocking the ligand-binding space (displayed in orange). The

corresponding PDB structure 3G6Z is displayed in yellow for comparison.

Figure 2. AF modeling of the estrogen receptor

ESR1 AF model (cyan) superimposed to the (A) antagonist-bound conformation (PDB 3ERT) and (B) agonist-bound

conformation (PDB 3ERD). The ligand binding space is displayed with orange surfaces.
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LFA1 binding site where a notable difference can be observed at the backbone level in helix a7 containing

residues L302:I306. This helix is pulled inside the pocket in the AF model, thus modifying the space avail-

able for ligand binding. Small variations in the side chains of residues E284 and K287 are also observed.

It can be seen from this analysis that small changes at the side-chain level of essential ligand-binding res-

idues could have a very large impact on the EFs obtained from HTD campaigns and on the docking of

native ligand structures. However, this impact could not have been expected in advance by looking at

the backbone RMSD nor at the pLDDT metric, because overall, those were acceptable. In four out of the

five AF models that worsened the HTD performance the most, the pLDDT metric is equal to or greater

than 70 for every residue in the binding site (cf. Column 1 in Table 2), indicating high confidence in these

modeled structures.

DISCUSSION

In a real-world structure-based drug discovery scenario, most of the researchers would directly use a struc-

ture from the PDB, and if not available, it is now possible to select an AlphaFold structure from the

AlphaFold Protein Structure Database. The objective of this study is to judge how good are these as-is

AlphaFold structures for docking-based virtual screening.

To assess the docking performance of these AlphaFold models, we chose to compare with the perfor-

mance of HTD in holo PDB structures. As AlphaFold structures present no bound ligand, it could be

tempting to judge this holo-PDB versus "apo-like" AF comparison as unfair, as it has been shown that

holo structures are more suitable for HTD.49,50 However, this is not the case, because AF was not designed

Table 3. Docking results using AF structural models

Receptor ICM EF1 ECR EF1

PRC
Native ligand

RMSD (Å)A/Sa EF HR

ABL1 24.8 16.0 21/65 19.5 0.32 0.66

PNPH 13.6 18.6 18/69 17.9 0.26 1.2

ADRB2 6.3 3.4 1/16 2.5 0.06 2.03

IGF1R 9.5 7.5 3/19 10.1 0.16 5.01

CDK2 8.1 10.2 3/10 10.9 0.30 8.3

COX1 1.9 1.3 4/74 2.5 0.05 >10

PRGR 15.7 12.6 36/107 18.3 0.34 0.93

ANDR 0.8 0.0 0/169 0.0 0.00 6.5

LFA1 1.5 2.9 0/14 0.0 0.00 7.7

PTN1 24.1 29.5 15/40 21.3 0.38 1.6

UROK 17.3 2.5 1/25 2.5 0.04 2.01

FABP4 0.0 0.0 0/11 0.0 0.00 5.2

KPCB 3.7 11.8 1/35 1.9 0.03 6.3

HSP90 4.6 0.0 0/32 0.0 0.00 4.5

ESR1 1.1 8.3 36/206 10.2 0.17 2.5

DRD3 0.6 10.4 7/33 8.5 0.21 7.2

KITH 18.7 22.1 13/32 20.7 0.41 1.0

PDE5A 3.5 10.3 29/141 14.4 0.21 9.32

FA7 9.6 13.1 5/12 23.2 0.42 2.33

HXK4 4.3 1.1 0/5 0 0 9.64

PYRD 7.2 3.6 3/53 3.3 0.06 8.8

Average 8.4 8.8 – 8.9 0.16 –

EF1 is shown for ICM and ECR. The PRC consensus method is evaluated by EF and HR. The corresponding equations can be

found in STAR Methods. All these metrics are dimensionless.
aActive/Selected.
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Table 4. Comparison of VS results between AF models and PDB structures

Receptor

ECR EF1 PRC EF
Visual inspection comments on binding

sites comparison to PDB structures.PDB AF PDB AF

ABL1 25.3 16.0 26.4 19.5 D381 is pulled toward the inside of the binding

site. Small difference in the position of the

Gly-rich loop.

PNPH 37.1 18.6 34.9 17.9 S33 has a difference in the OH group, which

is 2.66 Å pulled to the inside of the pocket.

ADRB2 24.5 3.4 23.4 2.5 Small variation in N1293 and S1203 side

chains.

IGF1R 18.3 7.5 38.6 10.1 DFG loop is located toward the outside of the

protein. G1125 is 4 Å away in the AF model.

CDK2 12.8 10.2 16.3 10.9 K89 and F80 side chains are slightly pulled

inside the pocket, narrowing the binding site.

COX1 3.4 1.3 5.8 2.5 F518 side chain slightly pulled inside the

binding site.

PRGR 9.2 12.6 17.3 18.3 W755 is inverted. Difference in Q725 side

chain: OH is at a 2.45 Å distance.

ANDR 9.0 0.0 13.5 0.0 Differences in Q711 and T877 side chains

(see Figure 3C).

LFA1 10.9 2.9 11.6 0.0 Helix a7 (D297:I306) is pulled inside protein,

shrinking the binding site.

PTN1 29.5 29.5 23.9 21.3 D48 and D181 side chains are rotated toward

the binding site.

UROK 25.9 2.5 47.0 2.5 N322, S323, and T324 are pulled toward

binding site with an average backbone

RMSD of 2.28 Å.

FABP4 22.1 0.0 26.4 0.0 F57 is pulled outward of the pocket with an

RMSD of 1.6 Å.

KPCB 45.3 11.8 53.8 1.9 C-terminal residues C622:H636 are greatly

pulled toward the binding site, modifying

its topology. F353 is pulled to the out.

HSP90 0.0 0.0 0.0 0.0 Big difference in structure in N106:G137,

near binding site. Important crystal waters

missing, which might be critical for ligand

binding.

ESR1 34.3 8.3 29.7 10.2 Small difference in M421 and H524 side

chains, slightly pulled toward the binding

site.

DRD3 3.2 10.4 5.0 8.5 S192 is slightly pulled out of the pocket. T369

is inverted.

KITH 22.1 22.1 20.0 20.7 Small differences in the side chains of residues

R53 and R61.

PDE5A 17.0 10.3 23.2 14.4 Y664 is noticeably pulled to the outside of

the protein, whereas in the PDB it interferes

with the binding site. Q817 and M816 side

chains are inverted.

FA7 47.1 13.1 48.0 23.2 Differences in the position of residue K189,

slightly pulled out of the pocket.

(Continued on next page)
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to predict structures in the apo conformation: AF was trained both with apo and holo structures, and as

stated in the Introduction, backbone and side chain coordinates are frequently consistent with the ex-

pected structure in the presence of non-protein components (https://alphafold.ebi.ac.uk/faq).

Moreover, given that the goal of this study is to assess how fit AF models are for HTD, it is evident that the

comparison must be made between the best option from the AF database and the best option from the

PDB database. Given a protein target, the AF database offers a single structure; in the case of the PDB,

the reasonable option would be to select a holo structure. Then, the comparison made herein is the one

that best serves the main goal of the study.

As it can be seen in Table 4, HTD on AF models shows consistently lower EF values assessed with two

consensus methods (ECR and PRC) when compared with the HTD on the corresponding PDB structures,

also complementedwith poor native ligand RMSD values (cf. Table 5); in several cases, the EF on AFmodels

is even zero. Results also deteriorated for each individual docking program. From Tables 2 and 4, it can be

inferred that these poor EF values could be due to (i) large differences at the backbone level within the

binding site (as in RENI, where no docking could be performed due to the distortion of the binding site)

and (ii) small variations either at the backbone level (UROK, for example) or at the side-chain level

(ANDR and PYRD, for example). In several cases, even very subtle differences within the binding site could

have a huge impact on the EF, such as in ANDR and FABP4. In agreement with what has been shown by

others,24,25,51 the AF models exhibit low backbone RMSD values compared with PDB structures, thus

demonstrating the remarkable ability of AlphaFold to predict protein architecture; moreover, from Table 2,

it can be readily seen that our models also show low backbone RMSD and good pLDDT values within the

binding site. Therefore, we must conclude that the accuracy of AlphaFold in reproducing protein topology

and binding site anatomy with very good values of the pLDDT metric is not enough to guarantee that AF

models can be reliably used for molecular docking purposes. Thus, crude AF models do not seem to be

suitable for HTD without performing post-modeling refinement techniques.11 On the one hand, these re-

sults are in agreement with two contemporary studies, namely, Zhang et al.,52 who evaluated AFmodels for

28 targets extracted fromDUD-E with the Glide docking software,53 and Dı́az-Rovira et al.,54 who evaluated

AF models for 10 targets of the DUD-E. Although in the latter study the utilized docking software was also

Glide, the assessment was carried out in a "real-world scenario" by developing a customized AF version

that excludes all high-sequence identity templates from the training set.55 In addition to assessing out-

of-the-box AF structures, Zhang et al. have shown that refining AF structures using the IFD-MD induced-

fit docking method56 significantly improves enrichment factors. On the other hand, Wong et al.57 devel-

oped a model to predict protein-ligand interactions based on AF structures and molecular docking and

indicated, contrary to our results, that "molecular docking using AlphaFold2-predicted structures is similar

to using experimentally determined ones." On top of mentioning that the comparison that yields this

conclusion was only made with eight experimental structures, it is also worth considering that model per-

formance was weak by using either experimental structures or AlphaFold structures: the mean area under

the receiver operating characteristic curve (AUROC) was, approximately, 0.48, which is worse than random.

A slight improvement was obtained when using machine learning scoring functions (mean AUROC of 0.63).

Table 4. Continued

Receptor

ECR EF1 PRC EF
Visual inspection comments on binding

sites comparison to PDB structures.PDB AF PDB AF

HXK4 5.5 1.1 15.2 0 Residues S64:P66 are notably pulled into the

binding cavity, narrowing the space available

for ligand binding. Y214 side chain is also

pulled slightly toward the cavity.

PYRD 27.7 3.6 25.5 3.34 Small differences in R136 and Y147 side-chain

positions. L68 points into the binding site,

whereas it points away in the PDB. H56 and

T360 side chains are flipped.

Average 20.5 8.8 24.1 8.9 —

Results of the two consensus methods ECR and PRC are displayed. Comments at the side-chain level of the binding site res-

idues are found in the last column. For single docking programs results see Table S1.
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It should be also highlighted that the single structural model provided by AF from a given sequence cannot

represent (i) different biological states of the proteins (such as agonist- and antagonist-bound conforma-

tions, as in the case of GPCRs and nuclear receptors, or open versus closed, as in channels); (ii) protein dy-

namics (such as different conformations of the Gly-rich, catalytic, and activation loops in protein kinases);

(iii) structural conformational differences, especially within the binding site associated with ligand binding.

In fact, it has been highlighted that modeling a receptor not in the desired biological state is one of the

current main limitations of AF;58 although it is probable that the AF model corresponds to the state that

is most represented in the training set, an intermediate state conformation could also be observed.58 It

should be thus acknowledged that different structures of the same protein available in the PDB might

indeed represent structural diversity to a certain degree, which right now is not available for AF models.

In this contribution, we compared the AFmodels with their best PDBmatch in terms of backbone RMSD. How-

ever, in a real-world prospective case, biological and biochemical knowledge should be taken into consider-

ation at the modeling stage to ensure that the modeled structure is in the desired biological conformation.

It should be noted that this issue ismany times avoided by using homologymodeling, where the structural tem-

plate from the PDB is chosen taking into consideration the sought biological state of the target;6 for example,

for modeling a given GPCR in the agonist bound conformation, the templates from the PDB are selected

among those exhibiting an agonist-bound conformation.59 It should also be noted that efforts extending the

use of AlphaFold to predict both active and inactive states of a protein target have been recently reported.60

Regarding AlphaFold limitations, which have been discussed elsewhere,32,35,36,58 it is observed that, from a

structure-based drug discovery perspective, AF also provides an incomplete structural model due to the

lack of water molecules, metal ions, and co-factors. Just to further illustrate this issue, in HSP90 a very

poor performance was obtained using both the AF model and the PDB structure omitting crystallized wa-

ters (cf. Table 4), whereas by including water molecules in docking a PRC EF of 15.4 is obtained45 (the ligand

RMSD values with and without water molecules (Table 5) were 0.8 Å and 6.3 Å, respectively), which high-

lights the importance of including water molecules for HTD in some targets. As routinely done with PDB

structures, AF models should be also carefully checked for correct histidine tautomers, asparagine and

Table 5. Native ligand RMSD comparison with PDB structures using ICM docking poses

Receptor PDB (Å) AF (Å)

ABL1 0.15 0.66

PNPH 0.59 1.2

ADRB2 0.35 2.0

IGF1R 1.06 5.0

CDK2 1.5 8.3

COX1 1.8 >10.0

PRGR 1.03 0.93

ANDR 0.17 6.5

LFA1 1.9 7.7

PTN1 0.53 1.6

UROK 0.24 2.0

FABP4 0.54 5.2

KPCB 1.2 6.3

HSP90 6.3 4.5

ESR1 0.2 2.5

DRD3 0.65 7.2

KITH 0.51 1.0

PDE5A 3.37 9.32

FA7 3.13 2.33

HXK4 0.92 9.64

PYRD 0.23 8.8
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glutamine flipping, protonation states (especially acidic residues, histidines, and cysteines eventually

involved in metal binding), and polar hydrogens conformation.

From a practical point of view and provided the AFmodel is in the desired biological state, a co-refinement

of the binding pocket together with known ligands (whenever available) in a ligand-steered fashion16 might

be the best strategy to sample binding site conformational diversity andmaximize the chances of success in

a prospective HTD endeavor.

Although the analysis of this study has been focused on the regions of AlphaFold models that superimpose

with the crystalized domains of their corresponding PDB structure, it is worth mentioning that, in some cases,

the regions that were cut out from the AFmodels seem to exhibit, by simple visual inspection, a high degree of

disorder. As expected, these a priori disordered regions present low values of pLDDT, but the notorious

contrast of the perceivedmodel quality in matching and non-matching regions results is striking. Even though

low pLDDT regions (pLDDT<50) were suggested to have a high likelihood of being unstructured in isolation,

or only structured as part of a complex,28 this issue clearly deserves further analysis.

Our conclusions will help to understand the current limitations of AlphaFold models in HTD and from this

knowledge to develop strategies to circumvent its drawbacks and thus enhance its further application in

drug discovery.

Limitations of the study

The conclusions drawn from this study to assess the impact of AFmodels on HTD enrichments are based on

a benchmark of 22 different proteins; although this benchmark could be extended, we expect the conclu-

sions drawn in that case to be qualitative like the ones outlined earlier. This study utilizes AlphaFold

Figure 3. Comparison of binding sites for selected targets

AFmodels are displayed in cyan and PDB structures in yellow. Native ligands are displayed in stick representation and the

binding sites represented with orange surfaces.

(A) UROK binding site: differences in backbone can be observed for N143:T145.

(B) ANDR binding site: small variation in T877 side chain can be observed, which makes important interactions for ligand-

binding.

(C) PNPH binding site: the most notable difference can be seen in S33 side chain.

(D) LFA1 binding site: backbone differences in the helix containing K305, and small variations in the side chains of E284

and K287 are observed.
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structures reported in the AlphaFold Database (accessed November 2022). Although updates in the

AlphaFold database or structures generated with the latest version of AlphaFold may lead to slightly

different results, we do not expect significant modifications of the results obtained nor the conclusions

drawn from them.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Claudio Cavasotto (CCavasotto@austral.edu.ar; cnc@cavasotto-lab.net).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. Databases are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Target preparation

The 22 protein targets used in this study (Table 1) were downloaded from the PDB. Water molecules and

co-factors were deleted in all of them. For each target, an AF model was retrieved from the Alpha-Fold

Protein Structure Database30 using the corresponding Uniprot identification. An additional Alpha-Fold

structure was utilized for KPCB, which was generated using a slightly simplified version of AF which is

publicly available (https://github.com/deepmind/alphafold). In every case, AF models were cut to match

their corresponding crystalized domains present in the PDB.

Both PDB structures and AF models were prepared in the same way using the ICM program64 (version

3.9-2e; MolSoft, San Diego, CA, May 2022), in a similar fashion as in earlier works.45,68 Missing amino acids

and hydrogen atoms were added to PDB structures; local energy minimization was performed both on PDB

structures and AF models. Polar hydrogens within the binding site were optimized using a Monte Carlo

sampling in the dihedral space. Glutamate and aspartate residues were assigned a �1 charge, and lysine

and arginine were assigned a +1 charge. For PDB structures, asparagine and glutamine residues were

inspected for flipping and corrected whenever, and His tautomers were assigned according to their

hydrogen bonding network.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

PDB (Berman et al.,1 2002) https://www.rcsb.org

DUD-E (Mysinger et al.,61 2012) http://dude.docking.org

NRLiSt (Lagarde et al.,62 2014) http://nrlist.drugdesign.fr

GLL/GDD (Gatica and Cavasotto,63 2012) https://cavasotto-lab.net

Alpha-Fold Database (Jumper et al.,24 2021;

Varadi et al.,30 2022)

https://alphafold.ebi.ac.uk

Alpha-Fold (Colab version) (Jumper et al.,24 2021) https://github.com/deepmind/

alphafold

ICM (Abagyan et al.,64 1994) https://www.molsoft.com

Auto Dock 4 (Morris et al.,65 2009) https://autodock.scripps.edu

PLANTS (Korb et al.66 2009) www.tcd.uni-konstanz.de

rDock (Ruiz-Carmona et al.,67 2014) https://rdock.sourceforge.net
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Protein metrics

For comparison with PDB structures, AF models were superimposed to them using backbone atoms (C, Ca,

N) considering: i) the complete protein; ii) residues which participate in defined secondary structure ele-

ments (a-, p- or 3.10 helices, or b-sheets) (cf. Table 2). RMSD values between backbones were calculated

for the whole structure and for the ligand-binding residues, which were determined according to their dis-

tance to the native ligand in the PDB structures: if a heavy atom is within 4.0 Å of any heavy atom in the

ligand, that residue is considered a binding site residue. The predicted Local Distance Difference Test

(pLDDT) is a per residue metric reported in the Alpha-Fold Protein Structure Database30 as an estimate

of model confidence on a scale from 0 to 100; the LDDT is a superposition-free score that evaluates local

distance differences of all atoms in a model and includes validation of stereochemical plausibility.69

Following this evaluation criterion, we looked at the pLDDT metric especially for binding site residues.

Docking libraries

For each target, the corresponding docking chemical libraries consist of a set of active molecules and their

corresponding matching decoys according to similar physico-chemical properties and structural dissimi-

larity, which has been shown to ensure unbiased calculations in docking simulations.63,70 For all molecules,

chirality and protonation states were inherited from the corresponding original databases. Libraries were

obtained from the DUD-E database,61 except for the ESR1 agonists library which was obtained from

NRLiSt62 database, and the ADRB2 library which was taken fromGLL/GDD.63 The number of molecules pre-

sent varies from �2,200 in CDK2 to �23,000 in ESR1.

Docking methods

Four docking programs were used in total: ICM,64 Auto Dock 4,65 rDock67 and PLANTS.66 These programs

have different search algorithms and scoring functions as described in previous studies.45,46 Auto Dock

Tools utilities65 were used to prepare the input files for Auto Dock 4. The Lamarckian genetic algorithm

was used for a 20-run search for each compound using 1.75 million energy evaluation. For ICM, a thorough-

ness of 2 was used for the search algorithm. The ChemPLP scoring function was used in PLANTS and speed

1 was set as search speed. For rDock, a radius of 8.0 Å G 2.0 Å from a reference ligand binding mode was

used to represent the cavity. For Vina, an exhaustiveness value of 8 was set. All the other parameters for

every software remained at their default values. This parameter setting is the same used in a previous

study,45 what allowed direct comparison of AF docking results with earlier calculations. Only when needed,

docking boxes on AF models were slightly modified to be accommodated due to small differences in bind-

ing sites.

Consensus methods

Two consensus methods were used to combine the results of the docking programs. The Exponential

Consensus Ranking (ECR)46 combines the ranks of each molecule determined using different scoring func-

tions with an exponential distribution, calculated as

ECRðiÞ =
1

s

X
j

exp

�
� rjðiÞ

s

�

where rj(i) is the rank of molecule i idetermined using the scoring function of program j, and s is the ex-

pected value of the exponential distribution and establishes the number of molecules for each scoring

function that will be considered; the ECR was found to be quasi-independent on s, and we used s =

10% of the total number of molecules for each docking library.

The Pose/Ranking Consensus method (PRC)45 consists of a hybrid consensus technique that combines

ranks and docking poses obtained with different docking programs and selects the molecules that meet

the following criteria: if a molecule has a maximum of two matching poses, the corresponding ranks should

be within the top 5% of the corresponding docking programs; with a maximum of three matching poses,

those corresponding three ranks should be within the top 10%, and with four matching poses, the four ranks

ought to be in the top 20%. Finally, only the molecules that are also in the top 1.5% of ECR consensus

method described above are selected. It was shown that this subset of molecules increases the chance

of finding real hits, measured through the Enrichment Factor (EF) and the hit rate (HR).

The EF is defined as
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EFðxÞ =
Hitsx
Nx

�
Hitstotal
Ntotal

where Hitsx represents the number of actives present in a subset x of the docked library, Nx the number of

molecules in subset x, Hitstotal is the total number of ligands within the entire chemical library, andNtotal its

total number of molecules. When subset x is a percentage of the total number of molecules, for example

the top 1%, we call it the EF at 1% (EF1).

The hit rate (HR) is calculated as

HRðxÞ =
Hitsx
Nx

and is a measure between 0 and 1 which represents the probability of finding an actual ligand within the

subset x.
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