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The axion quark nuggets introduced in the literature are a candidate for cold dark matter which, in
addition, may be relevant in baryogenesis scenarios. The present work studies the evolution of these objects
till they enter in the color superconducting phase. This evolution was already considered in [S. Ge,
X. Liang, and A. Zhitnitsky, Phys. Rev. D 97, 043008 (2018).], where it is concluded that a large chemical
potential μ is induced on the bulk of the object. That work takes the baryon number accumulated at
the domain wall surrounding the object as predominant, and suggests that internal and external fluxes are
compensated in such a way that they not modify considerably the dynamics of the object if they are
neglected. In the present work the possibility that the bulk contribution to the baryon number may be
relevant at initial stages, and that the object may emit a large amount of neutrinos due to quark-antiquark
annihilations is taken into account. This results into a more violent contraction of the object and perhaps a
more effective cooling. The outcome is that the formed objects may have an smaller size. Even taking into
account these corrections, it is concluded that the cosmological applications of these objects are not spoiled.
These applications are discussed along the text.
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I. INTRODUCTION

One important problem in cosmology and particle
physics is to understand if the present Universe is baryon
asymmetric or if the antibaryons are segregated from
baryons on very large scales. If there were galaxies of
matter and antimatter in a given cluster of galaxies then,
due to the presence of intercluster gases, there should be
nucleon antinucleon annihilations leading to strong γ ray
emissions [1]. As this effect is not observed, and since
galaxies like Virgo contain around 1014 M⊙ of matter, it is
believed that antimatter should be segregated from matter
on scales larger than 1014 M⊙. On the other hand, if the
Universe was initially baryon symmetric, then nucleons
and antinucleons will freeze out at a temperature value
T ∼ 22 MeV. The ratio between the baryon number and the
entropy densities that remains at this temperature is around
nine orders of magnitude smaller than the observed value.
This discrepancy may be avoided if there is an unknown
segregation mechanism between baryons and antibaryons
that takes place at T ∼ 41 MeV [1]. However, the Hubble
horizon at these temperature is considerably smaller than

1014 M⊙. A possible solution is that the Universe at
T ≥ 41 MeV was already in a baryon asymmetric state.
There are particle physics scenarios that predict a nonzero
baryon number [1], several of them are based on the
Sakharov requirements for baryogenesis [2,3]. These
requirements include in particular C and CP violation,
and tiny baryon number violating interactions at the
beginning of the Universe.
Another possible explanation for baryogenesis was

presented in [4–17]. This scenario is based on an apparently
unrelated problem: namely, the axion solution of the CP
problem in QCD [18–21]. The axion is a pseudoscalar
particle a that has several cosmological applications related
to the formation of topological defects. An example are
domain walls. At first sight, it is believed that such walls
are problematic, as their evolution should overcome the
critical energy density ρc ∼ 8.27 × 10−27 kg=m3, which
will lead to a catastrophe with observations, as discussed
in [21] and references therein. But there exist the so-called
N ¼ 1 axion models for which this problem does not exist,
and there exist several ideas on how solving this problem
for other types of axion models [21]. The authors of [4–17]
assume that at a temperature T ∼ 100 MeV there exists a
network of domain walls admitting nontrivial quark con-
figurations that, due to nontrivial asymptotic conditions,
carry a nonzero baryon number [9]. Owing to the domain
wall tension σ, some of these regions tends to contract
and press the quark-gluon plasma trapped inside. As a
consequence, the system acquires a nonzero chemical
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potential μ and contracts until the internal Fermi pressure
equals the external one, and then realizes damped oscil-
lations around the equilibrium radius Re. The resulting
internal temperature Ti is small enough, and the chemical
potential μ is large enough, for reaching the color super-
conducting (CS) phase in the bulk of the object [22,23]. It is
important to emphasize that the binding energy Δ charac-
teristic of this state is large enough for these objects not
participating in nucleosynthesis at T ∼ 1 MeV [6].
The formation of the axion nuggets described above,

however, does not explain by itself the baryon asymmetry
of the Universe. Despite these objects containing net
baryon or antibaryon numbers, the presence of an equal
quantity of them is expected if the underlying physics does
contain baryon number violating processes. Thus, a further
mechanism for asymmetry generation should be found.
A crucial point for generating a larger number of antibaryon
objects may be the dynamics of the coherent axion field,
which may lead to a preferential evolution in favor of
antinuggets. This mechanism is effective regardless the
small value of the θ term as long as it remains coherent on
the Universe scale during the formation process [9]. This is
a new feature not present in the ordinary quark nuggets
models such as [24,25]. These hypotheses are reasonable
from the physical point of view. However, a precise quan-
titative analysis about the resulting asymmetry is techni-
cally involved and, at the moment, is lacking. There are
other type of segregation mechanisms such as [26] for
baryogenesis, but these will not be considered in the
present paper.
There are some special features that distinguish axion

quark nuggets from other dark matter candidates. First, these
axion lumps are not supposed to be weakly interacting
with ordinary matter. Their interaction is strong in fact, but
they are macroscopically large as well. For this reason, the
quotient between the cross section for interaction with
visible baryons to their mass σ=M ∼ 10−10 cm2=g, which
is well below the typical astrophysical limits σ=M ∼ cm2=g
[6]. Another salient characteristic is that these compact
objects are long lived, with a mean lifetime larger than
the present age of the Universe. In fact, it has been suggested
that the excess of γ ray flux in MeV and GeV bands may
be explained in terms of the rare annihilations between these
objects and ordinary baryons. In addition, these objects
interact noticeably with photons. However, the mean free
time of photons when colliding with these objects is much
larger than the Hubble time, thus these objects can be
considered as cold dark matter, even when they are not
electromagnetically neutral. These characteristics makes
these objects different, for instance, than weakly interactive
massive particles. Further details are discussed in [6].
The evolution of these objects till they enter in the CS

phase [22,23] was considered in [9]. In the present work, a
variant for the dynamics of such objects is described.
Although there are some different details about the nature

of the formation in comparison with those pointed [9], the
main cosmological applications remain valid. The main
differences are the following. In studying the fate of the
axion nuggets, the authors of [9] reach to the conclusion
that a large chemical potential μ is induced at the object
bulk. These authors assume that main contribution to the
baryon number of the object is given by the wall con-
tribution, which carry a nonzero baryon number even in
the limit of μ → 0, and neglect the effect of internal and
external fluxes. In the present work it is assumed that,
besides this wall contribution, a considerable bulk baryon
number may appear at early stages of the evolution. In
addition, it is assumed that there is a considerable neu-
trino emission due to quark-antiquark annihilations. The
neutrino emissivity plays the role of expulsion of fuel, and
generates a violent contraction of the object. Even taking
into account these circumstances, we are able to estimate
that the object is formed when the Universe temperature is
around T ∼ 41 MeV and that it falls into the CS phase. The
only difference is the size of the object, but it will be argued
in the text that this does not spoil the main cosmological
applications of these nuggets.
It should be emphasized that there are effects that are

neglected, for instance neutrino or other particle adsorbtion.
But even taking into account that we are employing the
most unfriendly conditions and still being able of obtain
plausible results, the present scenario gives a hint that axion
quark nuggets may be a candidate for both cold dark matter
production and baryogenesis.
The present work is organized as follows. In Sec. II, the

general form of the equations of motion for these objects is
described. In Sec. III these equations are expressed through
thermodynamical quantities such as internal temperature,
chemical potential, and the radius of the object. In Sec. IV
the neutrino emission is estimated, by assuming that
initially quark-antiquark annihilations play the leading
important role at the initial evolution. In Sec. V the fate
of the nugget till it enters in the color superconducting
phase is described. Section VI contains the discussions of
the obtained results.

II. THE GENERIC EQUATIONS OF MOTION

The initial state of an axion quark nugget is an axion
domain wall enclosing some finite volume region [4–17].
The exterior and interior are assumed to be in a quark-
gluon plasma state, both with zero chemical potential [9].
The external region may fall into the hadron phase at
some point during the evolution of the object; however,
this will not affect significantly the following description.
The initial temperature of the Universe is approximately at
T0 ∼ 100–150 MeV which, to the standard history of the
Universe, corresponds to a time t ∼ 10−4 s. The domain
wall tension σ tends to contract the object, until the internal
Fermi pressure equals the surface tension, and the wall
then realizes damped oscillations around the equilibrium

OSVALDO P. SANTILLÁN and ALEJANDRO MORANO PHYS. REV. D 104, 083530 (2021)

083530-2



position. There are quark degrees of freedom living on the
wall; therefore these objects carry nontrivial baryon num-
ber even when their chemical potential μ vanishes inside
and outside. This can be briefly explained as follows. The
equations of motion of a Dirac fermion Ψ on a domain wall
solution can be derived from the Lagrangian [9]

L ¼ iΨ̄½γμ∂μ −mei½θðzÞ−ϕðzÞ�γ5 − μγ0�Ψ: ð2:1Þ

The fields θðzÞ and ϕðzÞ describe the axion and η0 fields
constituting the wall. Here the four-dimensional problem
has been reduced to a two-dimensional one, with ẑ a unit
vector normal to the surface of the wall. By neglecting the
back reaction of the fermions on the domain wall, there
exist nontrivial fermion degrees of freedom ΨðzÞ that can
live in the wall. These nontrivial solutions carry a nonzero
baryon number

N ¼
Z

Ψ̄γ0Ψdx3; ð2:2Þ

a number that is nonvanishing due to nontrivial asymptotic
conditions [9].
The value of the QCD axion constant is believed to be in

the range 109 GeV < fa < 1012 GeV [27–29]. The value
to be employed here is close to fa ∼ 1012 GeV, which
means that the axion mass is close to the value

ma ∼
mπfπ
fa

∼ 10−5 eV: ð2:3Þ

This complements in some sense the results of [8], as this
reference considers a value close to fa ∼ 1010 GeV.
Neglecting the fermions backreaction, the surface tension
acting inwards on the bubble is given by

σ ∼ 8famπfπ ∼ 1020 MeV3 ð2:4Þ

for the choice of fa given above. An important point
to be discussed is the initial size of the nuggets. The
argument of [8] is based on the Kibble mechanism [30,31].
In this scenario, the early Universe at a temperature T0 ∼
100–150 MeV is composed by a percolated cluster of
domain walls of very complicated topology [32]. There are
numerical simulations reviewed in the book [32] that
suggest that approximately the 0.87 of the total Universe
wall area belongs to the percolated cluster, while the
remaining part is represented by small closed bubbles.
This small fraction is crucial for the purposes of [8,9], as it
is enough for the axionic quark nuggets to form [9]. This
portion of domain wall energy does not contribute con-
siderably to axion production considered in [21,33,34].
Concerning the correlation length ξ, one possibility is to
take ξ ∼m−1

a ∼ 1 cm as a characteristic initial scale, which
is the type of length considered in [8]. The probability of

finding closed domain walls of R ≫ ξ is exponentially
suppressed [30,31].1

The purpose of the present work is to understand
qualitatively the fate of this region as it contracts. The
equations of motion of the bubbles just described will be
taken schematically as follows

dPα
R

dτ
þ dPα

ν

dτ
¼ Fα; ð2:5Þ

with α ¼ 0, 1, 2, 3, and τ the proper time of the
event. Equations of this type describe the motion of a
relativistic rocket whose mass M varies with time due to
the expulsion of fuel. The role of the fuel is played by the
loss of neutrinos, whose momentum was denoted above by
Pα
ν . In the last expression, Pα

R denotes the 4-momentum of
an infinitesimal mass element dM composing the bubble.
In addition, the four force acting on the system

Fα ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p ðf · _R; fiÞ

has been introduced. Here fi being the force applied over
the system, which is radially directed in the frame located at
the center of the bubble. In practice, this force will be the
sum of the surface tension force, and the one arising from
the internal and external pressures. The bubble itself is
considered as the sum of all these infinitesimal elements,
simultaneously moving in the radial direction. The neu-
trinos are assumed to be emitted isotropically.
The equations written above are covariant, that is, they

are valid in any inertial frame. The derivatives with respect
to the proper time τ of the four-vectors Pα in (2.5) can be
related to a coordinate time t of the reference system
located at the center of the bubble by

d
dτ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p d
dt

:

The momentum of a surface element of the wall with
respect to this reference system is

P0
R ¼ dMffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − _R2
p ; Pi

R ¼
_RdMffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p :

The neutrino momentum is such that ðP0
νÞ2 ¼ Pi

νPi
ν since it

can be considered as a relativistic particle. The trans-
formation of the momentum Pν from frame of the wall
to the momentum from center of the bubble P0

μ is given by

1As is clear from the above discussion, Ref. [8] involves only
closed bubbles with no strings attached. The present paper
follows this approach. But there exist scenarios which do not
rely in the Kibble mechanism at a QCD scale, examples are
[33,34]. The initial size and density of such defects will be
different for these models. Examples with such characteristics
and their possible phenomenological consequences will be
discussed at the end of this work, see the last section.
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P0α
ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R

1þ _R

s
Pα
ν :

On the other hand

dP0α
ν

dτ
¼ dP0α

ν

dPβ
ν

dPβ
ν

dτ
:

By combining the last two formulas it is obtained that

dP0α
ν

dτ
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R

1þ _R

s
dPβ

ν

dτ
:

By integrating along the solid angle dΩ and by simplifying

a common
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
factor, the Eq. (2.5) can be expressed

as follows

d
dt

�
Mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
�
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R

1þ _R

s
dPν

dt
¼ 4πR2 _RΔP; ð2:6Þ

d
dt

�
M _Rffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
�
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R

1þ _R

s
dPν

dt
¼ 4πR2ΔP: ð2:7Þ

These equations represent a variable mass nugget emitting
neutrinos as fuel, and acted by radial forces. They will be
supplemented below when applied with a further constraint
arising from the conservation of the baryonic number of the
system.

III. THE EXPLICIT EQUATIONS
OF MOVEMENT

The emission of neutrinos is usually described in terms
of the so-called emissivity Qν [35–48] through the relation

dPν

dt
¼ 4πR3

3
Qν: ð3:1Þ

The emissivity Qν will be characterized in the next section.
But at this point, it may be convenient to describe in detail
the other quantities appearing in Eqs. (2.6) and (2.7). This
system can be rewritten as follows

d
dt

�
Mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p
�
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R

1þ _R

s
4π

3
R3Qν ¼ 4πR2 _RΔP; ð3:2Þ

MR̈ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R2

p þ
"
4πR2 _RΔP −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R

1þ _R

s
4π

3
R3Qν

#
_R

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − _R

1þ _R

s
4π

3
R3Qν ¼ 4πR2ΔP: ð3:3Þ

Note that Eq. (3.2) is the same as (2.6). On the other hand,
Eq. (3.3) is obtained from (2.7) by replacing the derivative

of Mð1 − _R2Þ−1
2 with respect to t through (2.6). Now, if the

motion of the bubble is nonrelativistic, that is _R ≪ 1, then
these equations may be reduced to

dM
dt

þ 4π

3
R3Qν ¼ 4πR2 _RΔP; ð3:4Þ

MR̈þ 4π

3
R3Qν ¼ 4πR2ΔP: ð3:5Þ

In order to solve these equations, the mass M and the
pressure forces acting on the bubble should be character-
ized. In the following, it will be assumed that, during short
periods, the state of the bubble may be approximated by an
equilibrium state with well-defined temperature T, chemi-
cal potential μ, and internal pressure Pi. In this case, the
mass M of the bubble is given by [9]

M ¼ E¼ 4πR2σþ 4π

3
R3ρþ 4π

3
R3EBΘðμ− μ1Þ

�
1−

μ21
μ2

�
;

EB ∼ ð150 MeVÞ4: ð3:6Þ

Here EB is the bag constant, which should be taken into
account when the chemical potential μ is higher than μ1 ∼
330 MeV [8]. The surface energy is sourced by the surface
tension σ ∼ 8famπfπ of the axion wall. On the other hand,
for generic fermions with mass m the pressure is related to
the energy density ρ as follows

P ¼ ρ

3
−
m2g
6π2

Z
∞

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

p
dϵ

e
ϵ−μ
T þ 1

;

ρ ¼ g
2π2

Z
∞

m

ϵ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

p
dϵ

e
ϵ−μ
T þ 1

:

The last two formulas suggest that the pressure grows as m
decreases. As the u and d quarks masses are of the order
mu ∼md ∼ 4 MeV and the initial Universe temperature is
of the order T0 ∼ 100 MeV, one may consider these quarks
as massless. The s quark mass is ms ∼ T0 and the pressure
contribution of this species is smaller than the lighter
counterparts. For this reason, the simplifying assumption
that quarks are massless will be employed when calcu-
lating some thermodynamical properties, as it will not lead
to a significant deviation of their real values. Under this
approximation, it follows that

Pq ¼
1

3
ρ − EBΘðμ − μ1Þ

�
1 −

μ21
μ2

�
;

ρ ¼ ρq þ ρq̄ ¼
gT4

2π2

�Z
∞

0

x3dx
ex−β þ 1

þ
Z

∞

0

x3dx
exþβ þ 1

�
;

β ¼ μ

T
;

with the explicit result given by
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Pq ¼
1

3

�
7

8

π2gT4

30

�
1þ 30β2

7π2
þ 15β4

7π4

�

− 3EBΘðμ − μ1Þ
�
1 −

μ21
μ2

��
: ð3:7Þ

Here the effect of the bag constant EB has been included,
which tends to decrease the pressure when it is turned on
inside the compact object. In all the formulas derived
above, the degeneracy g is

g ¼ 4NcNf;

since there are two spin states and two charge states
(particle and antiparticle) for any flavor and color. In
addition, the number of colors is Nc ¼ 3. The external
pressure, or Universe pressure, is given by [9]

Pe ¼
7

8

π2gT4
e

90
; Te ¼ T0

ffiffiffiffi
t0
t

r
; T0 ∼ 100–150 MeV;

t0 ∼ 10−4 sec : ð3:8Þ

The pressure difference acting on the surface of the bubble
is then

ΔP ¼ −
2σ

R
þ 7π2gT4

360

�
1þ 30β2

7π2
þ 15β4

7π4

�
−
7π2gT4

e

360
− EBΘðμ − μ1Þ

�
1 −

μ21
μ2

�
: ð3:9Þ

Note that in the last formula the effect of the surface tension σ has been taken into account. In terms of the thermodynamical
expressions found above, Eqs. (3.4)–(3.5) can be expressed as follows

d
dt

�
8πR2σ þ 2

3

4πR3

3

7

8

π2gT4

30

�
1þ 30μ2

7π2T2
þ 15μ4

7π4T4

�
þ 4πR3

3

7

8

π2gT4
e

90
þ 8πR3

3
EBΘðμ − μ1Þ

�
1 −

μ21
μ2

��

þ 4πR3

3

d
dt

�
7

8

π2gT4

90

�
1þ 30μ2

7π2T2
þ 15μ4

7π4T4

�
þ EBΘðμ − μ1Þ

�
1 −

μ21
μ2

��
þ 4π

3
R3Qν ¼ 0; ð3:10Þ

�
4πσR2 þ 4πR3

3

7

8

π2gT4

30

�
1þ 30μ2

7π2T2
þ 15μ4

7π4T4

�
þ 4πR3

3
EBΘðμ − μ1Þ

�
1 −

μ21
μ2

��
R̈þ 4π

3
R3Qν

¼ −8πσRþ 4πR2
7

8

π2gT4

90

�
1þ 30μ2

7π2T2
þ 15μ4

7π4T4

�
− 4πR2EBΘðμ − μ1Þ

�
1 −

μ21
μ2

�
− 4πR2

7

8

π2gT4
e

90
þ Fη: ð3:11Þ

Here an additional force on the bubble Fη has been
included, which at initial stages is not important. This is
the QCD viscosity [49]

Fη ¼ ηR _R;

which, for a contracting bubble, points outwards the surface
of the bubble. This force is the result of several effects that
occur during the contraction such as scattering of quarks,
gluons, and different Nambu-Goldstone bosons arising in
different phases. The viscosity coefficient may depend on
the temperature and chemical potential ηðT; μÞ. The value
η ∼m3

π ∼ 0.002 GeV3 will be employed in the following
[49]. However, a further knowledge of the behavior of η as
a function of T and μ is of course desirable, especially in the
limit μ ≫ T.
Equations (3.10) and (3.11) constitute two equations for

the three unknowns T, μ, and R as functions of the time
parameter t. The missing equation is related to the baryon
number conservation of the system. The baryon number of
the system for these bubbles is initially localized on the
axionic wall and its approximate expression is

B ¼ 4πNgR2

Z
d2p
ð2πÞ2

1

e
ϵðpÞ−μ

T þ 1
; ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
:

ð3:12Þ

Here N is given by the expression (2.2) and the wall was
taken as a two-dimensional object. These integrals, in the
massless limit, can be expressed in terms of the variable ϵ
by taking into account that pdp ¼ ϵdϵ. The result is

B ¼ 2NgR2T2

�
Li2ð−e−

μ
TÞ þ π2

6
þ 1

2

�
μ

T

�
2
�
: ð3:13Þ

Since μ is positive, the argument z of the dilogarithm
function Li2ðzÞ is such that jzj ¼ e−

μ
T < 1. For this range of

values, the dilogarithm may be expanded to give

B ¼ 2NgR2T2

�
π2

6
þ 1

2

�
μ

T

�
2

−
π2

12
e−

μ
T

�
: ð3:14Þ

However, as the chemical potential μ grows, a volume
contribution is turned on. The total baryon contribution
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B ¼ 2NgR2T2

�
π2

6
þ 1

2

�
μ

T

�
2

−
π2

12
e−

μ
T

�
þ 4πR3

3
ðnf − n̄fÞ;

where the last term is proportional to the difference
between particles and antiparticles in a given volume.
The variable nf is not independent with μ and T, in fact
in the massless limit one has

nf − n̄f ¼
gR3T3

6

μ

T

�
1þ 1

π2

�
μ

T

�
2
�
:

In this limit, the total baryon number becomes

B ¼ 2NgR2T2

�
π2

6
þ 1

2

�
μ

T

�
2

−
π2

12
e−

μ
T

�

þ 2πgR3T3

9

μ

T

�
1þ 1

π2

�
μ

T

�
2
�
: ð3:15Þ

The baryon number conservation law is then expressed as

B ¼ 2NgR2T2

�
π2

6
þ 1

2

�
μ

T

�
2

−
π2

12
e−

μ
T

�

þ 2πgR3T3

9

μ

T

�
1þ 1

π2

�
μ

T

�
2
�
¼ Ngπ2

3
R2
0T

2
0; ð3:16Þ

where T0 and R0 are the quantities at the beginning of the
formation, and it is assumed that μ0 ¼ 0. Equation (3.16)
together with (3.10)–(3.11) constitute a system of three
equations determining the temperature T, the chemical
potential μ and the radius R of the object in terms of the
initial conditions. This description is analogous of [9] but
with the baryon volume term and neutrino emissivity Qν

turned on. In order to study the properties of their solutions,
the expressions describing the emissivity Qν should be
found. This will be done in the following section.

IV. THE NEUTRINO MOMENTUM RELEASE

A. General emissivity formulas

As stated above, the neutrinos are assumed to be emitted
isotropically due to pair annihilation in the bulk and at
the border of the spherical region. The derivative of the
momentum at a frame instantly at rest with respect to the
domain wall is given in terms of the neutrino emissivity
(3.1). For the emissivity, there are several channels to
consider and there is extensive literature about the subject,
with possible applications to neutron stars [35–48,50].
However, for high temperatures T ≫ μ it will be assumed
that quark-antiquark annihilation in two neutrinos qþ q̄ →
νþ ν̄ is the leading channel. The relevant coupling terms
between the quarks and the neutrinos are given by

Lqν ¼
GFffiffiffi
2

p
�
ν̄γμ

1þ γ5
2

ν

�
½ūγμðAu þ Buγ5Þu

þ d̄γμðAd þ Bdγ5Þdþ s̄γμðAs þ Bsγ5Þs�;

where the following parameters

Au ¼
1

2
−
4

3
sin2θW; Bu ¼

1

2
;

Ad ¼ −
1

2
þ 2

3
sin2θW; Bd ¼ −

1

2
ð4:1Þ

have been introduced. The Weinberg angle θW is such that
sin2 θW ∼ 0.23. We ignore the coupling for the s quarks, but
we assume that they are smaller than for the light quarks. A
discussion about this coupling will be given in the next
section. By use of the above formulas the expression of the
emissivity may be found, which follows as a generalization
of the formula of electron emissivity [48] adapted to
quarks. For instance, the emissivity for a given quark u
is calculated by means of the following formula [48]

Qu ∼
G2

Fm
9
u

36π
fA2

uþ½8ðΦ1uU2u þΦ2uU1uÞ
− 2ðΦ−1uU2u þΦ2uU−1uÞ þ 7ðΦ0uU1u þΦ1uU0uÞ
þ 5ðΦ0uU−1u þΦ−1uU0uÞ�
þ 9A2

u−½Φ0uðU1u þU−1uÞ þ U0uðΦ1u þΦ−1uÞ�g;
ð4:2Þ

up to a factor related to color matrices which is not far to
unity. In the last expression, the following thermodynam-
ical integrals

Uku ¼
1

π2

Z
∞

0

p2
udpu

m3
u

�
ϵu
mu

�
k
fu;

Φku ¼
1

π2

Z
∞

0

p2
udpu

m3
u

�
ϵu
mu

�
k
fū; ð4:3Þ

and the following parameters

A2þu ¼ A2
u þ B2

u; A2
−u ¼ A2

u − B2
u;

have been introduced. Here

fu ¼
1

e
ϵu−μu

T þ 1
; fū ¼

1

e
ϵuþμu

T þ 1
:

Note that the difference between Φku and Uku is due to the
sign of the chemical potential μu. Analogous expressions
are true for d and s quarks.
When the density is high enough, μ ≫ T the emissivity

described above may not be the leading term anymore. A
possible energy loss process is due to the beta quark decay
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uþ e− → dþ νe or d → e− þ uþ ν̄e. The neutrino emis-
sivity in this case is given by the well known Iwamoto
formula [35]

Qν ¼
914

315
G2

f cos
2 θcμμμdμeαsT6:

Here the Cabbibo angle θc is such that cos2 θc ∼ 0.948 and
the condition of β equilibrium is

μu ¼ μd þ μe; μs ¼ μd þ μe:

For high densities, the following approximation is valid

μμ ¼ μd; μe ¼ 3
1
3Y

1
3
eμu;

where the number Ye for dense matter varies from Ye ∼
10−2 to Ye ∼ 10−1. In these terms the emissivity is given by

Qν ¼
914

315
G2

fμ
3Y

1
3
eαsT6: ð4:4Þ

There are other neutrino processes for matter at high
densities that can be effective for cooling, examples can
be seen in Refs. [35–48,51–58]. It is important to remark
that the formula (4.4) does not assume that the CS phase
takes place. In fact, there are phases of matter which are not
represented as a quark-gluon plasma for which the emis-
sivity may be strongly suppressed, examples are given in
[58]. In the following, it will be assumed that, in the CS
phase, the emissivity is very small in comparison with the
aforementioned processes.

B. An estimation of the emissivities

The study of the emissivity Qν given in (4.2) requires an
estimation of the integrals (4.3). These integrals are all of
the form

Ik ¼
1

mkþ3π2

Z
∞

0

ϵkp2dp
1þ expðϵ−μT Þ ; ð4:5Þ

where the chemical potential μ can take positive and
negative values and k ¼ 2; 1; 0;−1. As ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
for relativistic particles, it follows that

p2dp ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

p
dϵ ∼ ϵ2

�
1 −

m2

2ϵ2
−
m4

8ϵ4

�
dϵ:

The integrals under consideration are then given by

Ik ¼
1

mkþ3π2

Z
∞

m

ϵkþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

p
dϵ

1þ expðϵ−μT Þ

≃
1

mkþ3π2

Z
∞

m

ϵkþ2dϵ
1þ expðϵ−μT Þ

�
1 −

m2

2ϵ2
−
m4

8ϵ4

�
:

Consider first the case k ¼ 2. The corresponding integral

I2 ≃
1

m5π2

Z
∞

m

ϵ4dϵ
1þ expðϵ−μT Þ

�
1 −

m2

2ϵ2
−
m4

8ϵ4

�

can be found explicitly: the result is

I2 ∼
−1
m5π2

½24T5Li5ð−e
μ−m
T Þ þ 24T4mLi4ð−e

μ−m
T Þ

þ 12T3m2Li3ð−e
μ−m
T Þ þ 4T2m3Li2ð−e

μ−m
T Þ

− Tm4 logðeμ−m
T þ 1Þ� þ 1

2m3π2
½2T3Li3ð−e

μ−m
T Þ

þ 2T2mLi2ð−e
μ−m
T Þ − Tm2 logðeμ−m

T þ 1Þ�

þ 1

8π2m
½m − T logðeμ

T þ e
m
TÞ�: ð4:6Þ

Here the polylogarithm functions

Li1þsðxÞ ¼
1

Γðsþ 1Þ
Z

∞

0

xksdk
ek − x

ð4:7Þ

have been introduced.
Unlike the previous case, the integrals corresponding

to k ¼ 1; 0;−1 are not explicit. For dealing with them,
the following approximated scheme will be employed.
Consider the case k ¼ 1, namely

I1 ≃
1

m4π2

Z
∞

m

ϵ3dϵ
1þ expðϵ−μT Þ

�
1 −

m2

2ϵ2
−
m4

8ϵ4

�
:

The first two terms can be integrated explicitly but, to the
best of our knowledge, there is no primitive for the last one.
However, if one separates the last term and write the last
expression as

I1 ≃
1

m4π2

Z
∞

m

ϵ3dϵ
1þ expðϵ−μT Þ

�
1 −

m2

2ϵ2

�

−
1

π2

Z
∞

m

dϵ
1þ expðϵ−μT Þ

1

8ϵ
;

then, by further making the variable change ϵ ¼ T log η one
obtains

I1 ≃
1

m4π2

Z
∞

m

ϵ3dϵ
1þ expðϵ−μT Þ

�
1 −

m2

2ϵ2

�

−
e

μ
T

8π2

Z
∞

e
m
T

dη

ηðeμ
T þ ηÞ

1

log η
:

The last integral can be successively be approximated
by separating the cases μ < m or μ > m. For instance, if
μ < m the integrand can be expanded in terms of e

μ
T=η by

use of geometric series, the result is
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I1 ≃
1

m4π2

Z
∞

m

ϵ3dϵ
1þ expðϵ−μT Þ

�
1 −

m2

2ϵ2

�
−

e
μ
T

8π2

Z
∞

e
m
T

dη
η2 log η

�
1 −

e
μ
T

η
þ e

2μ
T

η2

�
for μ < m:

In the other possible situation namely μ > m there are two η regions to consider, the first corresponds to ϵ < μ and the
second to ϵ > μ. In the first region the expansion parameter is η=e

μ
T and in the second e

μ
T=η. The resulting integral is

I1 ≃
1

m4π2

Z
∞

m

ϵ3dϵ
1þ expðϵ−μT Þ

�
1 −

m2

2ϵ2

�
−

e
μ
T

8π2

Z
∞

e
μ
T

dη
η2 log η

�
1 −

e
μ
T

η
þ e

2μ
T

η2

�

−
1

8π2

Z
e
μ
T

e
m
T

dη
η log η

�
1 −

η

e
μ
T
þ η2

e
2μ
T

�
; for; μ > m:

The resulting integrals are explicit, the result is

I1 ∼
−1
m4π2

½6T4Li4ð−e
μ−m
T Þ þ 6T3mLi3ð−e

μ−m
T Þ þ 3T2m2Li2ð−e

μ−m
T Þ − Tm3 logðeμ−m

T þ 1Þ�

þ 1

2m2π2
½T2Li2ð−e

μ−m
T Þ − Tm logðeμ−m

T þ 1Þ� þ 1

8π2

�
e

μ
TEi

�
−
m
T

�
− e

2μ
TEi

�
−
2m
T

�
þ e

3μ
TEi

�
−
3m
T

��
; ð4:8Þ

for μ < m and

I1 ∼
−1
m4π2

½6T4Li4ð−e
μ−m
T Þ þ 6T3mLi3ð−e

μ−m
T Þ þ 3T2m2Li2ð−e

μ−m
T Þ − Tm3 logðeμ−m

T þ 1Þ�

þ 1

2m2π2
½T2Li2ð−e

μ−m
T Þ − Tm logðeμ−m

T þ 1Þ� þ 1

8π2

�
e

μ
TEi

�
−
μ

T

�
− e

2μ
TEi

�
−
2μ

T

�
þ e

3μ
TEi

�
−
3μ

T

��

þ 1

8π2

�
e−

2μ
TEi

�
2m
T

�
− e−

μ
T liðem

TÞ þ log

�
m
μ

�
− e−

2μ
TEi

�
2μ

T

�
þ e−

μ
T liðeμ

TÞ
�
; ð4:9Þ

for μ > m. In the above expressions the exponential integral function

EiðxÞ ¼ −
Z

∞

−x

e−tdt
t

; ð4:10Þ

and the logarithmic integral

liðxÞ ¼ −
Z

x

0

dt
log t

; for x < 1; liðxÞ ¼ −PV
Z

x

0

dt
log t

; for x > 1: ð4:11Þ

were introduced. Here PV denotes the Cauchy principal value, and x ¼ 1 is a singular value.
The remaining integrals k ¼ 0;−1 can be approximated by exactly the same method. Without quoting the details, the

result is

I0 ∼
−1
m3π2

½2T3Li3ð−e
μ−m
T Þ þ 2T2mLi2ð−e

μ−m
T Þ − Tm2 logðeμ−m

T þ 1Þ� þ 1

2mπ2
½m − T logðeμ

T þ e
m
TÞ�

−
m

8π2T

�
e

μ
TEi

�
−
m
T

�
− 2e

2μ
TEi

�
−
2m
T

�
þ 3e

3μ
TEi

�
−
3m
T

��
−

1

8π2
½eμ−m

T − e
2μ−2m

T þ e
3μ−3m

T �;

I−1 ∼
−1
m2π2

½T2Li2ð−e
μ−m
T Þ − Tm logðeμ−m

T þ 1Þ� þ 1

2π2

�
e

μ
TEi

�
−
m
T

�
− e

2μ
TEi

�
−
2m
T

�
þ e

3μ
TEi

�
−
3m
T

��

þ m2

8T2π2

�
e

μ
T

2
Ei

�
−
m
T

�
− 2e

2μ
TEi

�
−
2m
T

�
þ 9

2
e
3μ
TEi

�
−
3m
T

��
þ m
8Tπ2

�
1

2
e
μ−m
T − e

2μ−2m
T þ 3

2
e
3μ−3m

T

�

þ 1

16π2
½−eμ−m

T þ e
2μ−2m

T − e
3μ−3m

T �; ð4:12Þ
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for μ < m and

I0 ∼
−1
m3π2

½2T3Li3ð−e
μ−m
T Þ þ 2T2mLi2ð−e

μ−m
T Þ − Tm2 logðeμ−m

T þ 1Þ� þ 1

2mπ2
½m − T logð1þ e

m−μ
T Þ�

−
m

8π2T

�
e

μ
TEi

�
−
μ

T

�
− 2e

2μ
TEi

�
−
2μ

T

�
þ 3e

3μ
TEi

�
−
3μ

T

��
þ m
8π2T

�
2e−

2μ
TEi

�
2m
T

�

− 2e−
2μ
TEi

�
2μ

T

�
þ e−

μ
T liðeμ

TÞ − e−
μ
Tliðem

TÞ
�
þ 1

8π2
½1 − e

m−μ
T þ e

2m−2μ
T �; ð4:13Þ

I−1 ∼
−1
m2π2

½T2Li2ð−e
μ−m
T Þ − Tm logðeμ−m

T þ 1Þ� þ 1

2π2

�
e

μ
TEi

�
−
μ

T

�
− e

2μ
TEi

�
−
2μ

T

�
þ e

3μ
TEi

�
−
3μ

T

��

þ m2

8T2π2

�
e

μ
T

2
Ei

�
−
μ

T

�
− 2e

2μ
TEi

�
−
2μ

T

�
þ 9

2
e
3μ
TEi

�
−
3μ

T

��
þ 1

2π2

�
e−

2μ
TEi

�
2m
T

�
− e−

μ
T liðem

TÞ

þ log

�
m
μ

�
− e−

2μ
TEi

�
2μ

T

�
þ e−

μ
Tliðeμ

TÞ
�
þ m2

8π2T2

�
−2e−

2μ
TEi

�
2μ

T

�
þ 2e−

2μ
TEi

�
2m
T

�
þ e−

μ
T

2
liðeμ

TÞ

−
e−

μ
T

2
liðem

TÞ
�
þ 3m2

16π2Tμπ2
−

1

16π2
ð1 − e

m−μ
T þ e

2m−2μ
T Þ þ m

16π2T
ðem−μ

T − 2e
2m−2μ

T Þ; ð4:14Þ

for μ > m. In these terms the emissivities (4.2) can be
calculated by identifying Φk with Ik with μ < 0 < m and
Uk with one of the Ik depending if μ > m or μ < m.
The formulas (4.6)–(4.14) are approximated to a given

order. However the massless limit m → 0 is exact. In the
massless regime the emissivities (4.2) are given by

Q ∼
32G2

fT
9

π5
A2
uþ½Li5ð−e

μ
TÞð−e−μ

TÞ þ Li5ð−e−
μ
TÞLi4ð−e

μ
TÞ�:

ð4:15Þ
As the Fig. 1 shows, this function is bell shaped and has
values that run from 10−5 MeV5 to 8 × 10−6 MeV5 for
T ∼ 100 MeV and 0 < μ < 10 T. The units of the figures
are all MeV5. In addition, for fixed μ → ∞ and T, it goes to
zero. This makes sense, as the excess of particles over
antiparticles,

nq − nq̄ ∼
μ

T

�
1þ μ2

π2T2

�
;

is very large in this limit, so annihilation is likely be
suppressed. It is interesting to analyze how the emissivity
varies as a function of the quark mass m. It is not clear at
first sight if the emissivity would grow or decay when m
increases, since the density of heavier particles is sup-
pressed by a Fermi-Dirac factor, but its decay rate seems
to increase with the mass. At the end, it is expected that
Q → 0 when m → ∞, as such a massive quark is likely to
decay fast, but it is strongly suppressed by thermodynam-
ics. The exponential integral Eið−xÞ is such that Eið−xÞ →
∞ when x → 0. However, xαEið−xÞ → 0 in this limit. In
addition xαEið−xÞ → 0 when x → ∞ and α ≥ 1. The same
result is true for the logarithm or polylogarithm terms

FIG. 2. The values of Q for m ∼mu and T ¼ 100 MeV as a
function of x ¼ μ=T.

FIG. 1. The massless limit of Q as a function of x ¼ μ=T for
T ¼ 100 MeV. The units in all the figures are MeV5.
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appearing in (4.8)–(4.14). By use of these facts, one may
obtain that

lim
m→∞

Qðm; μ; TÞ → 0:

This is the expected result. On the other hand, there is an
essential singularity when μ → ∞ and m → ∞, since the
behavior ofQ depends on the curve ðmðtÞ; μðtÞÞ chosen for
taking the limit.
The conclusion given above relates to the asymptotic

behavior ofQwith respect to the mass; however, it does not
give relevant information for moderate values of m such as
m ∼ T orm ∼mu ∼md. These moderate values are the ones
relevant for the present work. In order to understand the
behavior of emissivity for these mass values, a numerical
estimation is in order. We have plotted with Mathematica
the emissivity in several regimes. We collect here some
relevant cases for illustrative purposes. Figure 2 shows
that for a light quark with mass mu the emissivity is not
considerably deviated from the massless case of Fig. 1.
Figure 3 shows that for a quark of mass ms ∼ T the
deviation is also not very significant. We have plotted
the emissivities for other temperatures and we have found a
similar behavior. A significant variation appears when the
quark massm is considerably larger than the temperature T,
as Fig. 4 shows. In this case the emissivity gets significantly
suppressed. Our results suggest that the emissivities for
particles with masses below or of the order of the temper-
ature T are more or less similar, but when the massm ≫ T,
then Q starts to decrease considerably. The emissivities
plotted above are all related to the case μ > m, but in the
other regime a similar conclusion applies. For this reason,
for the present problem in consideration, the massless
emissivity will be considered. In other words, the emis-
sivity will be given by

Q ∼
96G2

fT
9

π5
F

�
μ

T

�
; ð4:16Þ

with FðxÞ a function taking values between 1 and 0.1
when 0 < x < 10.

V. DESCRIPTION OF THE EVOLUTION
OF THE BUBBLE

A. The evolution of an small nugget

After the emissivity has been characterized, the next
section is to describe qualitatively the evolution of the
bubble by use of the baryon number conservation condition
(3.16) together with the equations of motion (3.10)–(3.11).
As discussed in Sec. II, the initial radius is assumed to be of
order R0 ∼ 1 cm. In addition, the small choice N ∼ 1–10 in
(3.16) will be employed. This corresponds to a baryon
number B ∼ 1028–1029 for the object. For radius R < 1 cm
and temperatures T < 100 MeV the terms proportional
to σR predominate over the ones proportional to R2T4,
and the emissivity Qν is even smaller. The difference
becomes more accentuated as the radius or the temperature
decreases. This means that the surface tension σ plays a
major role in contracting the object initially. This situation,
as discussed below, is reversed when the chemical potential
reaches values μ ≫ T.
If initially the chemical potential μ ¼ 0, then the term

proportional to R3 in (3.16) vanishes. However, by taking
into account that T0 ∼ 100 MeV it is seen thatR0T0 ∼ 1013.
This suggests that the volume term in (3.16), which is
proportional to R3T2μ may quickly starts to predominate
over the surface term proportional to R2T2, even when
μ ≪ T. This follows from the fact that N ∼ 1–10 is
considerably smaller than R0T0 ∼ 1013. Now, in the regime
μ ≪ T it may be assumed in (3.10) that

1þ 30μ2

7π2T2
þ 15μ4

7π4T4
∼ 1: ð5:1Þ

This does not mean that the time derivatives of these
quantities are small, since even a small function may have a
large slope at some point. But if it is supposed that the slope
is moderate, then Eq. (3.10) implies that

FIG. 3. The values of Q for m ∼ms and T ¼ 100 MeV as a
function of x ¼ μ=T.

FIG. 4. The values of Q for a very massive quark with mass
m ∼ 10ms and T ¼ 100 MeV as a function of x ¼ μ=T in the
range 15 < x < 20. Its values are never negative.
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28π3gT3

270
_T þ 4π

3
Qν ≥ 0:

This follows from the fact that the first term in (3.10) is
assumed to be negative. This is justified because the surface
tension term proportional σ is large in comparison with the
other components of the pressure, for a radius smaller than
a centimeter. Thus it may be assumed safely that the bubble
is initially contracting and perhaps cooling, which means
that the derivatives of all these terms are all negative. By
use of (4.15) and the numerical values of the emissivity
found in the previous section, the last equation integrates
approximately to

T ≥
T0

½1þ 1010ðtsÞ�
1
5

:

Here the functional form (4.16) the value Gf ∼
10−5 GeV−2 were taken into account, and the chemical
potential μ in (4.15) was set to zero for simplicity.
The last formula shows that, for the temperature to lower

down to T ¼ T0=3, at least a time t ∼ 10−9 s is required,
irrespective to the initial temperature value T0. This is
exactly the time if no contraction takes place, that is, for
constant R. For decreasing R this value may be larger.
However, we will assume that this is the characteristic time
such that, for t ≤ 10−9 s, the temperature remains constant
and after that, a considerable cooling starts due to the
neutrino emission. Note that the external temperature (3.8)
will be also constant for such short time period. In the
present scheme, there is no identification between the
temperature T of the object and the external temperature
Te. This line of reasoning may not be true when μ ≫ T, as
(5.1) would not be valid, and the presence of large
derivatives of μ may slow down the cooling. However, it
is reasonable to assume that for a time of t ∼ 10−4 s, which
is five orders of magnitude larger, the temperature will be of
the order T0=3 or smaller. This, as will be discussed below,
will imply that the object falls in the color-flavor locked
(CFL) phase [22,23].
All the previous approximation is assumed to be valid for

small chemical potential μ ≪ T. By taking into account
(3.16) and by neglecting the surface term, it follows that

R3μ2T ¼ 3π4R2
0T

2
0:

This suggest that the regime μ ∼ T is achieved for some
radius R1 and some temperature and chemical potential
μ1 ≃ T1 such that

R1T1 ∼ ðR0T0Þ23:

Since initially R0T0 ∼ 1013, it is seen that now R1μ1 ∼ 1010.
If the temperature is not significantly changed, then this

implies that there is a violent contraction to R1 ∼ 10−2 −
10−3 cm and the chemical potential reaches the value
μ ∼ 100 MeV. In order to check if this is true, note that,
at initial stages, the dominant term in the right-hand side of
(3.11) is the one proportional to the surface tension σ.
In this equation, this terms dominates the emissivity,
whose maximum value corresponds to T ∼ 100 MeV
and R ∼ 1 cm. If all the nonrelevant terms are neglected
in (3.11) the equation simplifies to a Newton’s law equation
of the form

R2R̈ ∼ −2R:

The integration of this equation gives that

ffiffiffi
π

p
R0

2
Erf

� ffiffiffiffiffiffiffiffiffiffiffiffi
log

R0

R

r �
∼ t:

Here ErfðxÞ is the error function. For a contraction of
R ¼ 10−3R0, this gives around t ∼ 10−10 s. However, these
arguments have a problem, as the velocity of the wall is
given by

_R2 ¼ −4 log
R
R0

:

If this expression is taken literally into account, then
contraction velocity reaches a superluminal value _R2 > 1
at some point. This suggest the bubble surface may reach
velocities close to light, and the nonrelativistic approxi-
mation employed here is not valid. However, assume
that the bubble wall moves with light velocity. Then, it
makes around 109 m per second, which means that it
travels a distance of the order of a centimeter with a time
around t ∼ 10−11 s. All the previous discussion suggests
that a contraction from R0 to R ¼ 10−3R0 occurs in a
time of the order t ∼ 10−9 − 10−11 s. In this period μ
reaches the value μ ∼ T0 and, as the process seems to
be very quickly, it is plausible that no significant cooling
takes place during this contraction. Thus, at the end
μ ∼ T0 ∼ 100 MeV.
Once the chemical potential reaches the value

μ ∼ 100 MeV, there is a further period of contraction in
which the chemical potential grows. In order to see this,
note that for μ ≫ T0 the conservation of baryon number
(3.16) gives that

μ ∼
2ðR0T0Þ23

R
: ð5:2Þ

The last formula shows both that μ ¼ μðRÞ and that it is
independent on the value of T. On the other hand, the right
side of (3.11) can be approximated as
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ΔP ¼ −8πσRþ 4πR2
7

8

π2gT4

90

�
1þ 30μ2

7π2T2
þ 15μ4

7π4T4

�

− 4πR2EBΘðμ − μ1Þ
�
1 −

μ21
μ2

�

− 4πR2
7

8

π2gT4
e

90
þ Fη ∼ −8πσRþ 24g

12π

ðR0T0Þ83
R2

:

In making this approximation, the term proportional to
μ4=T4 was assumed to be leading, and the formula (5.2)
was employed for replacing μ as a function of R. This term
clearly is larger than μ2=T2 and than one. The terms
proportional to EB ∼ ð150 MeVÞ4 and to Te are also small
in comparison with μ ≫ 100 MeV, for a radius smaller
than a centimeter. Now, if the object is assumed to enter
in the CFL phase, the emissivity may be neglected.
The equilibrium position Re is then the zero of the last
expression and, with the present choice of parameters, is
given by

Re ∼ 4. × 10−6 cm:

A further comment about this magnitude is in order. The
surface tension σ of the domain wall, as discussed in (2.4),
is σ ∼ 1020 MeV3. However, for small bubbles, a radial
dependence σ ¼ σðRÞ may appear. In obtaining this num-
ber, we have assumed that σ ∼ 1019 MeV3, that is, an order
of magnitude less than the original value. This difference
does not change significantly the equilibrium radius Re, it
simply corrects it by a factor of two.
The chemical potential μ that follows from (5.2) is

indeed very large, μ > 500 MeV. It is also consistent with
[16] when chemical potential indeed assumes the value well
above 400 MeV during a timescale of the order 10−4 s.
Thus the hypothesis that the emissivity can be safely
omitted is reasonable. In these terms, one has from (3.6)
that at the end of the evolutionM ∼ 1032 MeV. The baryon
number is B ∼ 1029. This leads to an energy per baryon
M=B ∼ GeV, which is of the order of a typical nucleon mN
formed during that epoch. This is a condition for warrant
the stability of the object [5].
The object then makes oscillations around the equilib-

rium position. The linealization of (3.11) around this
equilibrium position Re gives

δR̈þ 2

τ
δ _Rþ ω2δR ¼ 0:

This equation corresponds to exponentially damped oscil-
lator with characteristic timescale τ and frequency ω2

which, in this case, are given by

τ ∼
10πσRe

3η
; ω2 ∼

18

5R2
e
: ð5:3Þ

With the values employed in this section, it follows that
τ ∼ 10−4–10−3 s and ωτ ∼ 1013 ∼mπ=ma. This implies
that the external temperature Te in (3.8) is close to
Te ∼ T0=

ffiffiffiffiffi
10

p
∼ T0=3. Thus, it is plausible that the exter-

nal temperature when the object is formed is close to the
value T ∼ 41 MeV, a number that have several interesting
phenomenological consequences.
There should be however some words about the linea-

lization performed here. As pointed out in previous para-
graphs, there may be a dependence between the surface
tension and the bubble radius, that is, σ ¼ σðRÞ. The value
of Re obtained here is two or three orders of magnitude
smaller than the one obtained in [10], but the value of σ
employed here is two or three orders of magnitude larger.
This implies that the time of formation τ is approximately
the same of that reference. It should be remarked however,
that the value of η was calculated by assuming baryon
number equal to zero, thus a more precise knowledge of
this coefficient of course is desirable.

B. A comment about axion emission

The evolution considered in the previous subsections did
not took into account that a contracting axion wall should
emit axions [33,34]. The axion emission may play a role
analogous to neutrino emissivity. For a wall with tension σ
alone, the equations of motion resulting by considering its
interaction with the axion primordial soup would be

dσR2

dt
¼ −ρ̃aðtÞR2;

with

ρ̃aðtÞ ¼ 10−9m2
πf2π

�
10−4seg

t

�3
2 v
1010 GeV

: ð5:4Þ

This equation would be right for an empty bubble, but in
the present work the bubble is in addition emitting
neutrinos and entering into the color-flavor locked phase.
It is important to compare the effect of a term ρaðtÞR2 with
the neutrino emissivity. Here the density ρaðtÞ is not
identified with (5.4) and parametrize our ignorance about
the details of the emission. By taking into account (4.16), it
follows that for R ∼ 102 m the inequality

ρaR2 >
4πR3

3
Qν

is satisfied for ρa ≥ 1010ρ̃a, which is an enormous density.
Only at R ∼ 10−6 cm and at density (5.4) the axion
emission is comparable with the emissivity, but, at these
stages, the pressure terms are already more important
that both emission terms. For this reason these terms were
neglected in the dynamics, as it may complicate the
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analysis qualitatively but not give rise to a large deviation
from the behavior just described.

VI. A FURTHER APPROXIMATION

In the previous section, it was assumed that the internal
temperature of the quark nugget Ti may differ from
the external one Te. But after employing the assumed
approximations, it was found that a large part of the bub-
ble evolution takes place at almost constant temperature.
At these stages of the Universe evolution however, the
density of the surrounding electrons, positrons, baryons,
and photons is very high. It is likely that the corresponding
timescale for the thermal equilibration is much shorter than
the neutrino-induced cooling. Thus, the internal temper-
ature of the object and Universe temperature can be
matched at these epochs. This is until the temperature

drops below the big bang nucleosynthesis era. At these
times, if the object falls into the color-superconducting
phase, it is expected the neutrino emissivity to drop. It is
likely that only at those stages the object has its own
temperature, independent on the environment one.
If the matching of temperatures is assumed to hold, then

Eqs. (2.6) and (2.7) has to be modified. If one assumes that
the internal temperature is equal to the external one, then
one of these equations or a combination of them has to be
deleted. The energy balance equation (2.6) is likely to
include terms related to the baryons and the Universe
expansion and will give the final result that Ti ¼ Te. Thus,
this equation will be ignored, as it is not properly includ-
ing the effect of the external fluxes. The Newton type
equation (2.7) will be kept, and will be written in the
following form

d
dt

��
4πσR2 þ 4πR3

3

7

8

π2gT4

30

�
1þ 30μ2

7π2T2
þ 15μ4

7π4T4

�
þ 4πR3

3
EBΘðμ − μ1Þ

�
1 −

μ21
μ2

��
_R

�
þ 4π

3
R3Qν

¼ −8πσRþ 4πR2
7

8

π2gT4

90

�
1þ 30μ2

7π2T2
þ 15μ4

7π4T4

�
− 4πR2EBΘðμ − μ1Þ

�
1 −

μ21
μ2

�
− 4πR2

7

8

π2gT4
e

90
þ Fη:

By expanding the derivatives properly, it leads to the expression

�
4πσ þ 24g

12π

ðR0T0Þ83
R3

þ 4πR
3

EBΘðμ − μ1Þ
�
1 −

μ21R
2

4ðR0T0Þ43
��

R̈þ
�
8πσ −

24g
12π

ðR0T0Þ83
R3

þ
�
4πREBΘðμ − μ1Þ þ

8πRðR0T0Þ23EB

3
δðμ − μ1Þ

��
1 −

μ21R
2

4ðR0T0Þ43
�
−
4πR3μ21EB

3ðR0T0Þ43
Θðμ − μ1Þ

�
_R2

R

þ 4π

3
RQν ¼ −

8πσ

R
þ 24g
12π

ðR0T0Þ83
R4

− 4πEBΘðμ − μ1Þ
�
1 −

μ21R
2

4ðR0T0Þ43
�
þ Fη:

The linealization of this equation gives essentially the same numbers as (5.3). Thus, the size of the object and the time of
formation is not considerably changed by the matching of the internal and external temperature.
A final comment about the linealization is in order. The full nonlinear equation described above, and the one in the

previous section, contain scales with very different magnitude orders. For instance, by using the numbers obtained in the
present work, the previous equation may be expressed in dimensionless form as

m2

�
1þ 1

1026x3

�
ẍþm2

�
2 −

1

1026x3

�
_x2

x
þ 30x ¼ −

2

x
þ 10−26

x4
− 2 × 10−15

m_x
x

; ð6:1Þ

with m denoting a meter and x ¼ Rm−1. This shows the different scales that are involved in the problem. The behavior of
this type of equations were considered in [4] numerically. The type of equations considered in that reference are of the form

σðRÞR̈ ¼ −
2σðRÞ
R

−
σ _R2

R
− 4η

_R
R
þ αT4

�
β þ γ

�
R0

R

�
2

þ 1

72

�
R0

R

�
4
�
:

Here α, β, and γ are constants, whichmay have very different
orders ofmagnitude. The Eq. (6.1) is of this type, as the right-
hand side contains terms that goes as R−2 and R−4 and to
_R=R. It is difficult to see the oscillations numerically due to

the discrepant scales involved, but they have been seen in
[10] by properly scaling some parameters of the models.
These numerical studies support the linealization procedure
described in (5.3), at least at a qualitative level.
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VII. VIABILITY OF AXION NUGGETS AS DARK
MATTER CANDIDATES

In the present work, the formation of axion quark
nuggets and their possible evolution was analyzed, but
taking into account a large emission of neutrinos inside
the object. As a result, the final radius of the object is
smaller than the one predicted in [8]. However, the analysis
done here employs a smaller axion mass and the time of
formation of the object remains basically the same as in [4].
The Universe external temperature at the formation time
is around Tf ∼ 41 MeV. The importance of this value is
the following [5]. The baryon to photon density that is
currently available is

η ∼
nB − n̄B

nγ
∼ 6 × 10−10:

This value can estimated as η ∼ Teq=mN between the
temperature Teq ∼ 1 eV of equilibrium between radiation
and matter. Here mN is a typical nucleon mass, which,
in order to reproduce the observations, should be
mN ∼ 1 GeV. On the other hand, at the time of formation

nB − n̄B ∼ nB ∼ e
−mN

Tf . The value Tf ∼ 41 MeV is the one
consistent with the measurements of the parameter
η ∼ 6 × 10−10. For this reason, the possibility that these
objects are a considerable fraction of dark matter and may
contain a large number of antibaryon number, consistent
with the measured baryon-antibaryon asymmetry, remains
plausible.
There are several consistency checks that these objects

should fulfill in order to classify as cold dark matter
candidates [4–17]. It is important to see if these conditions
are satisfied by the objects described in the present work.

A. The axion quark nuggets are long lived

The first condition is that these objects should be long
lived. By assuming a geometric cross section, the total
number of collisions between ordinary hadrons and axion
quark nuggets is given by

dW
dt

¼ 4πR2nBv; nB ∼
0.15ρdm
GeV

:

From here it follows that the annihilation of baryon charge
until the present time is

ΔB ¼ 1

H
dW
dt

:

By employing an age of the Universe of the order
tu ∼ 1017 s, a typical hadron velocity v ∼ 10−3 and the
formation size of the object Re ∼ 10−5 cm, it follows that
ΔB ∼ 1017, which is a value less than the value B ∼
1028–1029 employed here. For larger values of Re and B,

the same conclusion holds. Thus, these objects have a
lifetime larger than the Universe age.

B. The energy density contribution of the nuggets

Another important aspect is the ratio between the
energy density contribution of quark nuggets and ordinary
baryons [6]. If one assumes that these nuggets are the most
important component of dark matter, then the excess of
antibaryons is hidden inside these compact objects and is of
the order of the baryon excess

n̄dm − ndm ¼ 1

B
ðnB − n̄BÞ ∼

nB
B

:

By assuming that the excess of antinuggets is of the same
order than the number of nuggets and antinuggets, one
has then that ndm þ n̄dm ¼ Cðn̄dm − ndmÞ with C ≥ 1. This,
combined with the previous relation, gives that

n̄dm þ ndm
nB

¼ Cðn̄dm − ndmÞ
nB

¼ C
B
:

In these terms it follows that

Ωdm

ΩB
∼
mqnðn̄dm þ ndmÞ

mNnB
∼
Cmqn

BmN
: ð7:1Þ

By taking into account that mqn ∼ BmN , one has that
Ωdm ≥ ΩB, within a magnitude order. This is an interesting
feature, since this relation is difficult to establish for models
of dark matter not related to ordinary quark or baryon
degrees of freedom [6].

C. The interaction with photons

It should be emphasized that the axion quark nuggets do
interact with photons [9]. However, this does not pose a
problem for being cold dark matter candidates if the mean
free time for a photon to encounter a nugget is larger than
the age of the Universe. The mean free time for photons
to collide with a nugget is given by th ¼ ðnBσÞ−1, where
the cross section σ is assumed to be the geometric one
σ ¼ 4πR2

e. A convenient way to estimate th is to consider
the mean free path for a photon before colliding with a
baryon. This is given by [1]

tb ¼
1

xenBσT
∼ 3.9 × 1018

a3

ΩBh2
s;

with xe the fraction of ionized particles and σT the
Thompson cross section for baryons. Thus

th ∼
σT

4πR2

nB
ndm

3.9 × 1018
a3

ΩBh2
s:

This can be expressed in terms of Ωdmh2 by use of (7.1) as
follows
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th ∼
σT

4πR2
3.9 × 1018

a3

Ωdmh2
s
mdm

mN
:

On the other hand, at the time of matter radiation equality

aeq ∼
4.15 × 10−5

Ωmh2
∼ 3.5 × 10−4;

Teq ∼ 5.7Ωmh2 eV ∼ 0.73 eV;

where the estimationΩmh2 ∼ 0.128 has been employed. As
a ∼ T−1 it follows that

a ∼
2.55 eV

T
× 10−4:

By taking into account that σT ∼ 2.4πm−2
N , that Re ∼

10−5 cm and that mdm ∼mNB, it follows that

th ∼
1017

Ωdmh2

�
2.55 eV

T

�
3

s:

Here the value B ∼ 1029 was employed, which corresponds
to Re ∼ 10−5 cm. This time is larger than the Hubble time

H−1 ∼ 1.13 × 1012
�
eV
T

�3
2 sffiffiffiffiffiffiffiffiffi

Ωh2
p ;

thus the axion quark nuggets may be considered compo-
nents of cold dark matter even when they strongly interact
with light. In other words, it takes really a long time for a
photon for reaching the compact object.

D. Energy injection of axion quark nugget

Consider that the Universe has temperatures of the order
T > 2me ∼MeV, which hold at ages right before big bang
nucleosynthesis. At this stage, theUniverse is composed by a
plasma of electrons, positrons, photons, and baryons. Some
electrons, whose density is given by ne, will be annihilated
due to the large number of positronon the electrosphere of the
nugget [16]. The microscopic description of this electro-
sphere may be found in the works [16,59]. These annihila-
tions would lead to an energy injection in the plasma. It is
important that this injection remains small, otherwise the
presence of the nugget may alter considerably the pre–big
bang nucleosynthesis cosmology.
The number of events by unit time between a given

nugget and the plasma can be estimated by the following
formula

dN
dt

∼ 4πR2ne:

A typical electron or positron energy in this plasma is of
the order μeþ ∼ 10 MeV. By taking into account the last

formula, it follows that the energy injection to the plasma
by unit volume due to nuggets is

dE
dVdt

∼ 4πR2neμeþnqn:

This annihilation will result in an event with typical
energy μeþ. On the other hand, a typical energy energy
density of the system Tne and a typical time between
collisions is τ ∼ α−2T−1, with α the standard QED cou-
pling. The dimensionless quotient,

τ

Tne

dE
dVdt

∼
4πτR2μenqn

T
;

compares the energy injected by annihilations with a
typical energy in the plasma. The density of nuggets, as
stated above, is approximately

nqn ∼
nB
B̄

:

The average nugget baryon charge is, as stated in the text, is
B̄ ∼ 1028. The baryon number nB, in the standard cosmol-
ogy context, is given by

nB ∼ ηnγ; η ∼ 5 × 10−10; nγ ∼ ne ∼ neþ ∼
2

π2
T3:

This means that

τ

Tne

dE
d:Vdt

∼
8R2

nμeηT
πα2B̄

:

For the parameters found in the present work at T ∼me

τ

Tne

dE
d:Vdt

∼ 10−22:

The energy injection is therefore completely subdominant
with respect of a typical energy of the plasma, which is the
desired result.

E. A comment about the Lithium puzzle

At temperatures high enough, a given nugget may
become ionized by striping off positrons of its electro-
sphere. Some protons present in the Universe may then be
influenced by the nugget electric field and will attempt to
screen its charge. The same holds for ions with Z > 1. The
presence of nuggets should not modify considerably the
proton density of the Universe. On the other hand, if
the density of ion species with Z > 1 is depleted, this may
have interesting consequences in the context of the lithium
puzzle [16]. But even before to discuss these matters, it is
important to remark that [16] employs a nugget radius
of the order Rn ∼ 10−5 cm while the present one uses
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Rn ∼ 10−6 cm, that is, one order of magnitude less. Our
claim is that, even taking into account this discrepancy,
there is room to assess that the proton density remains
unchanged and that the lithium density is depleted. The
main point is the definition of the so-called capture radius,
which it is described below.
The microscopic profile of the nugget electrosphere is

described detail in [59]. If the nugget is placed at tem-
peratures high enough T > me, then the positrons with
momentum p2þ < 2meT are expected to be stripped off,
since they are weakly bound to the object. The nugget
becomes ionized, and the charge QðrÞ enclosed in a sphere
radius r is characterized in [16]. For temperatures T <
100 MeV, the more massive protons which will attempt to
screen the nugget charge QðrÞ. In fact, the protons are
influenced under the nugget electric potential energy, and
those which are close enough to the object will have
negative energy, thus bounded to the object. It is clear that
other charged particles with Z > 1 may be trapped as well.
Consider a nucleus species with Z > 1. The density

variation of such species in presence of nuggets is estimated
in [16] as

δnZ
nZ

∼
4πR3

cðTÞnqn
3

e
ðZ−1ÞαQðRcÞ

RcT : ð7:2Þ

The first factor is the density variation of protons, whose
Z ¼ 1, and is proportional to the nugget density nqn and to
the volume of the sphere enclosed by the so-called capture
radius Rc. The exponential factor represents the enhance-
ment of the density variation due to the larger Coulomb
interaction of nucleus with Z > 1 with respect to the pro-
tons. The correct definition of the capture radius RcðTÞ is
subtle. A possibility is to define a radius such that for r <
RcðTÞ the electrostatic energy for protons is such that
2QðrÞ > m2rv ∼ 2Tr. Clearly, in this case, the proton
energy will be negative and this particle will be bounded
to the object. Another possible definition is that for r >
RcðTÞ the density of protons npðr; TÞ approaches the
cosmological value nBðTÞ. The capture radius may be
approximated by the following condition

npðRc; TÞ ∼ nBðTÞ ∼
2η

π2
T3: ð7:3Þ

This condition means that, for R larger than the capture
radius Rc, the proton density is approximately equal to the
cosmological baryon number nBðTÞ. In other words, this
density is only modified for regions closer to the nugget.
On the other hand, the radius dependence of the proton
density may be estimated as

npðR; TÞ ∼ npðRn; TÞ
�
Rn

R

�
p
;

with p an unknown exponent which, in Ref. [16], is
approximated by p ∼ 6. The density of protons npðRn; TÞ
at the radius nuggets is very high, and can be estimated by
effective approximation schemes such as Thomas-Fermi
method [16,59]. The density npðRn; TÞ is then fixed by
the condition that the protons screen a large portion of this
charge. The result [16]

npðRn; TÞ ∼
meT2

πα

does not depend on the nugget sizeRn. Besides, the charge of
the ionized nugget is [16]

Qi ∼
2

ffiffiffi
2

p
R2
n

α
T

3
2

ffiffiffiffiffiffi
me

p
:

From the parameters found in the present work, one has
from (7.3), that Rc ∼ 10−4 cm at temperatures relevant for
lithium physics T ∼ 20 KeV. We suggest, however, that the
radius that should be employed in (7.2) may be slightly
larger. First, the functional form fornpðR; TÞ as appower is a
good approximation, but it is expected to be corrected at
some distance from the nugget. On the other hand, the
ionized charge that is screened by the proton at the capture
radius is [16]

QðRcÞ ∼
Z

∞

Rc

npðR; TÞ4πr2dr ∼
4πnBðTÞR3

c

p − 3
:

With the numbers found here one has that Qi ∼ 109 and
QðRcÞ ∼ 106, that is, three orders smaller. It seems reasonable
for the authors to employ a radius in (7.2) forwhich the charge
is more screened than that. The three orders of magnitude
discrepancy may be corrected by employing a radius close to
R0
c ∼ 10−3 cm. Here the dot is emphasizing that we are not

necessarily identifying this radius with the capture one. The
value 10−3 cm is very close to the numerical value that [16]
employs. By parametrizing the Z ¼ 1 density as

4πR03
cnqn
3

∼ e−Xp; Xp ¼ − log
4πR03

cnqn
3

;

and by introducing the enhancement exponent

Xe ¼
ðZ − 1ÞαQðR0

cÞ
R0
cT

;

it is found, by assuming the average value B ∼ 1028, that

Xp ∼ 39.5 −
�
3 −

3

p

�
log

T
20 KeV

;

Xe ∼ 20ðZ − 1Þ
�

T
20 KeV

�
2ð1−1

pÞ
:
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At temperatures T ∼ 20 KeV, the factor Xp ∼ 39.5 and thus,
δnp=np ∼ 10−39.5. Thus the nuggets do not alter the proton
density, which is a desired feature. On the other hand, for
Z ¼ 3 it follows that both factors Xp and Xe are roughly the
same at T ∼ 20 KeV, and both close to the value 40. Even
more, for Z > 3 the enhancement factor Xe becomes dom-
inant. This suggests that for species with Z ≥ 3 the deviation
δnZ ≥ nZ. Thus, for such charged ions, it is expected that the
density nZ is considerably depleted. Therefore the applica-
tions to the lithium puzzle discussed in [16] does not seem to
be spoiled by the nugget description presented in this work.
We hope to comewith amore detailed analysis of this issue in
a future work. Another point that deserves to be studied
further is the bias between nuggets and antinuggets. The
results of [10] suggest that axionic field variations of small
scale are possible at QCD scale. In authors opinion, this
possibility is attractive since is suggesting that the bias is due
to CP violating physics, and this conjecture seems natural.
But clearly to put these ideas inmoreprecise quantitative form
is of interest for a future.

F. Some alternatives to the present model

It should be emphasized that the original model [4–16] is
based on closed bubbles with no string attached, which
appear naturally in the Kibble model. As argued along the
text, this leads to a reasonable density of nuggets and to
interesting phenomenological consequences. However, it is
of interest to describe, at least qualitatively, the physics that
is obtained from other initial scenarios such as the ones
corresponding to domain walls with strings attached, which
do not necessarily rely on the Kibble mechanism, as for
instance [21]. In the standard picture for this objects [21]
the unique genuinely topological object in this model (with
N ¼ 1 axion model) is the axion string. These defects are
originated at the Peccei-Quinn (PQ) transition, which
corresponds to a very large temperature. Axionic domain
wall arises near QCD scale when QCD instanton effects tilt
the axion potential. A large number of these domain walls
happen to be open, and axion strings become their
boundary. This implies that the number and size of these
axion domain walls at QCD scale will be entirely deter-
mined by the number of axion strings at that scale, which
would have entered the scaling solution by that time. This
will lead to typically of order 10 axionic strings, hence
similar number of axionic domain walls in the horizon
volume at QCD scale [21].
The density described in the previous paragraph implies

that the closed domains wall that are initially present are
typically of a radius R0 ∼ 102 meters. We have considered
the evolution of a large initial bubble, with initial radius of
R0 ∼ 102 meters. Without quoting all the details, it should
be said that initially it is the neutrino emissivity that
dominates the dynamics, until the radius is of the order R0 ∼
10−2 meters. At this stages μ ∼ T. After that, the object

stabilizes at a radius of the order Re ∼ 10−2 − 10−3 cm if
the axion coupling constant is chosen of the order
fa ∼ 109–1010 GeV. The value of the resulting timescale
τ that results from (5.3) is essentially the same as for a small
bubble namely, τ ∼ 10−4 cm. In other words, we suggest
that if the initial radius R0 is varied from 100 meters to
1 cm then, by varying the axion coupling in the range
109 GeV < fa < 1012 GeV, the desired value of τ may be
obtained, even for this large initial radius.
The fact that the evolution of the nuggets described above

can give raise to an appropriate value of τ as well is of
interest. However, another stern test about the physics of
these objects is their density. There are indications [33,34]
that only a very small fraction of the resulting domain walls
are closed. A characteristic fraction may be 10−7. While it is
not impossible that this number may be enough for dark
matter generation, it may be of interest to consider other
possibilities, in which the number of defects is enhanced.
There appeared recently literature [60] concerning these
matters and, in particular, to the enhancement of the number
of string per Hubble horizon. Reference [60] states, by use of
anomaly arguments of the Callan-Harvey type [61], that
axion strings are superconducting. The Callan-Harvey
anomalies in these defects are responsible, in particular,
of effects such as current leakage. A shrinking axion loop
evolves into a vorton, whose stability is supported by the
electromagnetic force on the string current. If there is a
primordial magnetic field at the stages of string formation,
then a large current is induced on the axion string, and there
appears a further drag force with the surrounding particles.
As a consequence, the string movement is slowed down.
Depending on the value of the primordial magnetic field, this
may give rise to a large enhancement of the number strings
per horizon. Another source of enhancement is likely to
appear at the PQ phase transition. The axion loops become
the boundary of a domain wall. The shrink of the loop is
stopped at some point by the electromagnetic force gen-
erated by the current. However, the wall is still shrinking and
the system is twisting violently, which leads to a breaking
into smaller pieces of vortons. This process keeps going till
the size of the vorton becomes arguably less than the axion
Compton wavelength. This implies an enhancement of the
number of these objects. It is suggested in [60] that the
resulting domain wall dynamics is not affected considerably
by the presence of these magnetic fields. Thus, these defects
seems to be promising if there are primordial magnetic
fields present at the hadron-quark phase transition, as their
density is enhanced. This may lead to an interesting line for
future investigation.
The last thing to discuss in these alternative scenarios is

the excess of nuggets over antinuggets. As in the previous
case, a further elaboration of the picture is needed. To
introduce such excess, coherence of axion field over
the entire Universe is required. A possibility is to assume
that PQ symmetry breaking occurs before inflation.
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However, that will also wash out any axionic strings, hence
associated axionic domain walls. Nevertheless, this may
not be the case if there is a proper enhancement such as the
one induced by magnetic field. In this case there appears a
competition between the expansion of the Universe and the
increase of objects by the magnetic field. Axionic domain
walls only arise at QCD scale by concentrating the angular
variation around the string in a wall (actually a wedge). But

a more firm quantitative analysis is desirable before
believing in such conclusions, in particular related to this
competition of effects. We hope to come with a better
analysis in a future investigation.
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