

EGU2020-5355 https://doi.org/10.5194/egusphere-egu2020-5355 EGU General Assembly 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Natural halogens buffer tropospheric ozone in a changing climate

Fernando Iglesias-Suarez^{1,6}, Alba Badia¹, Rafael P. Fernandez², Carlos A. Cuevas¹, Douglas E. Kinnison³, Simone Tilmes³, Jean-François Lamarque³, Mathew C. Long⁴, Ryan Hossaini⁵, and Alfonso Saiz-Lopez¹

¹Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain

²National Research Council (CONICET), FCEN-UNCuyo, UTN-FRM, Mendoza 5501, Argentina

³Atmospheric Chemistry Observations and Modelling, NCAR, Boulder, CO 80301, USA

⁴Climate and Global Dynamics Laboratory, NCAR, Boulder, CO 80301, USA

⁵Lancaster Environment Centre, Lancaster University, Lancaster, UK

⁶Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Germering, Germany

(fernando.iglesias-suarez@dlr.de)

Reactive atmospheric halogens destroy tropospheric ozone (O_3), an air pollutant and greenhouse gas. The primary source of natural halogens is emissions from marine phytoplankton and algae, as well as abiotic sources from ocean and tropospheric chemistry, but how their fluxes will change under climate warming –and the resulting impacts on O_3 – are not well known. Here we use an Earth system model to estimate that natural halogens deplete approximately 13 % of tropospheric O_3 in the present-day climate. Despite increased levels of natural halogens through the twentyfirst century, this fraction remains stable due to compensation from hemispheric, regional, and vertical heterogeneity in tropospheric O_3 loss. Notably, this halogen-driven O_3 buffering is projected to be greatest over polluted and populated regions, mainly due to iodine chemistry, with important implications for air quality.

How to cite: Iglesias-Suarez, F., Badia, A., Fernandez, R. P., Cuevas, C. A., Kinnison, D. E., Tilmes, S., Lamarque, J.-F., Long, M. C., Hossaini, R., and Saiz-Lopez, A.: Natural halogens buffer tropospheric ozone in a changing climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5355, https://doi.org/10.5194/egusphere-egu2020-5355, 2020