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Abstract 
It is common for significant advances in science to come hand in hand 
with innovative techniques. The study of birdsong was able to 
immensely expand incorporating novel rigorous investigations when a 
graphic and informative representation of sound was achieved. The 
result of this technique, the spectrogram, allows describing the pitch 
modulations and timbre properties of sounds as a function of time. In 
this paper we review its history and some of its applications.
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Birdsong before the spectrogram
William Hudson (1842-1922) was an Argentine-British natu-
ralist. Born in Argentina, he emigrated to England at the age  
of 33. Upon his arrival in his adoptive homeland, he wrote 
about the experience of hearing the song of a Eurasian black-
cap (Sylvia atricapilla) for the first time: “In my childhood, 
this bird warbled to me through the lines of a poem I read, and 
now, many years later, I hear the song for the first time. It is 
beautiful, but how unlike what I had imagined!” This anec-
dote [Wilson, 2016] illustrates the historical difficulty of incor-
porating birdsong into scientific research: how to transmit an  
accurate, informative description of a song.

There is a field of human culture in which we faced a  
challenge similar to the problem of transmitting a birdsong’s  
description: music. Both human music and birdsong involve the 
production of sounds with varying pitch, timbre and duration. 
However, there are also differences. Human music evolved 
as a collective activity, leading different cultures to develop a  
consensus on the discretization of the pitch (i.e., the definition  
of discrete notes to be used) and the measurement of duration 
times based on which to build a musical discourse [Tsuji & 
Muller, 2021]. In contrast, the vocalizations of birds typically  
consist of a succession of acoustic elements during which the 
pitch of the sound is continuously modulated. While some 
bird species do exhibit a predominant rhythm in their songs 
[Norton & Scharff, 2016], there is generally no adherence to  
prescribed rules for the duration of the acoustic elements 
in birdsong production. In addition, the possible timbres of 
birdsong are diverse, with over 10,000 known bird species  
capable of producing a wide range of sound types, from very  
harsh to surprisingly tonal ones.

If we focus on the similarities between birdsong and music, 
we can find precedents for strategies used to generate a vis-
ual record of a given succession of acoustic elements. In the 
9th century, a notation for Gregorian choirs began to spread in  
European monasteries, called “cheironomic neumes” [Tsuji & 
Muller, 2021]. These consisted of inflectional marks indicating  
the general form of the music, but not necessarily the exact 
notes or rhythms to be sung. The marks were written from left 
to right, and an ascending mark corresponded to a modula-
tion of the pitch of the sound from low to high frequencies.  
The problem with this notation was that the system was not 
very accurate and it was immensely complicated. Beginning 
in the 14th century, this representation in space of frequen-
cies against time (in which frequencies are indicated by the 
height of the symbols, and time is read from left to right)  
was ordered by writing the symbols on a set of lines (staves), 
which regulated the heights of the acoustic elements. Also, the  
relative duration of the notes was organized in fixed symbols  
(whole note, half note, etc) [Tsuji & Muller, 2021].

Attempts have been made to use musical notation to capture  
the characteristics of the songs of different bird species. 
One of the most successful and known examples is the work  
of composer and ornithologist Olivier Messaien (1908–1992),  
who incorporated evocative fragments of various birdsongs  

into compositions like La Nativité, Quatuor, and Vingt 
regards [Schultz, 2008]. Another example is music inspired in  
songbirds, as the Symphony No. 6 “Pastoral” by Ludwig  
van Beethoven, or the 1952 work “Merle noire” by Messaien, 
in which the flute plays melodies identifiable with the song 
of a blackbird [Bowden, 2008]. However, using musical  
notation to accurately transcribe bird song requires a high  
level of musical training and may not be accessible to those  
without it. An alternative approach is the use of cheironomic  
neumes (see previous paragraph and [Tsuji & Muller, 2021]). 
This approach, used by Saunders in 1935 to illustrate his descrip-
tion of Swamp sparrows (Melospiza georgiana) [Saunders, 
1935], allows for the representation of modulations in pitch 
and duration in a qualitative way, but does not capture  
timbre or other aspects of the song in a quantitative manner. 
Even with this simplified approach, transcribing birdsong  
effectively requires a certain level of skill and talent.

Another approach, used extensively in Bird Field Guides for 
birders is the use of onomatopoeias to mimic the birds’ songs 
(see for example, [Narosky & Yzurieta, 2010]). This could 
be helpful when being in the field but not accurate to capture  
acoustic details of birdsongs.

The appearance of the spectrograph
The spectrograph was a machine capable of generating a picto-
rial representation of the sound, informative of its pitch modu-
lations and timbre. The operation of a spectrograph is based 
on the mathematical principle of Fourier’s theorem, which 
states that any periodic function f(t) can be broken down into a  
sum of terms (in principle, an infinite number of them), each of  
which is a trigonometric function [Pipes, 1946]:
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With the exception of one term in the sum (a
0
) in  

Equation (1), all the others terms are periodic functions with 
periods T

n
 that are different submultiples of the original  

period (T
n
 ≡ T/n). Therefore, these functions are also periodic  

functions with the same period T as the original function.  
If the function of interest is not periodic, we can consider the 
function as a fragment of a hypothetical periodic function  
with a period of T. This means we extend the original sig-
nal indefinitely, adding copies of the original signal in both 
directions in time, and treat new signal as a T-periodic  
function. In this way, we can apply Fourier’s theorem to ana-
lyze our original non-periodic time series. The key to writing  
this series is the ability to compute the weight of each term  

Page 3 of 12

Molecular Psychology: Brain, Behavior, and Society 2023, 2:9 Last updated: 17 MAY 2023



in the expansion. The set of all the weights necessary to repro-
duce the original sound ultimately constitutes its “fingerprint”. 
Some terms will weigh more than others, determining the fun-
damental properties of the sound (such as its timbre) [Calus  
& Fairley, 1970; Crawford 1968]. Additionally, we can  
analyze small fragments of the sound centered on a series of 
consecutive times and create a three-dimensional diagram to 
describe the sound. One axis of this diagram, would be for the  
frequencies of the different terms (which are simply the inverses 
of the periods). The other axis would be for time. Finally, for 
each time and frequency, the third axis would contain points 
at heights proportional to the weights of each term in our  
expansion. If the weights are encoded in a gray scale (for  
example, high values of the weights would correspond to dark 
grays, and small values to light grays), a two-dimensional  
graphical representation of the sound can be created. The 
good news is that there is a simple mathematical formula that 
allows us to calculate these weights for a given sound signal  
using Equation (2) and Equation (3). The bad news is that the 
process involves (infinitely) many integrals. Even calculating  
a relatively small number of terms was an enormous challenge 
in the 1950s [Cooley et al., 1967]. The solution to this chal-
lenge was to build a physical device, a piece of hardware, that 
could generate a diagram like the one we have just described  
without needing to perform the calculations of the terms’  
weights in the Fourier series. Around 1940, a group of 
researchers at the Bell Telephone Laboratories decided that it  
was time to develop methods for making the details of speech 
more visible and intelligible [Potter et al., 1947]. Also, it was  
wartime so a driving force was the need to monitor move-
ments of ships and submarines. As a consequence, much of the 
information remained classified until World War II was over  

(see historic details in [Marler, 2004]). Soon after hostilities  
ended a company was created to build and market a machine 
for visible speech. This device was the spectrograph, described  
in 1946 by Koenig, Dunn and Lacy [Koenig et al., 1946].

A spectrograph consists of several components. The first one 
was a support material for the sound being analyzed [Koenig  
et al., 1946]. Then, there was electronic hardware that  
transformed the recorded signal into an electrical one, which 
was subsequently filtered by a bandpass circuit (an electronic 
circuit that selected only those components of the signal  
whose frequencies were within a pre-established range). The 
process was repeated multiple times, with the parameters of 
a modulator being changed in order to bring different regions 
of the spectrum into the filter’s frequency range. A thermal 
paper was used to record the output of this repetitive process.  
This paper was placed on a rotating drum, synchronized to 
complete a full turn in the time it took to analyze the sound 
once. The printing mechanism was a hot tip that left a mark  
on the thermal paper, the density of which was proportional to 
the output of the filter. With each repetition of the process, the  
modulation was slightly modified to increase the frequencies  
selected by the filter, and the position of the tip moved  
upwards horizontally. By repeating this process multiple times, 
the spectrograph generated a figure that could be read from 
left to right, with marks indicating the presence of sound in 
a frequency band (at a vertical position proportional to the  
frequency), whose duration was inferred from the horizontal 
length of the stain. An example of thermal paper marked by  
a spectrograph is shown in Figure 1. Hard to describe is “the  
delicate smell of ozone left when the procedure was over”  
(D. Margoliash, personal communication).

Figure 1. Scanned thermal paper generated by a spectrograph showing the analogical spectrogram of a rufous-collared 
sparrow (Zonotrichia capensis) song. Each continuous line defines a syllable. The initial three syllables compose the introductory 
theme, characteristic of each individual. The following seven short syllables constitute the trill. This figure has been adapted and  
reproduced with permission from [Tubaro, 1990].

Page 4 of 12

Molecular Psychology: Brain, Behavior, and Society 2023, 2:9 Last updated: 17 MAY 2023



The use of the spectrograph revolutionized the study of bird-
song, providing a highly informative graphic representation of 
sound. Prior to this technique, it was difficult to validate basic 
features of birdsong. An illuminating example is the use of 
two independent sound sources. These sounds are generated 
simultaneously, so that the only other graphic representation  
existing to date (the graph of sound wave pressure fluctua-
tions) could not shed light on the phenomenon. Peter Marler 
describes the first use of spectrography in the study of birdsong 
[Marler, 2004], carried out by Donald Borror at Ohio State Uni-
versity in 1953 [Borror & Reese, 1953]. Those studies allowed 
a deeper understanding of the songs of sparrows, thrushes,  
and wrens. However, perhaps the most impressive results of 
this technique in the field of birdsong were those that began  
to emerge from Thorpe’s group, who in 1950 purchased one 
of the first spectrographs imported into Britain [Marler, 2004]. 
Spectrography allowed for the study of micro and macro vari-
ations in the songs of individuals within a species, providing  
a new perspective on the cultural evolution of vocal communi-
cation and its influence on speciation. Focusing on chaffinches 
(Fringilla coelebs), they applied spectrographic analysis to the 
problem of vocal learning, giving oscine birds a preferen-
tial place as animal models. Peter Marler had already written 
about dialects in 1952, stating that the geographical varia-
tions in the song of chaffinches are phenotypic, due to vocal  
learning [Marler, 1952]. But it was only after incorporating spec-
trographic tools that Marler was able to study the subtleties of 
song variation in white-crowned sparrows (Zonotrichia leuco-
phrys) in San Francisco Bay [Baptista & Wells, 1975; Marler & 
Tamura, 1962]. These micro and macro variations present in 
the songs of individuals within a species, interpretable within 
the framework of vocal learning, opened a new and quantita-
tive perspective on the problem of cultural evolution in vocal  
communication and its influence on speciation. As Peter Marler 
states, “spectrographic analysis elevated dialect studies from 
the level of the enthusiastic observer to that of a scientific  
subject of investigation” [Marler, 2004].

The use of spectrograms quickly spread throughout the aca-
demic world. However, the equipment was large, expensive, 
and predated commercial portable tape recorders making it 
difficult to obtain sound recordings of field work during the 
1960s. An example of this transition can be seen in the work 
of F. Nottebohm, who in the mid-sixties, spent five months in 
Argentina without access to portable recorders [Nottebohm,  
1969]. These months were, however, ideal for studying the  
song of the rufous-collared sparrow (Zonotrichia capensis) in 
different parts of the country. This species’ song consists of 
an introductory theme of two to four syllables followed by a 
trill (see Figure 1). The rate of syllable generation in the trill  
is a characteristic of the country region inhabited by the bird. 
On the other hand, the structure of the introductory theme  
is an identifying trait of the individual. These themes are rela-
tively tonal sequences of syllables in which the pitch mod-
ulates upwards or downwards. Deprived of better tools,  
Nottebohm annotated the various themes found in different 
parts of the country using “Saunders”-style notes [Nottebohm, 
1969]. Back at Rockefeller University, he calibrated himself 
doing the following: he took a song, described it with his  

schematic notation, and then compared it to the result of  
analyzing the song with a spectrograph. This was a resource-
ful way to do science in 1966. As a side note, Nottebohm 
turned out to be quite accurate in his descriptions, since his 
schematic notes were similar to the pictures generated by the  
spectrograph [Bistel et al., 2022; Nottebohm, 1969].

The history of digitalization
The existence of hardware capable of spectrally analyzing 
sound and creating an informative image of it marked a sig-
nificant change in the sound analysis in general and in bird-
song in particular [Marler, 2004]. However, the digitization 
of sound signals allowed researchers to examine the details 
of sound signals at various scales. In the context of audio  
signals, a significant moment in the history of digitization was 
1937, when engineer Alec Reeves developed the use of pulse 
code modulation (PCM) in telecommunications [Reeves, 1968]. 
PCM is an efficient method for digitizing analog signals  
displayed at discrete time intervals. In this process, the ana-
log signal is sampled at regular intervals, and the recorded 
amplitudes are approximated to the closest value in a set of  
possible discrete values. This procedure, along with the expres-
sion of these numbers in binary language, made it possible to 
computationally process sound, allowing for the application of 
programmable operations on the signal without the need for  
specific physical equipment as the spectrograph. However, 
the first commercial digital recorder was not released until 
1977, with Sony’s PCM-1, which combined digital analog 
processors with a Betamax tape recorder to allow for digital 
recording and playback (see Sony History Chapter for fur-
ther details). These innovations greatly enhanced our ability 
to analyze and understand the singing of birds and of sounds  
in general.

A digital format for the recording and storage of acoustic data 
opened the doors to its computational processing. Further-
more, there was a numerical algorithm (listed among the top  
10 algorithms of the 20th century [Dongarra & Sullivan, 2000]) 
that allowed acoustic data processing with low computational  
costs: the fast Fourier transform (FFT).

To understand why this algorithm was so revolutionary in the 
field of acoustic signal analysis, let’s remember some basic ele-
ments that enter into the description of a sound phenomenon. 
As we discuss in the previous section, every periodic function 
can be written as an infinite sum of trigonometric functions 
as shown in Equation (1). Based on this rigorous mathe-
matical result, when working with real experimental signals  
certain compromises need to be done. We have already dis-
cussed that in order to work with non-periodic functions (e.g. 
signals of an acoustic phenomenon, such as the song of a 
bird), we can assume that the signal fragment to be analyzed  
repeats infinitely, so that the total duration time of the sam-
ple becomes the period. Then it is calculated the weight of  
the components of the trigonometric functions used to recon-
struct the “periodic” function (a

n
 in Equation (2) and b

n
 in 

Equation (3)). Now, this restriction puts a lower bound on 
the frequencies of the problem. The inverse of the total dura-
tion time of the signal becomes a minimum frequency of the 
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problem, and each term will be associated with a frequency  
that will be a multiple of that minimum frequency [Calus & 
Fairley, 1970; Crawford, 1968]. In other words, unlike the 
mathematical description with which we started the discus-
sion, in the case of a real problem, the possible frequencies 
are multiples of one, very small, associated with the size of 
the signal. On the other hand, when digitizing the signal, a  
new concept comes into play: the sampling time, which is the 
time interval between those successive records taken at regu-
lar time intervals. Since it is not possible to elucidate what  
happens between two of these successive times, the sampling 
frequency imposes a maximum on the frequencies that enter 
in the description. Unlike the mathematical problem in which  
time is a continuous variable, a digitized signal is composed 
by a finite number of samples (taken at a finite number of 
times), and the inverse of the difference between successive 
times sets a limit to the number of terms that it makes sense  
to include in a sum. In this way, Equation (1) will sum from 
n = 1 to n = N. This sum will be a mathematical approxi-
mation of the signal to be analyzed. There is an additional  
element that we must take into account when discussing how 
to carry out a graphic representation of a sound signal. We 
said that we were interested in being able to describe how 
pitch, for example, is modulated along a syllable. This means  
that when describing the weights of a Fourier series decom-
position of a signal, we will not be interested in analyzing  
the entire function. On the contrary, we would be interested in 
analyzing successive fragments. To do that, filters f

i
 can be 

defined, that is, functions that hold the identity in a neigh-
borhood of an instant t

i
, and zero away from that neighbour-

hood. In this way, the following function can be generated: 
g

i
(t) ≡ f (t) f

i
(t), so that the task is set to spectrally analyze  

those i segments [Boersma & Van Heuven, 2001].

In the previous paragraph we discuss that the digitalization 
of the signal will give as a result a discrete signal and this 
will result in N terms to calculate in Equation (1). The com-
putation of the coefficients is a problem that scales as N2, 
since it takes the order of N2 operations to spectrally describe 
the function (N coefficients, each one requiring N sums).  
Having a problem of order N2 makes it impractical for com-
putational calculations as N is generally a big number. The 
FFT method takes note of a multiplicity of operations whose 
result can be inferred from others. This leads the problem of  
calculating the FFT to be O(NlogN), resulting in significantly  
less terms to calculate than N2 [Cooley & Tukey, 1965]. It is 
difficult to emphasize enough the impact of this technology 
in the field. For example, the applications that perform spec-
trograms in real time, within the framework of smart phone 
applications, are based in calculation of FFT analysis. These 
applications brought powerful analytical tools to thousands of  
naturalists and researchers, and could not be run in a small 
computational device as a smart phone without implementing  
an FFT analysis. Useful and revolutionary as this algorithm is  
for birdsong research, it is interesting to mention that John 
Tukey (co-responsible with James Cooley for its present imple-
mentation and realizing that the algorithm was O(NlogN)), 
came up with the idea during a meeting of a presidential advi-
sory committee. The topic of discussion was not birdsong, 

but how to detect nuclear tests by the Soviet Union, analyzing  
seismological time series obtained from off-shore seismometers  
[Rockmore, 2000].

Analyzing spectrograms
The spectrogram, then, is a graph in which we display, for  
different times t

i
, the spectral analysis of the product of two 

functions: the sound signal S(t), and a window w
i
(t). Some 

aspects of the resulting graph will be due to the parameters 
used in the procedure, and others will reflect the properties 
of the signals to be analyzed. As an example, let´s consider a  
sequence of signals, which are essentially zero, except in 
the neighborhood of a given time t

i
, in which they resem-

ble the original acoustic signal. So even if the original signal 
were a sinusoidal function, none of the signals analyzed when  
computing a spectrogram is actually a sinusoidal function. To 
represent a function that is similar to a sine function in the  
neighborhood of a given instant and decays to zero when  
moving away from that value, many sinusoidal functions of 
similar frequencies should be added. An intuitive explanation 
of the phenomenon is the following. By adding many sinu-
soidal functions of similar frequencies, in phase at a time t

i
, 

it is achieve that, around that time, the functions are approxi-
mately in phase, giving rise to a signal resembling a sine 
[Calus & Fairley, 1970; Crawford, 1968]. By times away 
from t

i
, however, the different functions that were added are  

going to be out of phase, since they all had arguments that  
incremented at slightly different rates. For this reason, even 
if the original sound is tonal (single fundamental frequency),  
the windowing implies a broadening of the frequencies present.

How do we interpret a spectrogram? If we have, as in  
Figure 1, a series of lines, the interpretation is straightfor-
ward: each continuous line represents a continuous sound. The 
height of the line indicates the pitch of the sound, and if  
there are variations in the vertical position of the line from left 
to right, they are interpreted as pitch variations across time. 
Figure 2, however, presents us with a slightly greater chal-
lenge, as multiple frequencies are present at the same time.  
This means that the sound when analyzed in the FFT frame-
work has a spectral decomposition with multiple terms. In 
this case, the timbre of the sound has more richness than in 
cases where a single frequency carries the majority of the  
representation for each beat.

Why are some birdsong sounds spectrally rich, while others 
are not? This is associated with the mechanism of avian pho-
nation and the region of physiological parameters in which 
the animal operates. It has been known since the 1990s that 
birds use a phonation mechanism similar to the one used by  
humans to produce voiced sounds: the modulation of airflow 
through the creation of self-sustaining oscillations in flexible  
tissue [Elemans et al., 2015; Goller & Larsen, 1997a; Mindlin  
& Laje, 2006; Suthers et al., 1999]. In the case of oscine birds 
(a suborder containing over 4000 species within the passerine 
order), the vocal apparatus (called the syrinx) is a highly con-
served structure [Ames, 1971]. It consists of opposing pairs 
of membranes called labia (medial and ventral) at each junc-
tion between the bronchi and trachea. Now, a pair of labia  
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can begin to gently oscillate when the flow of air passing  
between them is fast enough, similar to how two pieces of 
paper held very close to each other will begin to oscillate  
when air is blown between them [Goller & Larsen, 2002;  
Mindlin & Laje, 2006]. These oscillations are regular and  
harmonic, resulting in a tonal sound [Larsen & Goller, 1999].  
However, labia can also begin to oscillate in another way.  
Imagine the labia pressed against each together. During the 
exhalation process, if the air reaches a sufficient level of  
pressure, it will eventually force its way through them. But by 
temporarily opening a channel for the air to pass through,  
the pressure drops and the labia close again. This type of 
labia movement is “explosive” (i.e. resulting from a short 
opening of the labia) [Goller & Larsen, 2002; Jensen et al., 
2007] and the oscillations can be generated with arbitrarily 
low frequencies (that is, a long time elapses between explo-
sive releases of air). In this case, the sound signals will be  
spectrally richer [Amador & Mindlin, 2008; Sitt et al., 2008].

The zebra finch is an example of a bird that generates sounds 
with a high spectral content, as well as more tonal ones (see 
Figure 2.A). It is interesting that there is a simple functional 
relationship between the spectral content and the fundamen-
tal frequency in the sounds in this species. This relationship  
is a consequence of the dynamical mechanism behind the  
labial oscillations at the sound source [Amador et al., 2013;  
Sitt et al., 2008]. Upon closer examination, we can see that  
some of the frequencies present in spectrally rich sounds are 
more prominent (i.e., the coefficients corresponding to the 

respective terms in a Fourier expansion will have higher val-
ues). For example, in Figure 2, there are prominent frequen-
cies around 4 kHz. These frequencies are emphasized by the  
filters of the avian vocal apparatus. After being generated in 
the sound sources by the effects of flow modulation induced 
by the labia, the sound passes through the trachea (which 
behaves like a closed-end tube) and excites the oroesopha-
ryngeal cavity (which behaves like a Helmholtz resonator). 
In fact, Figure 2.B shows a synthetic sound generated by a  
mathematical model that implements these physical processes.  
One of the advantages of using a dynamical model to repli-
cate a birdsong is that its success builds confidence on the 
hypotheses on which the model was constructed. But beyond 
that, the model’s parameters can be explored in order to  
understand how the different physical features of the animal’s  
anatomy affect the acoustic properties of the song [Amador 
et al., 2013; Mindlin, 2017]. More specifically, modifying the 
parameters that characterize the different filters of the system, 
allows to emphasize portions of the spectrum corresponding  
to a given filter [Fletcher et al., 2006; Gardner et al., 2001; 
Sanz Perl et al., 2011]. The 4 kHz frequency (red arrow in  
Figure 2.B) corresponds to the resonance of the oroesopha-
ryngeal cavity. This was verified by changing the volume of 
the Helmholtz resonator (that represents the oroesopharyngeal  
cavity in the model) and finding that the enhanced frequen-
cies varied following the model´s predictions [Amador et al., 
2013; Sanz Perl et al., 2011]. To generate a spectrally rich  
sound source, ultimately filtered by the passive vocal tract, 
the labial dynamics has to be ruled by nonlinear equations. 
Therefore, the subtle structure of harmonics that enriches the  
spectrogram vertically is the combination of nonlinear phe-
nomena ruling the sound source, and a passive vocal tract  
that filters the spectrally rich sounds emitted by the sound  
source.

A mechanism similar to that used by the zebra finch to  
generate low-frequency sounds is employed by the suboscine  
Phytotoma rutila, a South American bird whose unusual 
vocalizations resemble the sound of a rusty hinge [Uribarri 
et al., 2020]. A spectrogram of the vocalization is shown in  
Figure 3.A. In [Uribarri et al., 2020] the model of a source  
generating explosive sounds that are filtered by an oroesopha-
ryngeal cavity was tested by studying vocalizations of this  
species (whose song is not learned) recorded at different alti-
tudes . The sizes of specimens from those altitudes were  
estimated from tarsus measurements. After verifying that the  
mean sizes of the specimens correlated with altitude using  
scaling laws, it was found that the frequencies emphasized in 
the song spectrograms decreased with altitude [Uribarri et al., 
2020]. This example is interesting because it provides an  
example of bird anatomy being encoded in song, which is not  
common because many species have the ability to adapt their  
filters and mask this effect [Riede et al., 2006]. In Figure 3  
we show the sound signal, with its low frequency bursts, and 
a magnified segment illustrating that each sound bursts con-
sists of a damped oscillation. The model tested in [Uribarri 
et al., 2020] proposes that a pulse tone sound filtered by the 
oroesopharyngeal cavity can account for this unique bird sound. 
In Figure 3 we display the time series data corresponding  

Figure 2. Digital spectrogram of a zebra finch (Taeniopygia 
guttata) song and its synthetic copy. The recorded birdsong (A) 
can be copied by a synthetic song (B) generated by a dynamical 
systems model for the vocal apparatus. Each panel shows the 
recorded sound wave and the digital spectrogram generated 
from it. The red arrow in (B) indicates a frequency range where 
resonances exists and therefore the magnitude of the frequencies 
are enhanced. In this case, the resonance of the oroesopharyngeal 
cavity (4 kHz) is the most salient feature. This figure has been 
adapted and reproduced with permission from [Amador & Mindlin, 
2014].
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to the sound uttered by a Phytotoma rutila, that consists of 
bursts generated at approximately 100 Hz. Each burst consists 
of damped oscillations of approximately 4 kHz: these are inter-
preted as the result of filtering “explosive” sounds generated 
at approximately 100 Hz. The spectrogram in Figure 3.A shows 
a darker region around 4kHz during the whole vocalization,  
indicating the presence of a filter that enhances frequencies  
at about 4 kHz.

In these examples, we recognize similarities to human vocal 
phonation of voiced sounds, such as vowels, in which a  
low-frequency oscillation generated by the modulation of  
airflow by the vocal cords generates a sound that is subsequently  
filtered by the vocal tract. Subtle articulations change the  
emphasis of different harmonics, generating what we rec-
ognize as different vowels [Titze, 1994]. However, this is 
not the norm in bird song, where it is common to find tonal  
sounds. Through X-ray cinematography, it was found that in 
northern cardinals (Cardinalis cardinalis) song is accompanied  
by movements of the hyoid skeleton and changes in the  
diameter of the esophagus, which allow for the adaptation of 
the volume of the oroesopharyngeal cavity in order to enhance  
the changing frequency modulations of the sound generated  
by the sound source [Riede et al., 2006]. In this way, the com-
ponents of the sound signal corresponding to frequencies  
higher than the fundamental have little energy. This behavior  
is believed to be present in many oscine birds displaying  
tonal sounds in their songs.

All the cases mentioned so far involved a source generating  
a sound whose pitch was given by a single frequency, and 
its timbre by the weight of its different harmonic compo-
nents. However, we have already discussed that many birds are  

capable of generating sounds using their two sound sources 
independently. These dissonant sounds are achieved when the  
sources generate two pitches that are not harmonically linked. 
Greenewalt [Greenewalt, 1968] and Stein [Stein, 1968] 
were the first to report this effect, further suggesting that its  
origin was the activation of both sides of the syrinx. This  
observation was experimentally validated by Suthers and  
collaborators [Goller & Suthers, 1996], who measured airflow 
across each of the junctions between the trachea and bronchi.  
The observation of spectrograms corresponding to sounds in 
which two sources are active makes it clear that the motor 
controls of each side of the syrinx are independent. Further-
more, the two sound sources can display a wide variety of 
dynamic behaviors. Since the lateral labia of both sources are  
supported on a shared physical substrate, the two sources have 
a mechanical coupling, which allows their dynamics (gov-
erned by non-linear equations) to interact [Laje et al., 2008]. 
Nowicki and Capranica conducted a delicate study of the  
frequencies present in vocalizations from two sources, finding 
not only the frequencies associated with the vocalizations 
generated on each side of the syrinx, but also the combina-
tions that result from their nonlinear interaction [Nowicki 
& Capranica, 1986]. To do this, they analyzed a frequent 
vocalization in the black-capped chickadee (Parus atricapil-
lus) and showed that the multiple frequencies are heterodyne  
products resulting from the interaction of two signals.

Surprisingly, there is evidence of non-linear interaction between 
two oscillators when we carefully explore the spectrogram  
corresponding to a sound produced by a tracheal syrinx. In 
a tracheal syrinx there is only one pair of labia responsible  
for airflow modulation [Goller & Larsen, 1997b]. A  
non-linear interaction between oscillating labia is possible if 
there is a significant anatomical difference between the two 
opposing membranes [Alonso et al., 2016]. Each one will 
begin to oscillate when the airflow exceeds a certain thresh-
old, but if the syrinx is extremely asymmetric, each membrane 
will respond differently to the same airflow, and their oscilla-
tions may be significantly different. If the asymmetry is not very  
significant, the oscillations will be synchronous. Otherwise, the  
oscillations will not lock, and the spectrogram will show a 
set of bands instead of a single well-defined frequency. The  
mathematics of this phenomenon was discussed in the context 
of a comparative analysis between the vocalizations of two  
phylogenetically close species of pigeons (Patagioenas macu-
losa and Patagioenas picazuro) [Alonso et al., 2016]. The 
temporal modulation of the fundamental frequencies in both  
species is very similar, but the difference in timbre is signifi-
cant; in P. maculosa there are bands around the fundamental 
frequency (see Figure 4 and [Alonso et al., 2016]). In addition  
to mathematically modeling the phenomenon, anatomical 
exploration of the syrinxes confirmed the hypothesis of the 
anatomical difference. Figure 4.A and 4.B shows the spectro-
grams of the vocalizations of both species. Simulations of a  
computational model implementing the hypothesis were used 
to account for the structure of the spectra. Figure 4.C shows  
a spectrogram of soundwaves generated by simulations of a  
model assuming symmetric membranes and Figure 4.D assuming 

Figure 3. Phytotoma rutila song. Digital spectrogram of the song 
(A), the waveform of the initial segment (B); and a soundwave detail 
of two sound segments (C). This figure has been adapted and 
reproduced with permission from [Uribarri et al., 2020].
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asymmetric membranes. Again, a subtle anatomical hypothesis 
suggested by a precise signature in the spectrogram.

Spectrograms and artificial intelligence
In 1997, Podos reported his analysis of the calls of 34 spe-
cies of songbirds [Podos, 1997]. He focused on two specific 
variables: the rate of syllabic production and the range of  
frequencies covered during vocalization. In most of the spe-
cies analyzed, Podos found that the bandwidth of frequencies 
covered during each syllable decreased as the rate of syllabic  
production increased. It is plausible to interpret that this 
restriction reflects a physiological limitation. Since there is a  
maximum speed at which a muscle can contract, it is parsi-
monious to expect little modulation in vocalization frequen-
cies when the time available to perform it is short. Based on  
this hypothesis, it was proposed that generating syllables at 
the highest limit of this physiological restriction (that is, with 
the greatest possible frequency range given a syllable pro-
duction rate) could be an element evaluated when choosing a 
mate. This idea of performance has been highly influential (as  
well as debated [Kroodsma, 2017]) in the field. Its impact is 
largely due to its conceptual attractiveness. The relative compu-
tational simplicity of the observable, which can be inferred from 
the vertical and horizontal lengths of the continuous sections  
present in a spectrogram, probably contributed to its popularity.

In the application that we just discussed, there are specific  
characteristics that are calculated from the spectrogram, that is, 

from the image that represents the sound. It was intuited that 
these two properties of the image, the length and height of 
each continuous stretch, could not be varied independently  
within the limits of physiology, and Podos proceeded to link 
them by means of a “law” that would be expressed as a limit  
to the animal’s ability [Podos, 1997].

Recently there has been a growing interest in obtaining infor-
mation directly from images, without the need to extract a 
predetermined set of properties [Chollet, 2021]. In charge of 
these new processes are a set of algorithms known generically 
as deep learning networks, which are capable of performing 
a task after being provided not with rules but with examples 
[LeCun et al.,  2015]. For example, to solve the task of image  
classification, these algorithms are provided not with a set of 
pre-established operations, but simply with a set of examples 
[Chollet, 2021]. In the process known as training, the algo-
rithm has access to the result of the classification obtained 
when the algorithm used a certain set of parameters, and it is  
allowed to modify them based on that result. After training a 
successful algorithm will be capable of correctly classifying 
images that are different than those used during training [Rawat 
& Wang, 2017]. It is natural that this type of procedure can 
be adapted to the analysis of images that visually expresses  
acoustic properties: spectrograms [Tubaro & Mindlin, 2019].

A classification algorithm based on a neural network, in its  
simplest version, consists of building a network of processing 
units arranged in layers [Chollet, 2021]. Each processing unit 
has an input and an output. In the simplest algorithm of this 
class, the input consists of a weighted sum of the outputs 
of the previous layers. The output of a unit is the result of  
evaluating a non-linear function at the value of the input. The 
first layer has as input the numerical translation of the object 
to be classified. For example, in the case of an image, this 
would be a set of numbers, each one indicating the color or 
shade of gray for each pixel of the image. The last layer con-
sists of a number of units that matches the total count of  
classes in terms of which the data is grouped. The nonlinear 
function in this last layer is usually chosen as a sigmoid func-
tion, whose arguments can vary between zero and one. The 
parameters of the network are the weights with which the  
outputs of the i-th units of each layer enter the j-th unit of the  
following layer. The goal is to find a set of parameters that 
guarantee that all the images of a class, when processed by  
the network, result in a single unit of the last layer with values  
close to one, while the other units give zero [Chollet, 2021].

There are many variations of this algorithm. To classify 
images, the most widely used neural network architecture is  
known as a convolutional neural network [Chollet, 2021; 
LeCun et al., 2015]. This architecture begins with a first two- 
dimensional layer, in which the numerical translation of the 
image is introduced. The following stages of the network are 
each constituted by a set of layers, and the values of the units  
at those layers result from applying filters to the layers of the 
previous stage. The adjustment of the model parameters (which 
are the ones that define the filters) was made manageable 

Figure 4. Recorded and synthesized vocalizations of 
Patagioenas picazuro and Patagioenas maculosa. (A) Typical  
P. picazuro vocalizations, (B) P. maculosa vocalizations,  
(C) synthetic songs of P. picazuro and (D) P. maculosa. This 
figure has been adapted and reproduced with permission from  
[Alonso et al., 2016].
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from the computational point of view by introducing  
a learning method based on back propagation [LeCun et al., 
1998]. The applications of this algorithm in science and  
industry are innumerable. The level of efficiency is such that 
many classification problems are resolved by initially convert-
ing them into an image classification problem. For example, 
in the field of data science, the annual BirdCLEF competi-
tion is an open challenge to the community for the automatic 
identification of bird species through their song. Since  
2017 (more information can be found here), the winning com-
putational scheme has consisted of processing images that 
encode the spectral temporal evolution of the song, using 
neural networks [Fazeka et al., 2018]. Today, there are a  
wide variety of applications for smart phones that are capa-
ble of recording and processing spectrograms in real time. 
Not only that, but the information is sent to servers that  
run previously trained neural networks that can identify a bird  
by its song with significant precision [Kahl et al., 2021].

In a previous section we described Nottebohm’s manual 
recording of the frequency modulations of the syllables that  
constituted the Zonotrichia capensis song themes he heard in 
Argentina during 1966. Recently, an avian vocal production 
model was used to generate synthetic songs whose syllables  
presented modulations similar to those reported in 1966. These 
songs were then processed with a neural network that was  
trained to identify the various themes that individuals of 
the same species sing to each other at one of the sites that  
Nottebohm visited in the 1960s (Parque Pereyra Iraola,  
Buenos Aires, Argentina). The network used in this study was 
not designed to classify songs, but to measure a “distance”  
between images. It consisted of two identical copies of a  
network, the last layer of which was made up of a number of 
units. The values that these units have constitute its represen-
tation coordinates in an abstract space. The network is trained 
in such a way that if the inputs are two images corresponding 
to the same class, the images have similar representation  
coordinates. On the other hand, if the network inputs are two 
images corresponding to different classes, these are represented 
by two points that are far apart in the abstract representation 
space. This neural network architecture, called Siamese, can 
in generalgive us a metric, a distance, between images. In this  
specific application, Mindlin and collaborators show that two of 
the songs that were reported in 1966 were still being sung in the  
same region in 2022 [Bistel et al., 2022].

Conclusions
There have not been many leaps in the understanding of nature 
that have not been accompanied, or even preceded, by the 

appearance of some revolutionary technique. The spectrogram, 
used for the study of birdsong, was the technique that brought 
the question fully into focus as an object of scientific interest. 
A spectrogram allows us to generate a visual record of sound,  
freeing us from the temporality that characterizes our auditory 
experience. It not only captures vocal timing, like a sound 
time series, but it also captures pitch modulation and timbre 
variability, which are essential properties in the description of  
birdsong.

The history of this technique, on the other hand, has followed 
the very interesting dynamics of interaction between intellec-
tual curiosity, defense research, and markets. Born from clas-
sified projects during World War II, the spectrographs were 
later appropriated by researchers interested in birdsong, human 
phonation and seismology, among others. It is difficult to find 
a higher contrast between a war effort and birdsong research. 
The market, on the other hand, quickly made portable and  
later digital recording modes available. The volumes involved 
in the entertainment industry made these devices rapidly acces-
sible to researchers around the world, with widely varying 
degrees of funding, but with close proximity to diverse avian 
species. This allowed our global understanding of some aspects 
of avian neuroethology to be enriched by the study of a huge 
variety of species. It is difficult to imagine these studies with-
out a spectro-temporal description of the song carried out at  
some point.

From the historical description of dialects, the elucidation of 
the most subtle biomechanical mechanisms used in phonation, 
or population-scale issues such as monitoring species through 
song, there is no area of application in avian neuroethology 
that has not taken advantage of this technique. The market, 
on the other hand, has made massive automated image analy-
sis simple and efficient. Combining these tools with the data 
being gathered in global repositories such as Xeno-canto, it 
is possible to foresee, without much imaginative effort, that 
we will witness in the near future new qualitative leaps in  
our understanding of avian vocal behavior.
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