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1. Introduction

Alternaria is a ubiquitous fungal genus, with species 
commonly contaminating ripening cereals and harvested 
grain (Kosiak et al., 2004; Li et al., 2001; Logrieco et al., 
2009; Mercado Vergnes et al., 2006). In Argentina, several 
studies have demonstrated that Alternaria species are 
important colonisers of ripening wheat, and it was found 
to be the major component of the wheat mycota (Broggi 
et al., 2007; González et al., 1996; 1999, Patriarca et al., 
2007). Alternaria tenuissima has been shown to be the 
major species isolated from Argentinean wheat (Patriarca 
et al., 2007). It has been isolated more frequently than 
Alternaria alternata and Alternaria infectoria, which have 
been reported as the predominant species in cereals in 
several studies worldwide (Andersen et al., 1996; Kosiak 
et al., 2004; Li et al., 2001; Logrieco et al., 2009; Medina 
et al., 2006; Webley et al., 1997). Previous studies have 
demonstrated that the most common Alternaria toxins 
present in Argentinean wheat were tenuazonic acid (TeA), 
alternariol (AOH), and alternariol monomethyl ether 
(AME) (Azcarate et al., 2008). The toxicological aspects of 
these mycotoxins have been described. Of particular health 

concern is the association found between A. alternata 
contamination in cereal grains and the high levels of human 
oesophageal cancer in China (Liu et al., 1992). TeA is toxic 
to several animal species, e.g. mice, chicken and dogs. In 
dogs, it caused haemorrhages in several organs; in chicken 
it reduced feed efficiency, suppressed weight gain and 
increased internal haemorrhaging. AOH and AME might 
cause cell mutagenicity, could combine with the DNA 
isolated from human foetal oesophageal epithelium, and 
AOH could induce squamous cell carcinoma of the foetal 
oesophagus. AOH has been reported to possess cytotoxic, 
genotoxic and mutagenic properties in vitro (Ostry, 2008).

Recently, it was demonstrated that altertoxin II (ALTX-
II) is more mutagenic than alternariols in terms of DNA 
strand breaking in mammalian cells (Fleck et al., 2012). 
It induced mutations at the hypoxanthine guanine 
phosphoribosyltransferase gene locus at concentrations 
similar to that of the established mutagen 4-quinoline-
N-oxide, thus proving to be at least 50 times more potent 
mutagen than the alternariols. Several Alternaria species 
isolated from wheat grown in Argentina have shown 
the capability of producing ALTX-II. For example, of 17 
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A. tenuissima strains isolated from wheat, 13 (76%) were 
found to produce ALTX-II (A. Patriarca, unpublished data). 
However, detailed studies of the kinetics of ALTX-II by A. 
tenuissima have not been examined.

Fungal growth and mycotoxin production has been shown 
to be markedly affected by environmental factors, especially 
water availability (water activity, aw) and temperature 
(Sanchis and Magan, 2004). The production of TeA, AME, 
alternuene (ALT) and AOH by Alternaria species in relation 
to these factors have been described in different substrates 
including cereals and soyabeans (Magan et al., 1984; Oviedo 
et al., 2010, 2011; Pose et al., 2010). However, no data are 
available on the biosynthesis of ALTX-II under different 
individual or interacting environmental conditions. Because 
of the potential toxicity of ALTX-II there is a need to better 
understand the relationship between these ecological 
factors and the production of this mycotoxin. The objective 
of this study was to examine the effect of temperature (15-
34 °C) and aw (0.98, 0.95) interactions on (1) growth and 
(2) ALTX-II production by two strains of A. tenuissima on 
a wheat-based matrix.

2. Materials and methods

Fungal strains

Two A. tenuissima strains (W11.1.2 and W43.3.1) isolated 
from wheat cultivated in Argentina were used for this 
experiment. For identification, single germinating conidia 
were transferred to potato carrot agar (PCA; Simmons, 2007) 
and incubated under standardised conditions according 
to Simmons (2007). The 9 cm Petri plate cultures were 
incubated in a single layer under light with an alternating 
light/dark cycle consisting of 8 h of cool-white daylight 
followed by 16 h darkness for 7 days at 25 °C. The colony and 
sporulation characteristics of the strains were compared to 
those of representative cultures of A. tenuissima EGS 34.015 
(Dr. Emory Simmons collection, Mycological Services, 
Crawfordsville, IN, USA) in standard culture conditions. 
Based on sporulation patterns and conidial morphology, 
the isolates were identified as A. tenuissima. The strains 
are maintained in the IBT collection at the Department of 
Systems Biology, DTU (Kgs. Lyngby, Denmark).

Medium, inoculation, incubation conditions and growth 
measurements

A 2% milled wheat agar medium was used in this study. 
Milled wheat was prepared by homogenisation for 5 min in 
a laboratory homogeniser. Mixtures of 2% (w/v) wheat flour 
in water were made and 2% (w/v) agar was added. Water 
used to prepare the medium was modified with glycerol to 
achieve a final aw level of 0.95 and 0.98, respectively. The 
medium was autoclaved at 121 °C and poured into 9 cm 
diameter Petri dishes (15 ml per plate).

Agar discs (4 mm diameter) from 7-day-old cultures of each 
of the two strains grown on malt extract agar (MEA; Pitt 
and Hocking, 2009) were cut using a sterile cork-borer and 
all the treatment and replicate plates centrally inoculated. 
A total of five replicates per treatment were incubated at 
15, 20, 25, 30 and 34 °C for 14 and 21 days at each 0.95 and 
0.98 aw level. The experiment was carried out twice. To 
minimise water transfer from or to the medium, additional 
blank Petri plates corresponding to the same aw level were 
placed in closed polyethylene bags. Growth was measured 
for periods of 14-21 days every two days or as required in 
two directions at right angles to each other. The temporal 
extension rates were used to determine the growth rates by 
using the linear regression of the diametric extension rates.

Altertoxin-II extraction and analysis

At the end of the 14 and 21 days (three) separate replicates 
of the colonised wheat agar plates were weighed and 
extracted by mixing with 15 ml methanol and shaking for 
30 min at 250 rpm at 25 °C. To this methanol extract was 
added 5 ml 10% ammonium sulphate solution and filtered. 
The filtrate was extracted twice with 5 ml chloroform and 
the chloroform phase was separated and evaporated to 
dryness. Dry extracts were re-dissolved in 500 µl of HPLC 
grade methanol and kept at -20 °C until analysis.

The analyses were carried out on a system consisting of an 
Agilent 1100 Series HPLC equipped with a UV diode-array 
detector set at 258 nm (Agilent Technologies, Palo Alto, 
CA, USA). The column used was an Agilent Eclipse Plus 
C18 (4.6×150 mm, 3.5 µm), preceded by a Phenomenex 
Gemini C18 (3 mm, 3 µm) guard cartridge. The mobile 
phase consisted of methanol:water (90:10, v/v) containing 
300 mg ZnSO4∙H2O/l. A flow rate of 0.4 ml/min was 
used, and the column temperature was 25 °C. Signals 
were processed by Agilent ChemStation software (Rev. 
B.03.01). ALTX-II standard was provided by the Institute 
of Applied Biosciences (Karlsruhe Institute of Technology, 
Karlsruhe, Germany). The standard was dissolved in 
HPLC grade methanol at a concentration of 1.0 mg/ml 
and stored at -20 °C. Working standard solutions (100, 50, 
10, 5, and 1 µg/ml) were prepared by appropriate dilution 
of the stock standard with methanol and used to obtain 
calibration curves for HPLC-diode array detector analysis. 
Quantification was achieved through comparison of peak 
areas of the chromatograms of the samples with those of 
the standard solutions.

Experimental design and data analyses

A full factorial design with two variables (aw and T) was 
used for growth analysis. Five independent replicates for 
each aw-temperature combination were made for each of 
the A. tenuissima strains and the experiment was carried 
out twice (for growth studies). For toxin analysis, the 
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full factorial design was made with three variables (aw, 
T, and time), with 3 independent replicates of each aw-
temperature-time combination for each strain. Statistical 
analysis was performed using the Statistica 8 software 
(StatSoft, Inc., Tulsa, OK, USA). The effect of temperature 
and water activity on growth rate was examined by ANOVA. 
Normality of mycotoxin production data was tested by 
Shapiro-Wilk test. Due to non-normality of the data, 
Kruskal-Wallis analysis of ranks was used for examining 
differences between groups, considering aw, temperature, 
and time as variables for all data sets and for each strain 
individually. The two A. tenuissima strains were compared 
using two-sample t tests.

3. Results

Effect of temperature × water activity on growth of 
Alternaria tenuissima strains

Figure 1 shows the effect of the interacting conditions 
examined on the diametric growth rates of the two strains. 
This shows that both strains had a very broad temperature 
range for growth with an optimum at 25-30 °C at 0.98 aw 
for strain W11.1.2, while for the other strain (W43.3.1) this 
was 30 °C and 0.98 aw. At 0.95 aw, growth was reduced by 
>50-60% regardless of temperature. For both strains, the 
optimum temperature at 0.95 aw was 30 °C. The strains 
were still able to grow relatively similar at 0.95 aw at 34 °C 
as at 30 °C. Statistically, all factors, aw, temperature, strain 
and their interactions, significantly affected growth rate 
(P<0.0001).

Effect of temperature × water activity on temporal 
altertoxin II production

Figure 2 shows the relative changes in production of ALTX-
II by the two strains of A. tenuissima in relation to the 
temperature range and two aw levels examined. ALTX-
II was produced by both A. tenuissima strains under all 
the conditions tested. The higher aw level (0.98) favoured 

the accumulation of this toxin at all temperatures and 
incubation times. The general trend in the behaviour of 
both strains as a function of temperature was similar at 0.95 
aw, with low production at 15 °C, the optimum at 20 °C, 
with a relative decrease at 25-30 °C, and a second increment 
at 34 °C. The incubation time did not show any significant 
effect on ALTX-II accumulation, even though a higher 
amount of toxin was detected after 21 days incubation 
at most of the treatment conditions examined. At 0.98 
aw, the optimum production was observed at 30 °C for 
both strains. For A. tenuissima W11.1.2, the maximum 
amount of toxin was detected at 0.98 and 30 °C after 21 days 
incubation (1,403 ng/g), while for A. tenuissima W43.3.1 it 
was produced at the same temperature and aw after 14 days 
(2,021 ng/g). Strain W11.1.2 also produced high amounts 
of toxin at 20 and 34 °C at 0.98 aw. For A. tenuissima strain 
W43.3.1, the production was much lower at temperatures 
different from the optimum, except at 34 °C, where the 
amount of toxin produced was 47% of the optimum 
production. Statistically, there was an overall significant 
effect of temperature on ALTX-II production (P<0.01). 
However, examining each strain individually showed that 
temperature was a significant factor only for strain W11.1.2 
(P<0.05). Furthermore, there was a significant difference 
in toxin production between the two strains (P=0.05). The 
effect of aw was significant for both strains (P<0.0001).

4. Discussion and conclusions

There has been much discussion about the taxonomy of 
Alternaria species. This has been revised regularly in recent 
years. The traditional identification techniques, based solely 
on morphological characteristics of conidia, have led to 
the general belief that A. alternata was the most abundant 
species in nature. After a series of revisions, Simmons (2007) 
finally organised the genus into 276 species and developed 
the concept of ‘species-group’, a group sharing the same 
three-dimensional sporulation apparatus, characterised 
by a representative species. With the new taxonomic 
tools, species other than A. alternata were reported as 
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Figure 1. Effect of temperature × water activity on diametric growth rates (mm/day) of strains W11.1.2 (A) and W43.3.1 (B) of 
Alternaria tenuissima on a 2% milled wheat agar medium. Bars indicate standard errors of the mean.
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predominant in several crops (Andersen and Frisvad, 2004; 
Greco et al., 2012; Polizzotto et al., 2012). A. tenuissima has 
been found to be the predominant species in Argentinean 
wheat in previous studies (Patriarca et al., 2007).

This is the first study to evaluate the ecology of growth 
and production of ALTX-II by strains of A. tenuissima 
isolated from wheat. The relationship between interacting 
environmental conditions (aw × temperature) and growth of 
the A. tenuissima strains was similar to that reported for A. 
alternata. Based on the water availability range known for 
A. alternata, the water activity levels chosen for the present 
study were selected as conditions representing intermediate 
water stress (0.95) and higher water availability (0.98), 
under which both growth and mycotoxin production can 
occur. This also represents the conditions that occur during 
wheat ripening at the milky ripe to mid-dough stage when 
mycobiota, including Alternaria and Fusarium, are able 
to colonise the ripening ears of cereals. Previous studies 
showed that the optimum aw for A. alternata was between 
0.98-1.00, and the optimum temperature in the range of 
25-30 °C, while the maximum and minimum ranges for 
growth were 32-35 °C and 5-6.5 °C, respectively (Magan 
and Lacey, 1984; Magan et al., 1984; Oviedo et al., 2010, 

2011; Pose et al., 2009; Sanchis and Magan, 2004; Sautour 
et al., 2002). Pose et al. (2009) found that A. alternata 
strains isolated from Argentinean tomato fruits showed 
relatively high growth rates at 35 °C and aw levels of 0.954 
(3.96 mm/day) and 0.982 (4.62 mm/day). The A. tenuissima 
strains used in the present study had even higher growth 
rates at 34 °C and both aw levels. Strain W11.1.2 grew 5.46 
mm/day at 0.95 aw and 9.81 mm/day at 0.98 aw, while the 
strain W43.3.1 grew 5.0 and 6.96 mm/day at the same aw 
levels, respectively. This is in contrast with the available data 
on A. alternata isolated from wheat in the UK. Magan and 
Lacey (1985) showed that growth of these strains occurred 
at 30 °C but with a sharp decline to no growth at 35 °C. 
They showed 8 mm/day diametric growth at 25 °C with 
0.2 mm/day diametric growth at 30 °C and no growth at 
35 °C. In Argentina, growth rates of 5-6 mm/day were found 
at 35 °C, which suggests a better adaptation to elevated 
temperatures than in the UK.

The maximum production of ALTX-II was observed at 0.98 
aw and 30 °C for both strains, which were also the optimum 
conditions for growth. No data are available on the effect 
of aw × temperature effects on production of AOH, AME 
or TeA by A. tenuissima on wheat matrices. An early study 
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by Young et al. (1980) examined TeA production by A. 
tenuissima on cottonseed. Maximum production was at 
20 °C and 37.5% moisture content (=1.00 aw). Production 
was reduced by 50% when aw was changed to 0.95. They 
suggested that probably 20 °C and >0.90 aw was required for 
TeA production on cottonseed. However, the temperature 
range examined in the present study was not included. 
Magan et al. (1984) reported that AOH, AME and ALT were 
produced in highest amounts by A. alternata at 0.98 aw and 
25 °C both on wheat extract agar and wheat grain. Other 
studies reported optimum production of TeA between 
21-30 °C at 0.98 aw (Oviedo et al., 2009; Pose et al., 2010), 
for AOH between 15-25 °C and 0.95-0.98 aw (Oviedo et al., 
2010, 2011; Pose et al., 2010), and for AME between 30-
35 °C and 0.92-0.98 aw (Oviedo et al., 2010, 2011; Pose et 
al., 2010) in different substrates. Magan and Baxter (1994) 
isolated a range of Alternaria strains from sorghum, which 
were screened for TeA production on Fries medium and 
then on sorghum-based medium or sorghum grain. All six 
strains were able to produce TeA in vitro on a modified Fries 
medium with most produced after 28 days. Studies with 
one isolate (Alt5) showed that TeA was produced over the 
range 10-30 °C and aw levels of 0.998-0.93. On sorghum-
based media, the maximum production was observed at 
0.95 aw and 25 °C after 28 days. On sorghum grain, the 
production was best at 0.995 aw after 14-21 days storage at 
25 °C. However, these strains were not definitively identified 
as A. tenuissima.

Overall, there is a great diversity in the optimum conditions 
reported for toxin production by Alternaria spp. depending 
on the substrate and due to intraspecific differences. 
However, the general trend suggests that high temperatures 
and aw levels would lead to a significant accumulation of 
toxins, especially ALTX-II, TeA and AME. The existence 
of synergistic effects between these mycotoxins is still 
unknown but further toxicological studies are necessary 
to evaluate the implication of their co-occurrence in food 
products.

The ability of A. tenuissima strains isolated from 
Argentinean wheat to tolerate elevated temperatures (34 °C) 
and synthesise a considerable amount of ALTX-II in a 
range of 30-34 °C indicates that this species could play 
an important role under climate change conditions. The 
Argentinean wheat production area is divided into five 
regions (I to V), further divided into subregions (North 
or South), according to agrometeorological conditions. 
Regions IIS, IV, VS and IIN are the main production areas, 
with maximum temperatures and humidity progressively 
increasing from VS to IV, IIS and IIN. The sowing of long 
cycle wheat starts between the months of May and June, and 
the flowering occurs in spring during September-November, 
with average temperatures in the field of 15 to 25 °C, and 
maximum temperatures occasionally reaching 35 °C in the 
IIN region. Actual climate conditions are favourable for A. 

tenuissima growth and production of ALTX-II, especially 
in the warmer crop regions. In a climate change scenario, 
this pathogen could become a potential hazard in most of 
the cultivated areas, and the presence of this mycotoxin in 
wheat grains could become important.

In conclusion, these data suggests that, while growth 
of strains of A. tenuissima under different interacting 
conditions may vary only slightly, the amounts of ALTX-
II that can be produced vary with temperature and aw. 
There appear to be different temperatures at each aw level 
at which production is optimum, i.e. 30 °C at 0.98 aw and 
20 °C at 0.95. It is also notable that both strains were able 
to produce high amounts of ALTX-II, even at 34 °C, over 
the aw range tested. These are useful additional data of the 
potential of such mycotoxigenic fungi and their mycotoxins 
becoming important under changing climatic conditions.
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