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Abstract

This paper describes our submission to the ADreSSo Chal-
lenge, which focuses on the problem of automatic recognition
of Alzheimer’s Disease (AD) from speech. The audio samples
contain speech from the subjects describing a picture with the
guidance of an experimenter. Our approach to the problem is
based on the use of embeddings extracted from different pre-
trained models — trill, allosaurus, and wav2vec 2.0 — which
were trained to solve different speech tasks. These features
are modeled with a neural network that takes short segments
of speech as input, generating an AD score per segment. The
final score for an audio file is given by the average over all seg-
ments in the file. We include ablation results to show the per-
formance of different feature types individually and in combi-
nation, a study of the effect of the segment size, and an analysis
of statistical significance. Our results on the test data for the
challenge reach an accuracy of 78.9%, outperforming both the
acoustic and linguistic baselines provided by the organizers.
Index Terms: computational paralinguistics, ADreSSo chal-
lenge, Alzheimer’s Disease recognition

1. Introduction

For many health problems, like speech pathologies, Parkinson’s
disease, Alzheimer’s Disease (AD), and respiratory problems,
the patient’s speech is routinely used by doctors as one of the
tools for diagnosis and monitoring of disease progression [1].
In particular, AD is characterized by a progressive decline of
cognitive and functional abilities over time [2] often includ-
ing language impairment, even at early stages [3]. As a con-
sequence, many studies rely on the analysis of the speech signal
as a source of clinical information for AD [4, 5].

In this work, we present results and analysis of our sub-
mission to the ADreSSo (Alzheimer’s Dementia Recognition
through Spontaneous Speech only) Challenge [6]. This chal-
lenge is focused on the automatic detection of AD using record-
ings of interviews with the subjects. A previous version of this
challenge, called ADreSS, took place last year. In that case,
manual transcriptions of the speech signals were provided to
the participants along with the recordings. In this year’s chal-
lenge, manual transcriptions are not provided, so systems have
to rely solely on the speech signal for classification. The chal-
lenge includes three tasks: AD classification, Mini-Mental State
Examination (MMSE) score regression, and cognitive decline
inference. In this work, we present results on the AD classifica-
tion task.

AD may affect the patient’s speech production in terms of
paralinguistic aspects like the prosodic patterns, pause patterns

Copyright © 2021 ISCA

3795

or quality of speech, and in terms of linguistic aspects, like
choice of words or grammatical forms. Previous works have
found that both acoustics and linguistic information can be used
for automatic prediction of AD. In a paper about the ADreSS
challenge [7], a comparison of acoustic and linguistic features
showed that acoustic features resulted in an accuracy of 64.5%
while linguistic features from manual transcriptions resulted in
an accuracy of 85.42%. A similar trend is observed in the base-
line results for this year’s challenge [6], although with relatively
poorer performance for the linguistic features due to the absence
of manual transcriptions, which are replaced by automatic ones.
In our work for this challenge, we focus on the use of acous-
tic features, without extracting automatic word transcriptions.
Further, considering the sparsity of the available training data,
we propose to use transfer learning approaches. To this end, we
leverage recently released speech-based embedding models that
aim to represent different aspects of the speech signal.

Pre-trained speech-based embeddings are currently being
used in several speech recognition tasks, such as speech emo-
tion recognition [8, 9, 10, 11] and automatic speech transla-
tion [12]. These compact representations can encode different
speech attributes depending on the way the models are trained.
Information about prosody, phonetic or lexical content may be
emphasized in the representations, depending on the task used
to train the models. The use of these representations, in combi-
nation with neural networks for the modeling stage, often pro-
vides an improvement over directly using signal processing fea-
tures like mel frequency cepstral coefficients (MFCC) or Mel-
spectrograms.

In this paper, we present our results using different types of
embeddings and traditional prosodic features for the task of AD
classification. We use a simple deep neural network for model-
ing each individual feature and their combinations. The model
takes relatively short segments of speech as input and averages
the resulting scores over all segments in an audio sample to cre-
ate the final score. We show different analysis, including an
ablation study to find the most useful features, a study of sta-
tistical significance, a comparison of the effect of the window
length, and an analysis of the effect of the presence of experi-
menter speech in the signals. Our results on the challenge data
are significantly better than the acoustic-only baseline results
implemented by the organizers and also outperform the linguis-
tic baseline that uses automatic transcriptions [6].

2. Dataset

The development dataset provided by the ADreSSo challenge
consists of 166 recordings of 87 patients with AD diagnosis and
79 cognitively normal subjects. All the subjects were asked to
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describe the Cookie Theft picture from the Boston Diagnostic
Aphasia Exam. Audio files contain both the speech from the
subjects and the experimenter conducting the interview. A test
set with audio files from 71 subjects was used for blind eval-
uation of the models. Challenge participants are not provided
AD labels for this test data. The complete dataset description
is available in [6]. The challenge includes three tasks: an AD
classification, an MMSE score regression and a cognitive de-
cline (disease progression) inference task. We participated on
the classification task, where the goal is to determine whether
a subject is a control (CN) subject or a patient with AD, based
only on the speech signal from the interview.

Since recordings include both the speech from the subject
and the experimenter, the dataset includes segmentation infor-
mation indicating where each of the two speakers speaks. In our
initial inspection of the development data, though, we found
that this information was inaccurate for several of the audio
files. Further, we found a case where the recording included
speech from more than two speakers and was also not accu-
rately segmented to identify the subject’s speech. For these rea-
sons, we decided to work with the full audio files, without using
the provided manual segmentation, assuming that the speech
from the experimenters and any other speakers represent only a
relatively small portion of the speech present in the signal. In
Section 5.4, we show results that indicate that including the seg-
ments from the experimenters did not degrade the performance
of our system.

3. Acoustic Features

Our approach for AD classification is to use embeddings, i.e.,
vector representations, extracted from a set of pre-trained mod-
els. These models are deep neural networks (DNN) trained on
large speech dataset to solve different tasks. The embeddings
are then extracted from the output of some layer of the DNN.
In general, embeddings are extracted over relatively short re-
gions of the signal and may contain only local information or
include contextual information about the rest of the signal. The
details on the embeddings used for this paper are described be-
low. Further, we also include traditional features, designed for
tasks like emotion recognition. All features were normalized by
subtracting the mean and dividing by the standard deviation of
that feature over each recording. This normalization approach
resulted in better performance than global normalization where
every feature is normalized with the mean and standard devia-
tion obtained over all the training data.

3.1. eGeMAPS features

The extended Geneva minimalistic acoustic parameter set
(eGeMAPS) [13] is a set of features designed specifically for af-
fective speech tasks and includes pitch, loudness, formants and
voice quality features among others. The set includes both low-
level features, extracted every 10 ms of speech over windows
of 25 ms, and high-level features that correspond to different
statistics extracted from the low-level features. We use only the
low-level descriptors of the eGeMAPS v2.0 set which contains
25 features for every time step.

3.2. Trill features

The trill model was trained to generate a non-semantic repre-
sentation of speech [14]. The model minimizes a triplet loss de-
signed to solve the task of classifying whether a segment of au-
dio comes from the same or from a different original audio file
as another segment. The resulting embeddings were evaluated
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in many different non-semantic tasks including speaker identi-
fication, emotion recognition and others. Authors also tested
the model on AD recognition using the Dementia Bank dataset
[15], showing good results when fine-tuning the model to this
task. We used the distilled version of the trill model, which gen-
erates embeddings of size 2048." For this work, we resampled
the trill embeddings, which are produced every 167 ms to 100
vectors per second (one every 10 ms) to match the resolution of
the other features.

3.3. Allosaurus features

Allosaurus® is a universal phone recognition model that in-
cludes pre-trained acoustic and language models [16]. It can be
used to generate phonetic transcriptions and phone logits given
by log(p/(1 — p)), where p is the phone posterior probability,
producing one set of logits every 10 ms. The model was trained
with 11 languages and over 2000 utterances. For English, the
output logits are 39-dimensional. The information contained in
these logits could help us model specific pronunciation issues
in the AD subjects, as well as some indirect information about
word usage which could be found in the frequency of certain
phones.

3.4. Wav2vec 2.0 features

Wav2Vec 2.0 (from now on wav2vec?2) is a framework for self-
supervised learning of representations from raw audio [17]. The
model can generate contextualized embeddings that can be later
integrated in end-to-end speech-to-text models to generate tran-
scriptions. Thus, these embeddings preserve the phone content
of the signal among other information. We used the model avail-
able from the Transformer Python library which gives embed-
dings of size 768 and was fine-tuned with 960 hours of Lib-
riSpeech.’> Large audio files had to be segmented in 20 sec-
onds long fragments to compute the features since they could
not otherwise be processed by the model. This may be sub-
optimal since it prevents the model from extracting contextual
information from the full signal. The wav2vec2 embeddings are
produced every 20 ms. As for the trill features, we resampled
these vectors to obtain 100 per second, matching the resolution
of the other features.

4. Classification model

We use deep neural networks as models for the different indi-
vidual features and their combinations. The input to the net-
works are 5-second segments extracted from the original audio
with 1-second overlap between segments. This results in 3178
segments extracted from the development data. The final score
for each audio file is obtained by computing the mean over the
scores for all the segments in the file. As explained above, we
use the full audio file, which means that some of the segments
contain speech from the experimenter. Section 5.4 shows results
on the effect of the experimenter’s speech on the performance
of the system.

The architecture is depicted in Figure 1 for the configura-
tion where all features are used. Each feature set has a corre-
sponding branch that performs a first reduction of the embed-
ding with a 1D convolution with kernel size 1 (equivalently, a
time-distributed dense layer) followed by a 1D convolution with

Thttps://tfhub.dev/google/nonsemantic-speech-benchmark/trill-
distilled/3

Zhttps://github.com/xinjli/allosaurus

3https://huggingface.co/facebook/wav2vec2-base-960h
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Figure 1: Neural network architecture for the configuration in
which all the features are used. The value k indicates the size of
the kernel in the time dimension.

kernel size 3. After the second convolution, the dimension of
the output for each branch is 128. Then the activations from the
four branches are concatenated and a second 1D convolution is
performed, reducing the dimension back to 128. Finally, the
output of this layer is averaged across time and a dense layer
computes the prediction scores. Batch normalization and ReLu
activations are used in every layer. When considering only a
subset of the features, the same model is used with only the
corresponding branches included.

5. Results

In this section we show results for the proposed systems, includ-
ing an ablation study, statistical significance results, an analysis
of the influence of the segment size and of the effect of the ex-
perimenter speech on the performance of the system. We run
experiments using 6-fold cross-validation (CV) on the devel-
opment data provided to challenge participants. The folds are
determined by subject to prevent segments from the same sub-
ject being in the training and the test set for a certain fold, which
would make the CV results overly optimistic. The models used
to obtain scores for the challenge’s evaluation data were trained
on the full training set.

5.1. Ablation Results

The middle column in Table 1 shows the results on the devel-
opment set obtained with cross-validation, for several systems
including single feature sets, 2-way combinations, and the 4-
way combination. The best individual features are trill and
wav2vec2. We hypothesize that this may be partly because
these two features sets have large dimensionality, 2048 for trill
and 768 for wav2vec2 (compared to the other two which have
25 features for eGeMAPS and 39 for allosaurus), allowing these
features to contain a richer representation of the audio. Larger
dimensions could also result in the model overfitting the train-
ing data, which would lead to poor results, but this effect is
discouraged by the small architectures we use.
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Feature set Dev Test
eGeMAPS 63.9% -
trill 72.9% 69%
allosaurus 66.3% -
wav2vec2 75.3% 78.9%
eGeMAPS, allosaurus  63.9% -
eGeMAPS, wav2vec2 72.3% -
eGeMAPS, trill 71.1% -
trill, allosaurus 72.9%  70.4%
trill, wav2vec2 75.2% 69%
allosaurus, wav2vec2 70.5% -
all 74.7%  70.4%

Table 1: Accuracy values for different combinations of features
for development and test data. The five best performing models
on the development set were submitted to the challenge. Results
on the test set are shown for those cases.

Fusion results show no gains with respect to the best in-
dividual system, wav2vec2. This could imply that the other
three sets of features are redundant given the wav2vec2 fea-
tures. That is, that wav2vec2 features contain all the informa-
tion in eGeMAPs, trill and allosaurus features that is impor-
tant for AD classification. In fact, we would expect allosaurus
and wav2vec?2 features to be somewhat redundant since they
are trained to solve similar tasks: phone recognition and speech
recognition, respectively. On the other hand, we would also
expect trill or eGeMAPs to provide some complementary in-
formation to those two set, since they are designed to contain
information beyond the phonetic content. Hence, a more likely
explanation for the lack of gain from fusion is that our down-
stream model is not able to effectively combine the information
from all these sets. In the future, we will continue exploring
different architectures for the combination of these features.

Finally, the right column in Table 1 shows the results for the
5 best systems based on the development results, which were the
ones selected for submission to the challenge. In the test results,
as in the development results, wav2vec? alone was the best per-
forming model, with an accuracy of 78.9%. This result is supe-
rior to the acoustic baseline results presented in [6], which have
an accuracy of 64.79%. Further, they are also superior to the lin-
guistic baseline results in that paper, which has an accuracy of
77.46%. This is not too surprising since wav2vec2 features are
designed to contain phonetic information and, hence, are prob-
ably able to implicitly represent some information about word-
usage, as well as pronunciation patterns. Further, wav2vec2 em-
beddings have a very distinct pattern over non-speech regions.
Hence, our downstream model could potentially be learning
patterns of usage of pauses, which are likely to be useful for
differentiating AD from control subjects.

5.2. Statistical Significance Study

Given the relatively small number of samples available both
in the development and the evaluation sets, we conducted a
bootstrapping analysis on the development scores to determine
confidence intervals for each of the systems submitted to the
challenge. We sampled with replacement the 166 development
scores obtained with CV to get 5000 new sets of scores, each
with 166 samples. For each of these bootstrap sets, we com-
puted the accuracy. The purple bars in Figure 2 show the 5%
and 95% percentiles of the resulting set of accuracy values. We
can see that the intervals are wide: all systems overlap with the
others making it impossible to conclude whether there is, in-
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Figure 2: Confidence intervals from bootstrapping experiment
for the 5 best-performing models on the development set. The
purple bars show the confidence intervals with bootstrap sets
of size 166, the same as the original set, while the blue bars
show the intervals with sets of size 71, the size of the test set.
Black lines show the accuracy for each model on the develop-
ment and test sets. Further, the green lines correspond to the
test accuracy for the two baseline systems in [6].

deed, a significant difference between them.

Further, since the test set is smaller than the development
set, containing 71 subjects instead of 166, we repeated the boot-
strap analysis on the development scores, but this time selecting
only 71 samples per bootstrap set. The resulting confidence in-
tervals are, of course, wider, and reflect the variability we could
expect when testing these systems on a dataset of that size. No-
tably, the actual test results (shown in dashed black lines in Fig-
ure 2) fall within the estimated blue intervals suggesting that the
test data is well represented by the training data.

Finally, the green lines in Figure 2 show the baseline results
provided by the organizers in [6]. We can see that results for all
our systems are significantly better than the acoustic baseline
results. The wav2vec2 results are also better than the linguistic
baseline results, though not by a significant margin.

5.3. Effect of the segment size

Our downstream model takes relatively short segments as in-
put, extracted from the original audio with some overlap. The
final score for each audio file is then given by an average of
the segment-level scores. In this section, we study the effect
of the segment size. Figure 3 shows the accuracy results at au-
dio level (i.e., one sample per subject, as in all other results in
this paper) and at segment level, using varying segment sizes.
For this figure, segments are shifted by 2 seconds instead of 4,
as in previous results, so that no speech is lost when using 2-
second segments. Note that, since the shift is fixed, the number
of segments for a certain audio file is approximately the same
for all segment sizes. Further, to improve the stability of the re-
sults, we run each model with 3 different seeds to determine the
cross-validation folds. The results shown in the plot correspond
to the average accuracy over those 3 runs.

Figure 3 shows an interesting trend. As intuition would
suggest, segment-level results improve as the segment size in-
creases, since more information is available to make the classi-
fication decision. On the other hand, when averaging the scores
from all segments in an audio file, the optimal segment size is
around 5 seconds; longer segments degrade performance. We
hypothesize that this is because, in longer segments, the effect
of some short-term phenomena that might be a strong indicator
for classification may be washed out. On the other hand, when
using shorter segments, the model may be able to focus on these
local phenomena and produce more discriminative scores for
the segments that contain them. Further analysis is necessary
to prove or disprove this hypothesis. If proven true, this may
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Figure 3: Average accuracy over three seeds for the wav2vec2-
only model, varying the segment size, for segment- and subject-
level scores.

suggest an interesting research direction: the development of
hierarchical models that would take the output of our segment-
level scores and effectively combine their outputs to emphasize
the more informative scores, for example, using attention mech-
anisms.

5.4. Analysis of the influence of the experimenter speech

As mentioned above, our systems obtain the final scores for
each subject as an average over all segments in an audio file.
A portion of these segments contain at least some speech from
the experimenter. To explore whether these segments had a
negative impact on our results, we performed the following ex-
periment. We computed the average accuracy over three seeds
using only the audio files for which the manual segmentation
had no obvious issues (139 out of the 166 files). Using the
wav2vec2-only model from the previous section, with segment
size of 5-seconds and shifts of 2-seconds, this gave an accuracy
of 76.97%. We then discarded the scores from all the segments
with any speech from the experimenter (33% of them) and re-
computed the average score for each audio file. The accuracy
for these new average scores did not significantly change. Given
this result, we can conclude that the effect of the experimenter’s
speech is not harmful once the model is fixed. On the other
hand, it is possible that a model trained without segments in-
cluding speech from the experimenter would work better. This
analysis is left for future work.

6. Conclusions

We presented our work on Alzheimer’s Disease recognition, us-
ing the data from this year’s ADreSSo challenge. Our approach
uses speech-based embeddings from three different pre-trained
models recently released to the public: trill, allosaurus and
Wav2vec 2.0. We also include eGeMAPS, a set of features tra-
ditionally used for emotion recognition and related tasks. The
features are modeled with a simple neural network that takes
short segments of audio and generates scores which are then av-
eraged to obtain the final score for each audio file. Word tran-
scriptions are not used by our system. We show that the best
results are obtained using Wav2vec 2.0 features, though all fea-
tures perform similarly, considering the wide confidence inter-
vals. Our results significantly outperform the acoustic baseline
provided by the organizers, reaching an accuracy of 78.87% on
the challenge’s test set.
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