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Life is a constant battle against equilibrium. From the cellular level to the
macroscopic scale, living organisms as dissipative systems require the viola-
tion of their detailed balance, i.e. metabolic enzymatic reactions, in order to
survive. We present a framework based on temporal asymmetry as a measure
of non-equilibrium. By means of statistical physics, it was discovered that
temporal asymmetries establish an arrow of time useful for assessing the
reversibility in human brain time series. Previous studies in human and
non-human primates have shown that decreased consciousness states such
as sleep and anaesthesia result in brain dynamics closer to the equilibrium.
Furthermore, there is growing interest in the analysis of brain symmetry
based on neuroimaging recordings and since it is a non-invasive technique,
it can be extended to different brain imaging modalities and applied at
different temporo-spatial scales. In the present study, we provide a detailed
description of our methodological approach, paying special attention to the
theories that motivated this work. We test, for the first time, the reversibility
analysis in human functional magnetic resonance imaging data in patients
suffering from disorder of consciousness. We verify that the tendency of a
decrease in the asymmetry of the brain signal together with the decrease in
non-stationarity are key characteristics of impaired consciousness states. We
expect that this work will open the way for assessing biomarkers for patients’
improvement and classification, as well as motivating further research on the
mechanistic understanding underlying states of impaired consciousness.
1. Introduction
1.1. Survival and metabolism from neurons to macroscopic brain

dynamics
Life and survival become synonymous as soon as we delve into their very
nature. Survival in life means a constant fight against a highly disordered
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environment. In his book What is life? The physical aspect of the
living cell, Erwin Schrödinger famously defined survival as
the circumvention of decay and of equilibrium [1]. For us,
living organisms, elucidating the decay starts from our cells
in the process of metabolism. This perpetual violation of ther-
modynamic equilibrium is scale-dependent, and different
from inanimate matter, for living organisms not only arise
from external forces but also from endogenous motives, driv-
ing mesoscopic mechanical forces [2–4]. This scale-dependent
break of equilibrium can be addressed at the spatial and tem-
poral levels; thus, larger biological organizations are
endorsed by a departure from equilibrium processes at the
molecular scale while showing apparent equilibrium in
their totality [5].

There are instances of non-equilibrium in living systems.
For example, some cells are able to migrate because they
are propulsed by the irreversible motion of the flagella. How-
ever, this irreversible process does not mean that the cell at all
scales is irreversible, the flagella works in non-equilibrium
while in the intracellular medium, the cell might achieve
equilibrium [3]. Measuring this intracellular equilibrium is
not an easy task and great efforts have been made in detect-
ing the breakdown of the detailed balance [2]. In the case of
the brain, single neurons spiking in a network generate irre-
versible dynamics, given that their temporal symmetry is
broken because of the process originating from action poten-
tials. Nevertheless, this symmetry could be recovered at
broader scales, where the joint activity of thousands of neur-
ons is averaged, resulting in oscillatory local field potentials
(LFPs) [6]. At the whole-brain level, healthy cognitive func-
tions in human and non-human primates are based on a
repertoire of flexible interactive neural assemblies that are
spatially distributed. In this way, it seems improbable that
cognition can be sustained by macroscopic brain dynamics
close to equilibrium. Recent advances in this field show
brain dynamics departing from thermodynamic equilibrium,
brain states form a configuration space where their transition
probabilities are asymmetric, there is entropy production and
the produced neural activity is temporally irreversible [6–8].
1.2. Detailed balance and arrow of time
There is a genuine relationship between temporal reversibil-
ity and thermodynamic equilibrium. This equilibrium is
built based on stochastic fluctuations that compensate over
time, implying that an observer can appreciate a concrete tra-
jectory in configuration space with the same likelihood of
observing its opposite [9]. Systems at the aforementioned
equilibrium are adhered to detail balance, this means that
there is no net of probability fluxes in the configuration
space, indicative of reversible dynamics which are associated
with a null entropy production rate [6,7]. This is clearly
defined in terms of thermodynamics, where a system stops
to produce net entropy and becomes reversible in time [10].
Contrarily, a system presenting non-equilibrium—where the
detailed balance is broken—exhibits net entropy fluxes
between the underlying states and like that becomes irrevers-
ible, establishing an arrow of time [11–15]. In physics, this
arrow of time is based on an asymmetry, which sets a
favoured direction for the temporal evolution of a given
macroscopic system (i.e. towards higher entropy states) [16].
Eddington [17] was a pioneer proposing this framework of
links among non-equilibrium, irreversibility (asymmetry)
and the production of entropy, leading to the arrow of time,
and since then it has been extensively studied in physics
and biology.

Apparently simple, the stunning concept of the arrow of
time, has faced diverse approaches to study different parts
of its definition and its associated subsequent terms. Clausius
[18] and Carnot [19] defined the second law of thermodyn-
amics, stating that a non-equilibrium is represented by the
arrow of time which describes the irreversibility of a
system. Indeed, the second law of thermodynamics can be
declared by the Clausius inequality, stating that the work
associated with a given process (averaged over trials) is
greater than the change in its free energy. Rudolph Clausius
and Sadi Carnot solved the non-trivial problem of determin-
ing the irreversibility or non-equilibrium in a system. Since its
origin, the arrow of time is attached to the profound concept
of causality.

Thanks to Pearl’s [20] great work gathering and
summarizing the information related to causality literature,
we understand that in order to disentangle causal interactions
in a system manipulation of the whole system under study is
necessary. Any framework aiming to detect causal inferences
stands on inferring causal structures that generate equivalent
probability distributions, such that they are indistinguishable
from observed data, requiring as a result the manipulation of
the whole system in order to distinguish them. So, thermodyn-
amics provides interesting tools for establishing the causal
directionality flow of information using the reversibility and
entropy concepts; however, given the concrete conditions for
its analysis, causality supposes a challenge to be computed.

From the point of view of chaos theory, the arrow of time
has also been investigated. Poincaré [21] made public the first
characterization of chaotic motion in 1890. Long decades of
work after that confirmed that a key characteristic of chaos
is the extreme sensitivity to initial conditions [22]. Having
been proposed that sensitivity to initial conditions, even
when a classic mechanical deterministic chaotic system is a
priori reversible, is in fact irreversible. Stated briefly, chaos
hinders the establishment of computational reversibility to a
large extent and so the assessment of causality.

As previously mentioned, the ideas in the present study
come from physics and thermodynamics, where non-equili-
brium is inherent to irreversibility [10,15] and to entropy
production, originating the arrow of time [17]. We also
stated that life is based on violating the detailed balance of
the transitions between underlying microscopic states. In
fact, the concept of the arrow of time has been largely used
for non-trivial biological problems like protein folding [23].
In this way, we want to show that this key idea from physics
and thermodynamics is also very useful in neuroscience.

The whole-brain scenario, where specifically brain signals
are characterized by temporal asymmetries, and hence they
define an arrow of time, as a result of a permanent departure
from equilibrium due to internal and external stimulus. An
obvious consequence of this is the increasing interest in
studying entropy production among other related concepts
for characterizing time reversibility in brain signals
[6,7,24,25]. Research related to the cognitive effort is worth
mentioning, as it identified an increase in entropy production
in brain time series during demanding tasks compared to
easier ones. This increase in the effort was found to be influ-
enced by the novelty and uncertainty of the task, and the
energy required to maintain or switch concentration was
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found to be higher in subjects with mental disorders [7,26,27].
Notwithstanding, to compute causality and hence entropy
rate production is not an easy task and it is based on several
assumptions that should be addressed quite carefully. In fact,
we think that the arrow of time based on temporal sym-
metries could supply the exact right tools for capturing
irreversibility and thus both external and internal drivers of
a system like the brain.

1.3. How to detect that a system is reversible
In our daily lives, at the macroscopic level, we face many
non-reversible processes. For example, when a balloon
explodes because it touches something sharp. Some situ-
ations, like the one just described, represent clear
illustrations of the arrow of time. If we had the chance to
film the balloon exploding and we watch the reversal clip,
we would be certain about what happened before and
what happened after. Recalling the second law of thermodyn-
amics, when we face an irreversible process where the system
becomes disordered, it means that the total entropy pro-
duction is greater than zero and, hence, the system is out of
equilibrium. Contrarily, when there is no entropy production,
we face a reversible system in equilibrium. We can define an
irreversible process when we are able to distinguish between
the time-forward and time-reversal trajectories.

The Clausius inequality states that the work associated
with a process (average over repetitions) is greater than the
change in its free energy. This postulate can be expressed as
the average of the work associated with the forward and
backward trajectories in time. Large amounts of work corre-
spond to greater differences from the forward and backward
trajectories and thus a stronger arrow of time. The systems
that operate far away from thermodynamic equilibrium
exchanging energy and matter with the environment are
the so-called dissipative systems. Although the theories are
not recent, the task of assessing reversibility is still under
study. In fact, a novel measure of entropy production based
on the fluctuations of dissipative systems has been devel-
oped, and besides the specific case where it was tested
these ideas could be extended [28].

However, a simple, yet powerful manner of estimating the
irreversibility in the brain time series is to directly assess the
arrow of time encoded as asymmetries in brain signals, rather
than the more intricate way of estimating entropy production.
This appealing way to deal with non-equilibrium systems is
creating an increasing interest in the scientific community,
leading to the development of many different approaches to
assessing reversibility [29]. In the present study, we will
assess reversibility in whole-brain time series based on the
temporal asymmetries of brain signals previously described
by Deco et al. [8,30].

1.4. Measuring non-equilibrium is not trivial
The cases of a balloon exploding or a glass being shattered
are clearly non-reversible processes; however, if we think of
colliding billiard balls or a moving swing, the result is
more ambiguous. The brain signal case is one of those pro-
cesses which is not an easy task to disentangle reversible
from non-reversible dynamics. For irreversible macroscopic
processes like the glass or the balloon, fluctuations are trivial
and the difference is obvious between the distribution of
work and the arrow of time is easy to define. On the other
hand, although in microscopic systems (where brain signals
are included) the mean work is comparable, the fluctuations
are marked and the distinction between distributions is
uncertain. Given that in these situations establishing the
arrow of time is harder, equally, the assessment of reversibil-
ity and equilibrium becomes arduous. Indeed, non-
equilibrium states are non-stationary, meaning that reversibil-
ity fluctuates over time; this provides the second order of
non-stationarity. In other words, we can assess the non-equi-
librium of a system in time and how this non-equilibrium
changes over time. As cited above, the level of equilibrium
is linked to fluxes of transitions of different states, in our
case brain states. If the transitions between brain states sup-
pose net fluxes, our system is far from the equilibrium, and,
as a consequence of broken balance, the arrow of time is
defined [11,13,15].

1.5. Broken symmetry in conscious brain dynamics
Neural dynamics are commonly assumed as non-equilibrium
processes, but macroscopic brain dynamics possess some chal-
lenges in terms of their classification [31]. Nonetheless, recent
efforts have been made in order to show that the human brain
does not follow detailed balance and the departures from equili-
brium are task dependent. The proposed framework quantifies
entropy production from functional magnetic resonance imaging
(fMRI) in a reduced two-dimensional space [7]. Dissipative sys-
tems, as we mentioned earlier, evolve in a chosen temporal
direction dictated by the thermodynamic arrow of time. Interest-
ingly, our perception of time is constantly flowing from past to
future, but never in the reversed manner [32]. The origin of
this temporal asymmetry makes us wonder whether the con-
scious perception of the physical world would support that
asymmetry and to what extent these asymmetries could covari-
ate with the level of conscious awareness.

Does the asymmetry of the environment translate into tem-
poral asymmetries of their brain dynamics representation? To
what extent is the intrinsic spontaneous activity asymmetrical?
More complex stimuli yield greater asymmetries or is that the
case for multisensory information? Is the irreversibility of brain
dynamics strictly linked to the subjective experience of the
flow of time, and if so, can it be altered in different levels of
consciousness? There are many and diverse questions we
can ask about the characteristics of brain signal asymmetries.
Indeed, recent studies have been starting to investigate some
of them. Perl et al. [6] showed that brain states closer to equili-
brium were related to a lower level of consciousness. Despite
these advances, more studies need to be done to clarify the
relationship between levels of consciousness and irreversible
brain dynamics. As mentioned above, there are hints that
make us think that at some spatial and temporal scales cogni-
tion is sustained by strong deviations from equilibrium.
Having said that, it implies that unconscious brain states
could obey detailed balance at large scale, although at the
same time at neuronal level the homeostatic processes are irre-
versible. This scenario is coherent with the low entropy and
complexity that the lower levels of consciousness show at
large-scale brain dynamics [33–37].

1.6. Disorders of consciousness
It is commonly accepted that deep sleep, anaesthesia or brain
damage after a wide variety of lesions producing disorder of
consciousness (DOC) are characterized by a decrease or
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disappearance of consciousness. Both the level of wakeful-
ness (i.e. arousal) and awareness (i.e. the content of
consciousness) are assessed in clinical settings to define the
state of consciousness [38]. Wakefulness is typically evaluated
by eye opening, and awareness by the interaction with the
environment, usually responding to elicited tasks, as a
proxy for subjective experience. Investigating impairment of
consciousness is essential to comprehend the neural corre-
lates of consciousness; however, the mechanisms sustaining
these levels of consciousness remain unknown. Demonstrat-
ing these underlying mechanisms is arduous since they
apparently rely on a non-trivial conjunction of alternations
in local dynamics and network interactions [39].

Graph theory analysis has shown that the modular and
hierarchical organization of the human connectome supports
robust and efficient information transmission [40,41]. Because
of that, a healthy consciousness state is the result of the inter-
play between connectivity and dynamics favouring the
coordination of brain-wide activity [42–45]. Although inte-
gration between brain areas and visiting a large repertoire of
brain states are the main characteristics for a healthy brain,
they are impaired in DOC patients characterized by a loss of
communication at the whole-brain level [43,46–49], a loss of
functional complexity [34,50] and a loss of integration
[45,47,51]. A similar scenario is faced under anaesthesia;
recent evidence suggests that by means of deep brain stimu-
lation, the characteristic repertoire of brain states visited
during healthy wakefulness can be restored [52]. Interestingly,
functional connectivity during conscious wakefulness deviates
from structural connectivity while in unconscious states the
dynamics follows closer anatomical organization [43,53–55].

In the light of the recent results in characterization of non-
human and human brain dynamics reversibility under differ-
ent states of anaesthesia and sleep [6,8,30,56,57], we wanted
to assess for the first time the level of equilibrium present
in fMRI brain signals of patients suffering from DOC com-
pared to resting state healthy controls. We expect that the
level of reversibility could significatively distinguish between
control group (CNT) and lower consciousness states (DOC)
given that the latter group is expected to show more sym-
metric time series in comparison to healthy subjects.
Moreover, we also expect that our method is able to differen-
tiate between the two different groups of patients under
study. The minimally conscious state (MCS) group present
fluctuating but reproducible signs of consciousness [58] and
the unresponsive wakefulness syndrome (UWS) group
show preserved arousal but no behavioural signs of aware-
ness [59]. The differential diagnosis of these patients is
done at the bedside in clinical settings by trained physicians
using Coma Recovery Scale-Revised (CRS-R). While being a
useful tool to assess the state of consciousness of patients,
the diagnosis can be challenging. We propose that the frame-
work described by Deco et al. [30] is suitable for describing
patients’ brain states in an objective and rigorous manner,
paving the way towards potential biomarkers that could
help with the diagnosis of those patients.
2. Methods
2.1. Participants
We included a total of 31 patients in MCS (11 females, mean age
± s.d., 47.25 ± 20.76 years), 24 in UWS (10 females, mean age ±
s.d., 39.25 ± 16.30 years) and 13 healthy controls (seven females,
mean age ± s.d., 42.54 ± 13.64 years) described in our previous
study [60]. Trained clinicians carried out the clinical assessment
and CRS-R scoring to determine their level of consciousness.
Patients were diagnosed with MCS if they exhibited some beha-
viours that could be indicative of awareness, such as visual
pursuit, orientation to pain, or reproducible command following.
On the other hand, patients were diagnosed with UWS if they
showed arousal (opening their eyes) without any signs of aware-
ness (never exhibiting non-reflex voluntary movements). This
research was approved by the local ethics committee Comité
de Protection des Personnes Ile de France 1 (Paris, France)
under the code ‘Recherche en soins courants’ (NEURODOC pro-
tocol, no. 2013-A01385-40). The patients’ relatives gave their
informed consent for the participation of their familiar, and all
investigations were performed according to the Declaration of
Helsinki and the French regulations

2.2. MRI data acquisition
MRI images were acquired with two distinctive acquisition proto-
cols. For the first protocol, MRI data of 21 patients and 13 healthy
controls were acquired on a 3 T General Electric Signa System.
T2*-weighted whole-brain resting-state images were recorded
with a gradient-echo EPI sequence using axial orientation (200
volumes, 48 slices, slice thickness: 3 mm, TR/TE: 2400 ms/
30 ms, voxel size: 3.4375 × 3.4375 × 3.4375 mm, flip angle: 90°,
FOV: 220 mm2). Also, an anatomical volume was obtained using
a T1-weighted MPRAGE sequence in the same acquisition session
(154 slices, slice thickness: 1.2 mm, TR/TE: 7.112 ms/3.084 ms,
voxel size: 1 × 1 × 1 mm, flip angle: 15°). For the second protocol,
MRI data of 34 patients were acquired on a 3 T Siemens Skyra
System. T2*-weighted whole-brain resting-state images were
recorded with a gradient-echo EPI sequence using axial orien-
tation (180 volumes, 62 slices, slice thickness: 2.5 mm, TR/TE:
2000 ms/30 ms, voxel size: 2 × 2 × 2 mm, flip angle: 90°, FOV:
240 mm2, multiband factor: 2). An anatomical volume was
obtained in the same session using a T1-weighted MPRAGE
sequence (208 slices, slice thickness: 1.2 mm, TR/TE: 1800 ms/
2.35 ms, voxel size: 0.85 × 0.85 × 0.85 mm, flip angle: 8°).

2.3. Resting state pre-processing
The pre-processing of resting state data was performed using FSL
(http://fsl.fmrib.ox.ac.uk/fsl) as described in our previous study
[60]. Briefly, resting state fMRI was computed using MELODIC
(multivariate exploratory linear optimized decomposition into inde-
pendent components) [61]. Steps included discarding the first five
volumes, motion correction using MCFLIRT [62], brain extraction
tool (BET) [63], spatial smoothing with 5 mm FWHM Gaussian
kernel, rigid-body registration, high pass filter cutoff = 100.0 s, and
single-session independent component analysis (ICA) with auto-
matic dimensionality estimation. Then, lesion-driven artefacts (for
patients) and noise components were regressed out independently
for each subject using FIX (FMRIB’s ICA-based X-noiseifier) [64].
Finally, FSL tools were used to coregister the images and extract
the time series between 100 cortical brain areas for each subject in
MNI space from the Schaefer parcellation [65].

2.4. Assessment of reversibility in the system
Computing the level of non-reversibility, relies on the key idea of
detecting the arrow of time through the degree of asymmetry
obtained by comparing the causal relationship between pairwise
time series of the forward and the artificially generated time-
reversed version. More specifically, let us consider first the detec-
tion of the level of non-equilibrium (i.e. the arrow of time)
between two time series x(t) and y(t) as shown in figure 1b,
let us assume that x(t) is evolving from an initial state A1 to a

http://fsl.fmrib.ox.ac.uk/fsl
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Figure 1. Outline of the present study, reversibility as a signature of consciousness. (a) Reversible and non-reversible dynamics in brain time series: we can observe
an illustration of two hypothetical brain signals of fMRI from different nodes exhibiting contrary behaviours regarding their symmetry ( purple versus green). In order
to calculate the degree of asymmetry we must construct the time-reversed (time-reversed) signal from the original version (normal). (b) Computation of the func-
tional connectivity reversibility matrix: to assess the degree of asymmetry we measure absolute quadratic difference between FSforward and FSreversal, the pairwise
comparison of the time-shifted time series. Causal interactions among regions, if they exist and have a strong time dependency (i.e. two nodes of a given network),
will show a high correlation in the forward but a low correlation for the time-reversed case. The dynamical reversibility of every subject can be explained in terms of
their average and deviation. (c) Functional connectivity reversibility matrix and subjects’ levels of reversibility. The FSreversibility matrix that we show in this panel is
computed at every sliding window. Note that the colour purple indicates more reversible processes, as they are close to zero, and the green colour indicates more
non-reversible ones. The right panels represent two contrary scenarios of dynamical reversibility of a hypothetically group of subjects. One scenario exhibits subjects
in a more reversible state ( purple case), and another where the subjects’ brain dynamics work in a more non-reversible manner (green case). The dots represent the
absolute averaged level of reversibility in every sliding window for the whole group of subjects concatenated. (d ) Disorder of consciousness and their level of
reversibility. We hypothesize that the patients (MCS, UWS) would present lower levels of averaged and deviation reversibility compared with control group
(CNT). We expect this effect to be similar at the global and network level, following the decrease of asymmetry, the decrease of consciousness (CNT >
MCS > UWS). The statistical analyses at the global level will be shown as illustrated, with asterisks on top of the box plot. At the network level, for the sake
of simplicity, we will show the significance between the comparison of the networks within and between conditions (CNT, MCS, UWS) in a triangle shape of
p-value matrices; where the diagonal indicates the within-network reversibility difference (i.e. Visual versus Visual network) and the rest of the locations the
between networks-reversibility difference (i.e. Visual versus Somatomotor networks).
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final state A2, and y(t) is evolving from an initial state B1 to a
final state B2, respectively. The time-reversed version of x(r)(t)
(or y(r)(t)), that we call x(r)(t) (or y(r)(t)), is obtained by flipping
the time ordering, (i.e. by ordering the time evolution of x(r)(t)
(or y(r)(t)) as the inverted sequence determined by initial state
A2 to a final state A1 (or initial state B2 to a final state B1). The
causal dependency between the original time series x(t) and
y(t) are measured through the time-shifted Pearson correlation.
For the forward evolution the time-shifted correlation is given by

cforward(Dt) ¼ x(t),y(tþ Dt)h i,
and for the reversed backward evolution the time-shifted corre-
lation is given by the pairwise level of non-reversibility, i.e. the
degree of temporal asymmetry

creversed(Dt) ¼ x(r)(t),y(r)(tþ Dt)
� �

,

capturing the arrow of time, is given consequently by the absol-
ute difference between the causal relationship between these two
time series in the forward and reversed backward evolution, at a
given shift Δt = T, i.e.

Ix,y(T) ¼ jcforward(T)� creversed(T)j:

We keep the correlations with their signs and compute the
absolute difference as we are interested in the magnitude of the
change in the asymmetry. After computing the autocorrelation
for all regions, subjects and conditions, we observed that a suffi-
cient decay occurs when T = 1. This value T, reflects the temporal
domain where we assess our results, adjusting this parameter
will allow us to find different results at different timescales. Of
note, this T represents the amount of timepoints shifted of the
discretized signal, meaning that the real-time association will
depend on the time resolution of the acquired data. This explora-
tion might seem incomplete without referencing the INSIDEOUT
method. Therefore, it is important to mention that in previous
work using INSIDEOUT, a fine-tuning of T was performed
following the analysis of the autocorrelation [30]. However, it
should be noted that the sample rate of the signals in that case
was relatively short (less than 1 s), whereas in our study using
fMRI data, the sample rate is approximately 2 s, which might
be considered too high for such fine-tuning.

The level of non-reversibility/non-equilibrium for the multi-
dimensional case of whole-brain analysis can be easily
generalized by defining the forward and reversal matrices of
time-shifted correlations. Let us denote with xi(t) the forward
version of a multidimensional time series reflecting the dynami-
cal evolution of the variable describing the system. The sub-index
i, in this case, indicates the distinct dimensions of the dynamical
system. Let us denote with xðrÞi ðtÞ the corresponding reversed
backward version. The forward and reversal matrices expressing
the functional causal dependencies between the different
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variables for the forward and artificially generated reversed
backward version of a multidimensional system are given by

FSforward,ij(Dt) ¼ � 1
2
log 1� hxiðtÞ,xjðtþ DtÞi2

� �
,

FSreversal,ij(Dt) ¼ � 1
2
log 1� hx(r)i ,ðtÞ,x(r)j ðtþ DtÞi2

� �
,

respectively. The FS functional causal dependencies matrices are
expressed as the mutual information based on the respective
time-shifted correlations. The level of non-reversibility is given
by the quadratic distance between the forward and reversal
time-shifted matrices, at a given shift Δt = T. In other words,
the level of non-reversibility/non-equilibrium in the multidimen-
sional case is given by

I ¼ k FSforward(T)� FSreversal(T)k2,

where the notation ||Q||2 is defined as the mean value of
the absolute squares of the elements of the matrix Q. In other
words, if we define a difference matrix FSreversibility in the
following way

FSreversibility,ij ¼ ðFSforward,ijðTÞ � FSreversal,ijðTÞÞ2:

The matrix FSreversibility is thus a matrix whose elements are
the square of the elements of the matrix (FSforward (T )− FSreversal
(T )) where for each pair, the level of non-reversibility as
measured by the squared difference. Thus, I is simply the
mean value of the elements of FSreversibility. In summary, we are
able to reduce the mutual information (FS), forward and reverse
cases, based on the respective time-shifted (T ) correlations into a
single value corresponding to the mean of the FSreversibility matrix
that defines the degree of asymmetry of the time series. However,
this process could be done iteratively by dividing the time series
into a subset of time points, i.e. a sliding window of length W,
resulting in a dynamic characterization of the asymmetry
within a subject. Every sliding window (W ) is described by the
mean of its corresponding FSreversibility matrix. For instance,
every subject is described by a set of N reversibility values
(mean of FSreversibility matrix) being N the number of total sliding
windows, depending on the length of the time series and the
window size (W ). We computed the FSreversibility over all partici-
pants and all sliding windows for each condition. For the global
level of asymmetry, we computed for each sliding window the
degree of asymmetry as the mean value of the elements of the
FSreversibility matrix. Each subject is characterized as the average
reversibility values and their standard deviation, later on called
deviation reversibility. For the network level first, we identified
the nodes that belong to the same network, being the seven rest-
ing state networks based on the 100 nodes of the Schaefer
parcellation [65]. We followed the same steps for each network,
starting with defining it as a subset of nodes. Firstly, we applied
time-shifted (T ) Pearson’s correlation to both forward and
reverse cases of the original signals on the corresponding
nodes, then calculated mutual information (FS) among them,
and finally took the mean of the FSreversibility matrix. In the pair-
wise analysis, the size of the FSreversibility matrix is N×N, where
N is the total number of areas. However, in the network analysis
case, the size is variable depending on the number of nodes from
the networks under comparison. Like that, we are able to sum-
marize the asymmetry within or between networks with a
single value of reversibility. As stated before, we can iteratively
perform these computations over sliding windows in the same
fashion resulting in a dynamical network analysis of reversibility
within a subject. Briefly, we computed the pairwise comparison
of the nodes corresponding to a given network with the rest of
the networks and itself and then averaged their causal interaction
in a 7 by 7 diagonal and subdiagonal matrix of differences, at this
level we also assessed the deviation reversibility.
2.5. Statistical analysis of the results
All statistical analyses of the data conducted here used the stan-
dard statistical Mann–Whitney U test, also known as
the Wilcoxon rank sum method [66], and false discovery rate
(FDR) Benjamini–Hochberg [67] correction for multiple compari-
sons (as specified in the text). The data are available upon
request.
3. Results
3.1. How we measure symmetry in brain signals
In general, there are two main approaches being developed in
the assessment of reversibility. Reversibility or in general
time symmetry can be approached as a geometric character-
istic of a stochastic process or assuming that there are some
physical source sustaining that process [29]. The present
analysis belongs to the latter assumption, where its ideal
last step would be the computation of entropy production.
Zanin et al. state that no method is ideal and one-size-fits-all
is not the case for reversibility studies; moreover, the con-
clusion inferred from the results of this kind of analysis
should be taken cautiously.

Figure 1 shows a schematic of the outline executed in the
present reversibility analysis. In figure 1a, brain dynamics
captured by fMRI reveal a macroscopic system governed by
the asymmetry of the arrow of time. Yet, these signals display
a variety of behaviours regarding the mentioned asymmetry.
As an example of this, we can observe an illustration of two
hypothetical brain signals from different nodes exhibiting
contrary behaviours regarding their symmetry. The time-
reversed signal (green) is constructed as the specular image
of the original signal ( purple) read from time 0 to time T, as
indicated with the arrow. On the other hand, the green
signal depicts a clearly non-reversible, hence asymmetric
time series. In this case, it is quite easy to differentiate
between the normal and time-reversal signals.

Normal and time-reversed whole-brain fMRI signals are
used to assess the reversibility of the brain both at global
and network level, as is displayed in figure 1b. In order to
create a direct link between our assessment of non-equili-
brium/non-reversibility and broken detailed balance, we
measured the asymmetry of the time-shifted functional con-
nectivity. We perform the pairwise correlation of the time
series shifted in time ðt ¼ 1Þ for both the normal and time-
reversed signals. Like that we construct the functional shifted
in time correlation matrices FSforward and FSreversal. Then, we
compute the difference between matrices and obtain the
absolute value as the reversibility level. If two brain nodes
present a high temporal dependency, the subtraction of the
forward and reverse correlation will be large. Instead, two
brain regions with poor temporal dependency will show
zero or close to zero reversibility. We calculate the level of
reversibility as the absolute quadratic difference between
the time-shifted matrix FSforward and FSreversal, averaged
over all pairs of nodes. Shorter distances suppose that the
whole-brain is working near reversibility, such that larger dis-
tances depict the brain working away from equilibrium. We
selected a size of 90 time points for creating sliding windows.
We divided the whole time series into chunks of 90 time-
points that overlapped 85 points. We computed the
FSreversibility matrix for every sliding window in order to get
a dynamical information of reversibility and hence, a
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Figure 2. Global level results. (a) At the left panel, we can observe the distribution of the average reversibility in every group, composed of the averaged rever-
sibility of every subject defined by a set of 90 time points sliding windows, a total 21 or 17 sliding windows depending on the length of the time series. At the
right, we find three distributions of the standard deviation of the reversibility of every subject at each condition, expressing the dynamics of the reversibility over
time. As can be seen the average reversibility of the CNT group is significantly greater than the other two DOC groups, both MCS and UWS. Also we can see that
among these two latter groups there exists a significant difference. The standard deviation of the reversibility shows in agreement with the previous finding, being
greater for the CNT group and decreasing as the level of consciousness, followed by MCS and UWS, respectively. Suggesting that the CNT group is not only, on
average, further from the equilibrium, but also that the variability between reversible and non-reversible processes is increased compared to the DOC groups. The
level of significance after FDR correction between conditions is indicated schematically (*p < 0.005, **p < 0.01, ***p < 0.001). (b) In this section, we graphically
show the absolute averaged values of reversibility at every window for every subject concatenated (delimited with vertical lines) and divided per conditions. The
upper panel represents the CNT group which exhibits a greater variability and values further from zero than other groups. The middle panel describes the MCS
group, characterized by lower absolute values, which are closer to zero compared to the CNT group and dressed variability as well. Last, the inferior panel corre-
sponds to the UWS group, this group possesses the least variability and their reversibility values are the closest to zero, representing the most extreme case of
reversible state within the three conditions.
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second order non-stationary value. The dynamical reversibil-
ity of every subject can be explained in terms of their average
and deviation, giving us a more comprehensive and deep
understanding of their brain dynamics.

Irreversibility is associated with breaking the detailed bal-
ance, as shown in figure 1c. Specifically, the level of
asymmetry of the computed FSreversibility matrix is a proxy
for the non-equilibrium of the system. More asymmetry cor-
responds to more irreversibility. We represented in purple the
values closer to 0 and in green the values that fall far away
from zero. The FSreversibility matrix is asymmetric itself
because the correlation difference varies depending on the
inherent temporal causal structure of the data. In addition,
the right value represents an illustration of two different
theoretical groups of subjects. The dots represent the average
value of reversibility obtained per subject at every sliding
window, the subjects are concatenated in time. The upper
plot ( purple dots) represents a group of subjects with low
average reversibility and the lower plot (green dots) represents
a group with higher average reversibility closer to one. The
purple group presents less variability, while the green
group has a higher deviation. The reversibility dynamics of
the purple group are closer to the equilibrium and hence,
more symmetrical than the green group which represents a
greater departure from the equilibrium sustained by asym-
metrical brain signals.

The hypothesis of this work is based on the proposed fra-
mework and with it we want to demonstrate that the DOC
groups (red and yellow) present less asymmetrical dynamics
compared to the CNT group (blue) and hence, they work
closer to the equilibrium, as illustrated in figure 1d. We
expect that equally average and deviation values of reversibil-
ity show a decrease from CNT to UWS group, representing
the MCS an intermediate state of consciousness compared
to the other two groups. This result is graphically presented
in the hypothesis section by means of global and network level
results. We hypothesize that both at the global and network
level the differences will be present in a general way, showing
a coherent descent between the two levels under study.

The results obtained from the reversibility analysis based
on brain signal symmetry of DOC patients and CNT subjects
are split into global and network levels for their study.

3.2. Global level results
In figure 2, we summarized the information at the subject level
divided by the three conditions under study. Specifically, in
figure 2a, we can appreciate the distribution of reversibility
per group in terms of their average and stationarity (devi-
ation). Note that the axes from the average reversibility plot
and the deviation reversibility plot differ as the average
reversibility values are greater than the latter ones.

3.2.1. Average reversibility
As we can observe, in blue the CNT group (reversibility =
0.0018 ± 0.0019, n = 13), in red the MCS (reversibility =
7.64 × 10−4 ± 9.92 × 10−4, n = 31) group and in yellow the
UWS group (reversibility = 3.89 × 10−4 ± 8.21 × 10−4, n = 24).
The CNT group presents a significantly greater distribution
of reversibility compared to both MCS (***p < 0.001) and
UWS (***p < 0.001) groups. The dots in the box plot represent
the subject-level average value of reversibility for their sliding
windows time-series analysis. In the same way, the MCS
group in red presents a significantly greater distribution
compared to the yellow UWS group (**p = 0.0098). As we
expected the CNT group, which in this comparison rep-
resents the greatest level of consciousness, is associated
with higher asymmetry as their level of reversibility is further
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from zero than the DOC groups. The same can be said about
the DOC groups, a clear difference in terms of reversibility
exists between the MCS group and the UWS group,
explained by the fact that the UWS group is being sustained
by more symmetrical brain signals compared to the more
conscious MCS group. The statistical comparisons are com-
puted by means of the Wilcoxon rank sum test and after
corrected for multiple comparisons by the FDR Benjamini–
Hochberg.

3.2.2. Deviation reversibility
The stationarity of the reversibility is computed as the stan-
dard deviation of the reversibility values given at every
sliding window per subject. As we can appreciate, the CNT
in blue (deviation reversibility = 5.0279 × 10−4 ± 8.1586 × 10−4,
n = 13), the MCS group in red (deviation reversibility =
2.37 × 10−4 ± 2.75 × 10−4, n = 31) and the UWS group in
yellow (deviation reversibility = 7.45 × 10−5 ± 4.41 × 10−4, n =
24). The CNT group is the most non-stationary group com-
pared with the MCS group (***p < 0.001) and UWS
group (***p < 0.001). However, in this situation, although sig-
nificant, the distance between the MCS and UWS groups is
smaller (p = 0.0408), indicating that the DOC groups are
characterized by a more stationary reversibility regime
compared to the healthy resting state. The statistical compari-
sons are computed by means of the Wilcoxon rank sum test
and after corrected for multiple comparisons by the FDR
Benjamini–Hochberg.

3.2.3. Sliding windows at subject level
In figure 2b, we can observe three different plots associated
with the three different levels of consciousness. Ranked from
top to bottom, the higher level of consciousness is the CNT
group followed by MCS and the lower state of consciousness
UWS group. In each of these plots, we can appreciate the
reversibility (y-axis) in time per subject (x-axis), as a concatena-
tion of all of them in each condition, to create a visual
illustration of the previous distributions described. The dots
represent the averaged reversibility obtained from the
FSreversibility matrix at every sliding window, a total of 21 or
17 (depending on the time-series length) per subject. At a
glance, we can note that the CNT group is the one showing
higher and more diverse reversibility values. On the other
hand, the MCS and UWS are characterized by lower and
more stable levels of reversibility compared to the CNT.
Indeed, the MCS presents more variability within and between
subjects compared to the UWS, where most of them show
almost the same value of reversibility within and between sub-
jects, with the exception of three subjects that represent the
three outliers of the previous box plots.

3.3. Network level results
In figure 3, we summarize the average and deviation reversi-
bility results at the network level divided into the three
groups under study (figure 3a) and the statistical compari-
sons between them (figure 3b,c).

Figure 3a shows similar box plots to the second figure.
Now the difference is that in each condition plot, in the x-
axis there are seven resting state networks from the Schaefer
100 nodes parcellation [65]. The results are equally distribu-
ted in average (upper line of plots) and deviation
reversibility (lower line of plots).
3.3.1. Average reversibility
The three first plots from left to right represent within network
average reversibility for the CNT, MCS and UWS groups. As
we can observe, the CNT group, replicating the global level
results, shows the greatest values of reversibility in a general
manner compared to the DOC groups. In addition, the DOC
groups are equally divided in the more asymmetrical MCS
group (higher level of consciousness) and UWS (lower level
of consciousness) group as the least asymmetrical, also in a
general manner. Of note, among all the RSN, the CNT
group shows that the Somatomotor is the network that
possesses, on average, a greater value compared to the DOC
groups where instead the Visual network possesses greater
value. Interestingly, the Visual network follows the Somatomo-
tor in the CNT group. As there is a great difference between
CNT and the DOC groups in order to maintain the same
axis for a clear visualization of the distribution in each group
and avoid the collapse of box plots we discarded an outlier
from the CNT group (subject n = 2) in the Somatomotor net-
work (reversibility value = 0.0186). We did the same with
another outlier from the UWS group pertaining to the Visual
network (subject n = 13 reversibility value = 0.0114). The statisti-
cal analysis without the outliers mentioned did not produce
any difference from the conjunct result present here.

3.3.2. Deviation reversibility
In the lower line of plots with the same disposition as
that previously described, we find the distribution of within
networks stationarity in terms of their reversibility for each
condition. In line with the results of the global level, the
CNT group shows the highest variability in their reversibility
level compared with the DOC groups. In this case, we can
clearly see how both DOC groups show conjunctively a
decreased non-stationary behaviour, apparently a shared
characteristic of lower states of consciousness. However,
there is still a tendency to conserve some non-stationarity in
the MCS compared to the UWS group, specifically there are
significant differences between the two networks. The net-
work with the highest deviation on average for the CNT
group is Somatomotor and for MCS and UWS groups, the
Visual network, suggesting a coherent behaviour between
average and deviation reversibility.

For the sake of simplicity, in figure 3b we aim to show a
visual representation of the three different comparisons one
at a time.

3.3.3. Average reversibility
The upper line of plots represents the average reversibility
within networks. The first spider plot represents the average
reversibility per network for the comparison of CNT and
MCS groups. The numbers in the plot represent the value
of the reversibility multiplied by 104 because of the legibility
of the plot. In bold, we represent the significant differences
with asterisks indicating their level of significance after the
Wilcoxon rank sum test and posterior FDR correction. All
the networks present a significant difference compared to
the MCS group, the same and with a larger distance occurs
with the second plot CNT versus UWS. The last comparison
between the MCS and UWS groups is significant for all the
networks except for the dorsal attention. Thanks to this plot
we can observe easily the most irreversible networks in
each case previously mentioned. The distance from the
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Figure 3. Network level results. (a) This section shows the average and deviation reversibility of the seven resting state networks of the parcellation used (see
Methods). The upper line of plots summarizes the results for the average reversibility at the network level per condition. The CNT group shows in general a higher
level of non-reversibility compared to the other DOC groups. The MCS and the UWS possess mean values of reversibility closer to zero. However, the UWS falls
behind the MCS as expected. The Somatomotor network followed by the Visual network represents the highest reversibility on average among the networks for the
CNT. However, this trend is inverted for the DOC where the Visual network is on average the furthest to zero followed by the DMN in the case of the MCS and by the
Ventral attention for the UWS condition. The inferior line of plots shows the standard deviation of the brain regions corresponding to every network at each con-
dition. The CNT group shows the highest variability of reversibility compared to the other two groups. The DOC groups show a marked decrease in deviation
reversibility; in this case, the MCS group and the UWS group are similar. Although difficult to see at a glance, the MCS group is still the middle point between
the UWS condition and the CNT group. In the CNT group, on average, the Somatomotor network is the most variable one followed by the Visual network in
agreement with the average reversibility. In the DOC groups the Visual network is the most variable followed by the DMN in the MCS case and followed by
the Ventral attention in the UWS condition. (b) This section shows a graphical representation of one to one comparison between groups of the distributions pre-
viously shown in (a). The upper line of plots corresponds to the average reversibility, the inferior line of plots represents the deviation reversibility. Note that the
values are multiplied by 104 for the sake of clear visualization. The level of significance after FDR correction between conditions is indicated schematically with the
name of the network in bold and asterisks for the level of significance (*p < 0.005, **p < 0.01, ***p < 0.001). (c) The level of significance after FDR correction
between conditions binarized at p < 0.001.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
13:20220086

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 J

ul
y 

20
23

 

most irreversible network (Somatomotor) in the CNT group
is greater than the distances found between the Visual net-
work and the rest for the DOC groups. The statistical
comparisons are computed by means of the Wilcoxon rank
sum test and after corrected for multiple comparisons by
the FDR Benjamini–Hochberg. (CNT versus MCS: FDR
corrected p-values (Vis. p = 0.0156, Som. p < 0.001, Dors. att
p = 0.0026, Vent. att p = 0.0031, Lim. p = 0.0167, Con. p <
0.001, DMN p = 0.0019). CNT versus UWS: FDR corrected
p-values (Vis. p < 0.001, Som. p < 0.001, Dors. att p < 0.001,
Vent. att p < 0.001, Lim. p < 0.001, Con. p < 0.001, DMN
p < 0.001). MCS versus UWS: FDR corrected p-values (Vis.
p = 0.0346, Som. p = 0.0225, Dors. att p = 0.0631, Vent. att
p = 0.0235, Lim. p = 0.0171, Con. p = 0.0346, DMN p = 0.0032).)
3.3.4. Deviation reversibility
The lower line of plots represents the deviation reversibility
and the individual comparisons following the previous
scheme. With this representation, we can easily see the differ-
ences already mentioned in the box plot. Specifically, we can
observe that the only two networks that are significantly
different in terms of their stationarity are the Default Mode
network (DMN) and the Limbic network. The statistical com-
parisons are computed by means of the Wilcoxon rank sum
test and after corrected for multiple comparisons by the
FDR Benjamini–Hochberg. (CNT versus MCS: FDR corrected
p-values (Vis. p = 0.0040, Som. p < 0.001, Dors. att p = 0.0014,
Vent. att p = 0.0010, Lim. p = 0.0020, Con. p < 0.001, DMN
p = 0.0022). CNT versus UWS: FDR corrected p-values
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(Vis. p < 0.001, Som. p < 0.001, Dors. att p < 0.001, Vent. att
p < 0.001, Lim. p < 0.001, Con. p < 0.001, DMN p < 0.001).
MCS versus UWS: FDR corrected p-values (Vis. p = 0.0681,
Som. p = 0.1165, Dors. att p = 0.1088, Vent. att p = 0.0946, Lim.
p = 0.0196, Con. p = 0.1126, DMN p = 0.0083).)

Apart from the within-network analysis that we already
described, we also perform between-networks analysis and
compared among conditions. In figure 3c, we can appreciate
a binarized ( p = 0.01) summary of the significant compari-
sons among conditions. If we recall figure 1c, the diagonal
of the triangle shape plot corresponds to the within-network
comparison already shown in the previous spider plots. The
rest of the figure corresponds to the combinatorial compari-
sons of the different networks as indicated with their
names on the axes. Following the scheme of average/devi-
ation reversibility analyses, we distributed the comparisons
in two lines, being the upper line of plots dedicated to aver-
age reversibility and the lower part to deviation reversibility
plots. The behaviour is similar for both average/deviation
reversibility situations, in general, CNT versus UWS is
significant in any network comparison due to the most
extreme states of consciousness analysed here. This is fol-
lowed by the CNT versus MCS which show weaker
network comparison, such as within the Visual, Ventral
attention–Visual, Control–Somatomotor and DMN–Somato-
motor (average reversibility) and within Limbic, DMN–
Dorsal attention and DMN–Control (deviation reversibility).
This is expected as MCS is closer than UWS in terms of the
level of consciousness. Also, the MCS versus UWS compari-
son is expected to present the least differences because they
are both groups of patients with DOC. Interestingly, some
network comparisons that possess a p < 0.001 between MCS
and UWS, but they do not for CNT versus MCS, at the aver-
age reversibility. For instance, Ventral attention–Visual and
DMN–Control. Finally, it can be said that there are less com-
parisons that survive after the binarization in the MCS versus
UWS deviation reversibility case, illustrating the common
DOC characteristic of gaining stationarity.
4. Discussion
Computational neuroscience has recently faced the emergence
of promising measurements based on reversibility and entropy
rate quantification, motivating us to pursue the present work.
Specifically, we wanted to characterize, from a temporal asym-
metries perspective, patients suffering from DOC to establish a
relationship between reversibility and level of consciousness.
Thanks to the INSIDEOUT framework’s ideas, we successfully
demonstrate that the level of reversibility could represent a sig-
nature of consciousness, as temporal asymmetries significantly
differ between the healthy resting state, MCSs and unrespon-
sive wakefulness states. Indeed, patients showed a scale-
dependent decrease of average reversibility based on their
level of consciousness compared to controls and a joint
decrease of non-stationarity for both groups of patients
compared to the healthy resting state.

The INSIDEOUT framework, originally proposed by Deco
et al., is inspired by the ideas of Prof. Buzsaki, who defined the
brain as a complex system that self-organizes and constrains its
own activity, rather than being highly dependent on stimuli or
sensations. However, it should not be confused with the use of
the term ‘inside out’ by Prof. Buzsaki in his book The brain from
inside out [68]. The INSIDEOUT framework aims to measure
the alteration in the hierarchy of causal interactions of brain
activity in different brain states. This methodology is based
on the concept of the arrow of time and its link with non-equi-
librium and time asymmetry [30]. These ideas from statistical
physics are applied to brain signals to characterize the level
of reversibility/non-equilibrium [17]. Specifically, the measure-
ments are performed directly from the empirical data without
any underlying model assumptions, using time-shifted corre-
lations. INSIDEOUT framework is flexible and versatile
because it can be applied at different temporo-spatial scales
and it is not restricted to the fMRI dataset as presented here,
being easily extended to other neuroimaging modalities such
as magnetoencephalography (MEG), electroencephalography
(EEG), LFP or, as already proved, electrocorticography
(ECoG) [6,8,30,57].

Recently, there have been many attempts to quantify the
non-equilibrium in brain time series using methods like com-
plexity metrics or by means of entropy production rate, all of
which come with drawbacks [6,7,15,69–71]. For example,
entropy measurements require an estimation of transition
probabilities in the state space of the system, certain assump-
tions (i.e. Markovian chains) and sufficiently large time
series to be studied, moreover, entropy estimates might be
inaccurate if our analysis is based on partial information
[16,29,57,72]. Bearing in mind the challenge that entropy pro-
duction analysis entails, we decide to perform a simpler, yet,
quantitative, versatile and flexible measurement of reversibil-
ity to our data, based on the INSIDEOUT framework.
Nonetheless, the present study represents just a vertex in
the complex net of reversibility analysis and we are highly
encouraged to learn from different perspectives about irrever-
sibility in brain dynamics. Only by means of such an
integrative approach will we be able to get a coherent view
of reversibility, helping us to disentangle the origin, causes
and consequences of this phenomena.

Our results indicate a clear distinction between CNT and
DOC groups, where the latter are described by more sym-
metrical brain signals. At the global level, the average
reversibility distribution showed a decreased non-equili-
brium from CNT to UWS, with the MCS being the
intermediate non-equilibrium stage corresponding to the
intermediate consciousness state as shown in the three
studied groups. This result is consistent with previous ana-
lyses of entropy production and reversibility in ECoG non-
human primate and human fMRI data that showed proximity
to equilibrium for states of reduced consciousness (sleep and
anaesthesia) compared to conscious wakefulness [6,30]. The
non-stationarity, or standard deviation, of the reversibility
showed for the patients the same decrease compared to
healthy subjects, suggesting a common signature for both
impaired consciousness states (MCS and UWS). Interestingly,
De La Fuente et al. built a machine-learning classifier that dis-
criminated reversibility in brain signals finding the most
important features of healthy wakefulness transitions
between slow (≈20 Hz) and fast frequencies (greater than
40 Hz), considered as the main contributors to the temporal
asymmetry. These transitions can also be seen as a non-
stationary process of conscious wakefulness, supporting our
findings [57]. The dynamic regime of the brain is key to
understanding brain states in health and disease [73]. In
fact, it has been shown that unconscious brain states are
dominated by synchronous and less asymmetrical activity,
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in both macroscopic and microscopic scales [74–80], whereas
conscious states are characterized by asynchronous dynamics
[76]. Our global level results, according to the revised litera-
ture, suggest that impaired consciousness states are
characterized by more symmetrical and stationary regimes
compared to healthy resting state controls which showed
more asymmetric non-stationary time series.

At the network level, we further confirm this general per-
spective. Within condition analysis of network reversibility,
both average and standard deviation values did not reflect
any change, suggesting that the whole-brain is working
under a different regime and this trend is not originated by
a single network but it is rather a general behaviour of
brain signals . However, within condition, network reversibil-
ity showed differences when the subjects were facing distinct
tasks (i.e. memory, motor, emotional tasks) [8] or situations
(i.e. eyes closed versus eyes opened) [25]. In fact, higher
levels of non-equilibrium were found while performing
tasks compared to resting state both in sensory and higher
cognitive associative areas [8]. Our results at the network
level reveal a similar tendency, being more irreversible
in the CNT subjects at both global and network levels, as
well as, both average and deviation analysis compared to
the MCS and UWS subjects. Also, we face the same escalation
from higher (CNT) to lower level of consciousness (MCS >
UWS) for the average and a less clear distinction for the devi-
ation reversibility among the two DOC groups. In light of
recent discoveries, the impaired consciousness states follow
the lack of asymmetrical content in brain signals that charac-
terizes neurological diseases [8,25]. Although a general lower
level of non-equilibrium has been found, specific brain areas
can act differently according to the disease or the symptoma-
tology under study. For example, attention deficit
hyperactivity disorder and bipolar patients presented
decreased average non-equilibrium in some brain areas and
increased in the areas concerning symptomatology-related
networks; moreover, patients were characterized by an
increase in non-stationarity, exemplifying the diversity in
reversibility for a given disease [8]. In regard to concrete net-
works that appear as the most irreversible per condition, the
CNT group shows the Somatomotor followed by the Visual
network as the top irreversible networks both by average
and deviation values. The DOC groups, on the other hand,
present the Visual network as the top average and deviation
irreversible network. The decrease in the irreversibility of the
Somatomotor network in DOC groups can be related to the
lack of movement and response to stimuli that often charac-
terize impaired consciousness states [81]. In fact, in animal
experiments that have suffered a removal of thalamocortical
inputs, brain dynamics are regular in the absence of extrinsic
stimulation and they unfold near the equilibrium [82,83].
However, our data are only representative of cortical regions
and further work should be done including subcortical areas
so they can be contrasted with the results shown here. Also,
the Visual network is the most irreversible for the DOC
groups. Although unexpected, recent studies have demon-
strated that the Visual network can be partitioned into
multiple areas due to diverse genetic programmes, with
some of these areas being implicated in higher associative
cognitive function [84,85]. Another interpretation could be
that certain connections with the subcortical areas remain
and the activation of the Visual network was related to
some unconscious emotional processing [86–88]. The joint
differential activation of the Visual, Somatomotor and the
DMN, following the decrease in the level of consciousness,
is certainly a key characteristic that has been discovered
through different methodologies in previous experiments
[60,89–92].

The origin of reversibility in neural time series remains to
be uncovered. Is the irreversible nature of the stimulus the
main creator of this signal asymmetry? There are different
non-exclusive theories that propose explanations for this
fact. Regarding macroscale brain time series, brain activity
is inherently asymmetric, independently of how sensory
stimuli are ordered in time. In fact, Lynn et al. [93,94] demon-
strated, using tools of statistical physics, that the interplay
between retinal neurons is the main contributor to non-equi-
librium, even when a reversible stimulus is shown. A
counterintuitive finding is that subjects watching a movie
presented more symmetrical brain dynamics than in resting
state [95]. An open question remains: how does the complex-
ity of the stimulus reflect on brain dynamics? A recent
inspiring study in music complexity could convey a possible
answer by applying the same reversibility measures to musi-
cal compositions as well as to the brain signals of subjects
hearing that music [96]. On the other hand, the asymmetry
in brain signals could arise in neuroimaging techniques
such as fMRI, given that non-reversible physiological pro-
cesses (i.e. the haemodynamic response) intervene between
neural responses and recorded signals [97]. From an ontogen-
etic perspective, the brain is developed within a temporally
asymmetric environment, therefore, even in unconscious
states, the emergence of intrinsic activity patterns could pre-
sent this asymmetry, suggesting a baseline property of
constant firing near functional patterns for brain signals
[98–100]. Other interpretations of brain temporal asymmetry
advocate for tasks related to facts such as memory consolida-
tion and learning activity [101] or constant prediction of
consequences and modelling of the environment [102–104].

The accepted theories of consciousness, including global
neuronal workspace theory (GNWT) and integrated infor-
mation theory (IIT), agree that dispersed brain activity and
coordinated interplay are necessary for healthy cognition
and consciousness [35,105,106]. GNWT views consciousness
as a virtual place accessible to all brain mechanisms, while
IIT focuses on the intrinsic properties of consciousness and
the physical substrate that explains it. Other theories advo-
cate for a shared dynamical view of consciousness, where
the body and interoception mechanisms play a crucial role
[107,108]. Recent attempts to combine GNWT and IIT
through the free energy principle and active inference frame-
work define consciousness as a dynamic core of integrated
information occurring thanks to highly connected networks
or hubs, allowing body-centric experience through phenom-
enal binding and executive control [109,110]. But, how does
the brain self-organize to generate the dynamic requirements
proposed in these theories? Our results suggest that asym-
metric non-stationary brain signals may be relevant to
conscious states, while impaired consciousness states may
result in more symmetrical dynamics closer to equilibrium.

The inference from the reversibility analyses can be
tempting, leading some authors to state that the reversibility
in brain time series can: translate the arrow of time of the
driving environment into brain dynamics [30], be the tangible
representation of the subjective experience of time [57], or be
the reflex of the inner time of a given subject [111]. Here, we
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simply state that reversibility analyses can be used as a good
proxy to quantify the difference between levels of conscious-
ness. Notwithstanding, any of the proposed theories can be
right or even an ensemble of them distributed in different
time and spatial scales. In any way, we are already convinced
that the proposed reversibility framework as well as entropy
production analyses are motivating the neuroscience field
and we augur new discoveries under this branch of statistical
physics.
/journal/rsfs
Interface

Focus
13:20220086
5. Future directions
A great advantage of this analysis is that we managed to find
differences among groups unveiling the differences between
levels of consciousness despite attending to the origin of
the disorder or concrete lesions. Although encouraging, this
study has some limitations that need to be acknowledged.
The reversibility results obtained in this study exhibit hetero-
geneity within patients of the same level of consciousness
category, making a direct interpretation of them intricate.
The reversibility values at the network level are influenced
by the location of brain damage, with many lesions involving
extensive white or grey matter areas. These lesions can be cor-
related with the associated DOC category, and thus, a more
neurologically informed analysis could provide valuable
insights at the individual level explaining differences
among chronic and acute patients. Additionally, blood
samples and psychological tests could be used as regressors
to assess the extent to which they account for variability in
our reversibility results. The relationship among measures
could also be used to unveil a mechanistic understanding
of the heterogeneity observed. Nevertheless, significant chal-
lenges still remain, as the number of subjects per condition is
not high, and further analysis warrants the inclusion of the
subcortical and cerebellar areas.

Future work should include simultaneous analysis of
temporal symmetry of endogenous and stimuli-evoked
brain activity to characterize the propagation of the stimulus
and unveil the mechanistic underlying DOC. A good
attempt, for example, could integrate the present framework
with a whole-brain model in a turbulent regime that helps us
understand how brain dynamics organize in light of the
second law of thermodynamics. For example, a good direc-
tion could integrate the present framework with a whole-
brain model in a turbulent regime to understand how brain
dynamics organize in light of the second law of thermodyn-
amics. Furthermore, as shown in a recent publication, DOC
presents a diminished diversity of spatial harmonic patterns
compared to healthy controls, thus another approach of
studying levels of consciousness could be to understand
whether this decrease in spatial diversity is reflected in tem-
poral terms as well and in agreement with our current work
[112]. Ultimately, if we were able to detect common features,
based on the proposed method, in patients from DOC, we
could build a support vector machine classifier and further
improve it including metainformation of neuroimaging
from patients that progress to a favourable state. As a
result, we could use all this information about reversibility
and combine it with other physiological measurements to
generate a battery of biomarkers as a diagnostic and prognos-
tic tool, helping doctors in clinical practice and improving the
life of the patients suffering from DOC.
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