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1. Introduction

Bases and basic sequences have played a decisive role in the development of modern 
Banach space theory. In particular, the possibility to extract a subsequence with some 
added features (such as being unconditional, symmetric, or weakly null) from a given 
kind of sequence in a Banach space has been, and continues to be, a technique of major 
usage throughout. The subsequence extraction principles were in vogue in Banach space 
theory in the 1970’s and culminated in the attainment of Rosenthal’s �1-theorem [13], 
which states that a Banach space X either contains �1 or has the property that every 
bounded sequence in X has a weakly Cauchy subsequence. In this ambience, the following 
problem arose: given a weakly null, normalized sequence in a Banach space, can we pass to 
a subsequence that is a basic sequence and is in some sense close to being unconditional? 
There are various ways in which one can make this vague question precise, and in many 
situations it has a positive answer.

The first mover in this direction was Elton, who in his Ph.D. thesis [11] proved that 
for a ∈ (0, 1] there exists a constant C = C(a) < ∞ such that every normalized weakly 
null sequence in a (real) Banach space admits a subsequence (xn)∞n=1 with the following 
property: if αn ∈ [−1, 1] for all n ∈ N and A ⊂ {n ∈ N : |αn| ≥ a} then

∥∥∥∥∥∑
n∈A

αn xn

∥∥∥∥∥ ≤ C

∥∥∥∥∥
∞∑

n=1
αn xn

∥∥∥∥∥ .
To put this property in the context of our paper, we introduce some initial terminology. 
We will deal with a complete minimal system X = (xn)∞n=1 in a Banach (or more 
generally a quasi-Banach) space X such that both X and its biorthogonal system X ∗ =
(x∗

n)∞n=1 are norm-bounded. This means that the linear span 〈X 〉 of X is dense in X, 
that x∗

n(xk) = δn,k for all positive integers n and k, and

sup
n

max{‖xn‖ , ‖x∗
n‖} < ∞.

For convenience, we call such a system X a basis. With this convention, semi-normalized 
Schauder bases are a specific class of bases. However, here a priori we do not even assume 
that bases (in our sense) are total; in other words 〈X ∗〉 needs not be w∗-dense in X∗.

We consider the set Q of vectors in X whose coefficients (relative to X ) belong to the 
unit ball of �∞, i.e.,

Q = Q[X ,X] = {f ∈ X : ∀n ∈ N |x∗
n(f)| ≤ 1}.

Now, given a number a > 0 and f ∈ X, put

A(f, a) := {n ∈ N : |x∗
n(f)| ≥ a}.
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Note that A(f, a) is finite. In this language, the basis X is nearly unconditional if for 
each a ∈ (0, 1] there is a constant C = C(a) such that for all f ∈ Q, and all A ⊂ A(f, a),

‖SA(f)‖ ≤ C‖f‖, (1.1)

where SA : X → X is the linear projection onto 〈xn : n ∈ A〉 given by

SA(f) =
∑
n∈A

x∗
n (f)xn, f ∈ X.

For a ∈ (0, 1] we define φ(a) as the smallest value of the constant C > 0 for which (1.1)
holds. If inequality (1.1) holds only for A = A(f, a), the basis is said to be thresholding 
bounded, in which case we denote by θ(a) the least constant C.

Notice that near unconditionality is a threshold unconditionality property and that 
X is unconditional if and only if φ is bounded. Hence, in a certain sense, the threshold 
function φ gives a measure of the conditionality of the basis. In turn, the boundedness of 
the function θ characterizes quasi-greedy bases, a well-known concept by now in greedy 
approximation theory that was introduced by Konyagin and Temlyakov in 1999 [12]. 
Recall that, while a basis is unconditional if and only if there is a constant C such that 
(1.1) holds for all f ∈ X and all A ⊂ N, a basis is quasi-greedy if there is a constant C
such that (1.1) holds for all f ∈ X and all A ∈ G(f), where

G(f) = {A ⊂ N : |x∗
n(f)| ≥ |x∗

k(f)| for all (n, k) ∈ A× (N \A)},

is the set of greedy sets of f .
The notion of near unconditionality was first linked to the thresholding greedy algo-

rithm by Dilworth et al. in [9]. In that article, the authors showed that a semi-normalized 
Schauder basis of a Banach space is nearly unconditional if and only if it is thresholding 
bounded. We point out that the proof of that result still works for bases (in the sense 
defined above) of quasi-Banach spaces; see [4, Theorem 3.4] for an even stronger result. 
This equivalence is perhaps a surprising result: in a natural sense, thresholding bounded 
bases seem to be as close to being quasi-greedy as near unconditional bases are to be-
ing unconditional; however, quasi-greedy bases need not be unconditional and the first 
examples that illustrate this were already built in [12].

Further links between near unconditionality and the thresholding greedy algorithm 
were discovered in [4,8]. On the one hand, the authors of [8] found a deep connection be-
tween near unconditionality and a long standing open problem in greedy approximation 
(see [8, Problem 5 and Proposition 13] for details). On the other hand, the authors of 
[4] obtained a characterization of near unconditionality in terms of the uniform bound-
edness of some nonlinear operators related with quasi-greedy bases. To be able to state 
this characterization we need some more notation.

We use E for the set of scalars of modulus one. For f in X, we will denote by ε(f) ∈ EN

the sequence
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ε(f) = (sign (x∗
n (f)))∞n=1 .

Given A ⊂ N finite and ε ∈ EA we put

1ε,A =
∑
n∈A

εn xn.

It is known (see [5, Lemma 4.12]) that if (xn)∞n=1 is a quasi-greedy basis of a quasi-Banach 
space X then there is a constant K such that

min
n∈A

|x∗
n(f)|

∥∥1ε(f),A
∥∥ ≤ K ‖f‖ , f ∈ X, A ∈ G(f). (1.2)

The importance of the estimate (1.2) in the study of greedy-like bases was already 
implicit in the work of Dilworth et al. (see [10, Lemma 2.2]), but it was not until recently 
(see [4]) that these bases were singled out and given the name of truncation quasi-greedy. 
This brand new greedy-like property also has its own thresholding counterpart which 
turns out to be equivalent to near unconditionality.

A basis X = (xn)∞n=1 is said to be nearly truncation quasi-greedy (see [4, Definition 
3.1]) if for every 0 < a ≤ 1 there is K = K(a) > 0 such that

min
n∈A(f,a)

|x∗
n(f)|

∥∥1ε(f),A(f,a)
∥∥ ≤ K ‖f‖ , f ∈ Q. (1.3)

Given a ∈ (0, 1], we will denote by λ(a) the smallest value of K for which (1.3) holds. 
The function λ is bounded if and only if X is truncation quasi-greedy Moreover, if we 
denote by Λ the optimal constant K such that (1.2) holds, then

Λ = sup
0<a≤1

λ(a).

Despite the fact that nearly truncation quasi-greedy bases are thresholding bounded, in 
the literature we find examples of truncation quasi-greedy bases that are not quasi-greedy 
(see, e.g., [9, Example 4.8] and [7, Proposition 5.6]).

This note is motivated by the attempt to find a characterization of nearly uncondi-
tional bases which, unlike the two already existing ones, does not depend on a threshold 
function. We accomplish that by showing that nearly unconditional bases admit a sim-
ple characterization in terms of yet another property that arises from the study of the 
thresholding greedy algorithm, namely, quasi-greediness for largest coefficients.

We recall that a basis is quasi-greedy for largest coefficients (QGLC for short) if there 
is a constant L such that

‖1ε,A‖ ≤ L ‖1ε,A + f‖ (1.4)

for all finite sets A ⊂ N, all ε ∈ EA, and all f ∈ Q such that supp(f) ∩ A = ∅ (see 
[5, Definition 4.6]). If the above holds for a given L ∈ [1, ∞), we say that the basis is 
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L-QGLC, and the optimal constant L will be denoted by Γ. Clearly, Γ ≤ Λ. Hence, 
truncation quasi-greedy bases are QGLC.

In Section 2, we tackle the aforementioned characterization of nearly unconditional 
bases. We also study the growth in terms of Γ of the threshold functions associated with 
unconditionality, quasi-greediness, and truncation quasi-greediness. For that, it will be 
convenient to consider the following variation of the truncation quasi-greedy threshold 
function λ.

Given a basis X of a quasi-Banach space X and 0 < a ≤ 1, we denote by ρ(a) the 
smallest constant K such that

a
∥∥1ε(f),A(f,a)

∥∥ ≤ K ‖f‖ , f ∈ Q.

Notice that ρ(a) ≤ λ(a) for all a ∈ (0, 1]. Moreover, since

A(f, a) = A

(
f, min

n∈A(f,a)
|x∗

n(f)|
)
, f ∈ Q, 0 < a ≤ 1,

we have

sup
0<a≤1

ρ(a) = sup
0<a≤1

λ(a).

Hence, a basis is truncation quasi-greedy if and only if the function ρ : (0, 1] → [1, ∞] is 
bounded.

In Section 3 we prove further results on nearly unconditional bases and study the 
growth as a goes to zero of the numbers φ(a), θ(a), λ(a) and ρ(a). The investigation 
carried out in Section 4 lies within the topic of studying greedy-like bases from an 
isometric point of view. We apply some of the quantitative aspects developed in the 
preceding sections to characterize 1-QGLC bases in three different ways. We close with 
some questions that arise naturally from our work and that we gather in Section 5.

Throughout this paper we will use standard quasi-Banach space and greedy approx-
imation terminology as can be found in [5]. For the reader’s ease, let us simply point 
out that, by the Aoki-Rolewicz theorem, any quasi-Banach space is locally p-convex for 
some 0 < p ≤ 1, hence it is a p-Banach space under a renorming. Consequently, any 
quasi-Banach space X can be equipped with an equivalent quasi-norm ‖ · ‖ : X → [0, ∞)
which is a continuous map. All quasi-Banach spaces below are assumed to be endowed 
with such a quasi-norm.

2. Characterization of nearly unconditional bases

Throughout this paper, we will adopt the convention that the threshold numbers 
φ(a), θ(a), λ(a) and ρ(a), 0 < a ≤ 1, associated with the notions of unconditionality, 
quasi-greediness and truncation quasi-greediness, as well as the number Γ linked with 



6 F. Albiac et al. / Journal of Functional Analysis 285 (2023) 110060
quasi-greediness for largest coefficients, are defined for general bases, so they may take 
a priori the value infinity.

It is clear that θ ≤ φ and that the function φ is non-increasing. It is known that the 
threshold functions θ and λ are non-increasing as well (see [9, Proposition 4.1]) and [4, 
Lemma 3.2], respectively) and so is ρ. Indeed, given 0 < b ≤ a ≤ 1 and f ∈ Q, the 
function g := a−1bf belongs to Q, and so

a
∥∥1ε(f),A(f,a)

∥∥ = a

b
b
∥∥1ε(g),A(g,b)

∥∥ ≤ a

b
ρ(b) ‖g‖ = ρ(b) ‖f‖ .

We start our study with a lemma that relates the threshold functions at level 1.

Lemma 2.1. Let X be a basis of a quasi-Banach space. Then,

φ(1) = θ(1) = λ(1) = ρ(1) = Γ.

Proof. From the definitions it follows immediately that ρ(1) = λ(1) = θ(1), and φ(1) =
Γ. To prove that φ(1) ≤ θ(1), we use a perturbation technique. Let f ∈ Q and A ⊂
A(f, 1). For each ε > 0 there is fε ∈ Q with SA(f) = SA(fε), A = A(fε, 1) and ‖f − fε‖ <

ε. Since

‖SA(f)‖ = ‖SA(fε)‖ ≤ θ(1) ‖fε‖ ,

letting ε tend to zero we obtain the desired inequality. �
The submultiplicative behaviour of the threshold functions φ, θ and ρ, which is made 

explicit in Lemma 2.2 below, will be essential in this paper.

Lemma 2.2. Let X be a nearly unconditional basis of a p-Banach space X, 0 < p ≤ 1. 
For any 0 < a ≤ b ≤ 1 we have

φ(ab) ≤ ((1 − b)pφ p(b) + φ p(a) (1 + (1 − b)pθ p(b)))1/p (2.1)

θ(ab) ≤ ((1 − b)pθ p(b) + θ p(a) (1 + (1 − b)pθ p(b)))1/p , and (2.2)

ρ (ab) ≤ ρ(a) (1 + ((1 − b)θ(b))p)1/p . (2.3)

Proof. Given f ∈ Q we set

g := 1
b

(
f − (1 − b)SA(f,b)(f)

)
= 1

b

(
f − SA(f,b)(f

)
+ SA(f,b)(f).

Then,

bp ‖g‖p ≤ ‖f‖p + (1 − b)p
∥∥SA(f,b)(f)

∥∥p ≤ (1 + (1 − b)pθ p(b)) ‖f‖p . (2.4)
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Given A ⊂ A(f, ab), we set B := A ∩A(f, b). Since bSA(g) = SA(f)−(1 − b)SB(f),

‖SA(f)‖p ≤ bp ‖SA(g)‖p + (1 − b)p ‖SB(f)‖p . (2.5)

In turn, since g ∈ Q, A ⊂ A(g, a), and B ⊂ A(f, b),

‖SA(g)‖ ≤ φ(a) ‖g‖ and ‖SB(f)‖ ≤ φ(b) ‖f‖ . (2.6)

Moreover, in the particular case that A = A(f, ab), we have A = A(g, a) and B = A(f, b), 
and so

‖SA(g)‖ ≤ θ(a) ‖g‖ and ‖SB(f)‖ ≤ θ(b) ‖f‖ . (2.7)

Finally, since ε(g) = ε(f),

ab
∥∥1ε(f),A(f,ab)

∥∥ ≤ bρ(a) ‖g‖ . (2.8)

Combining (2.4), (2.5) and (2.6) (resp., (2.7)) gives (2.1) (resp., (2.2)). In turn, com-
bining (2.4) with (2.8) gives (2.3). �

We will use the following elementary lemma a couple of times.

Lemma 2.3. Suppose f : (0, 1] → [0, ∞) is a non-increasing function such that for some 
0 < a < 1, C ∈ [0, ∞) and D ∈ (1, ∞),

f(an) ≤ C + Df(an−1), n ∈ N.

Then

f(t) + C

D − 1 ≤ D

(
f(1) + C

D − 1

)
tloga D, 0 < t ≤ 1.

Proof. Replacing f with f + C/(D − 1), we can assume that C = 0. By induction, 
f(an) ≤ f(1)Dn for all n ∈ N ∪ {0}. Given 0 < t ≤ 1, pick n ∈ N ∪ {0} such that 
an < t ≤ an−1. We have

f(t) ≤ f(an) ≤ f(1)Dn = f(1)D
(
an−1)loga D ≤ Df(1)tloga D. �

Given 0 < a < 1, we say that a basis X of a quasi-Banach space X is nearly uncondi-
tional at level a if φ(a) < ∞, where, as usual, φ denotes the unconditionality threshold 
function of the basis. For locally convex spaces, i.e., Banach spaces, combining [9, Propo-
sitions 4.1 and 4.5] yields that a basis is nearly unconditional at level a for some 0 < a < 1
if and only if it is nearly unconditional. It must be conceded that the proof given by the 
authors of [9] can be adapted to the more general setting of quasi-Banach spaces. Still, 
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for the sake of completeness and clarity, we write down a proof of this result that takes 
into account the specific traits of nonlocally convex spaces.

Lemma 2.4. Let X be a basis of a p-Banach space X, 0 < p ≤ 1. Suppose that X is 
nearly unconditional at some level c ∈ (0, 1). Then X is nearly unconditional. More-
over, there are C ∈ [1, ∞) and d ∈ (0, ∞) only depending on φ(c) and p such that the 
unconditionality threshold function φ satisfies

φ(a) ≤ Ca−d, 0 < a ≤ 1.

In fact, the inequality holds with

C = (1 + (1 − c)pφ p(c))1/p(1 + φ p(c))1/p and

d = −1
p

logc (1 + (1 − c)pφ p(c)) .

Proof. An application of (2.1) with a = cn−1 and b = c yields

φ p(cn) ≤ C0 + Dφ p(cn−1), n ≥ 2,

where

C0 = (1 − c)pφ p(c), D = 1 + (1 − c)pφ p(c) = 1 + C0.

Since φ is non-increasing and D ≥ 1, the function ψ := max{φ, φ(c)} satisfies the above 
inequality also for n = 1. Note that logc(D) = −pd and Dp(1 + φ p(c)) = Cp. By 
Lemma 2.3, for all a ∈ (0, c] we have

φ(a) = ψ(a) ≤
(

C0

D − 1 + ψ p(a)
)1/p

≤
(
Cpa−dp

)1/p = Ca−d.

Since C ≥ φ(c) and d ≥ 0, this inequality still holds for a ∈ [c, 1]. �
We are now in a position to establish the equivalence between quasi-greediness for 

largest coefficients and near unconditionality. Prior to that, we bring up a result from [5]
that was necessary to show that quasi-greedy bases in quasi-Banach spaces are truncation 
quasi-greedy. Recall that a basis is C-suppression unconditional for constant coefficients
(C-SUCC for short) if

‖1ε,B‖ ≤ C ‖1ε,A‖

for all finite sets B ⊂ A ⊂ N and all ε ∈ EA. Note that if X is C-QGLC, it is also 
C-SUCC (cf. [5, Lemma 4.7]).
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Lemma 2.5. [5, Corollary 2.3 and Lemmas 3.2, 3.6 and 4.7] Let X be a basis of a p-
Banach space X, 0 < p ≤ 1. If X is C-SUCC, there are positive constants C1 ≥ 1 and 
s > 1 depending only on C and p such that∥∥∥∥∥∑

n∈A

anxn

∥∥∥∥∥ ≤ C1

∥∥∥∥∥∑
n∈A

bnxn

∥∥∥∥∥
for every finite set A ⊂ N and scalars (an)n∈A, (bn)n∈A with the property that |an| ≤
1 ≤ |bn| ≤ s for all n ∈ A. In particular, if ε ∈ EA,∥∥∥∥∥∑

n∈A

an xn

∥∥∥∥∥ ≤ C1 ‖1ε,A‖ .

Theorem 2.6. Let X be a basis of a p-Banach space X, 0 < p ≤ 1. If X is QGLC then X
is nearly unconditional and the unconditionality threshold function φ satisfies

φ(a) ≤ Ca−d, 0 < a ≤ 1,

for some constants C ∈ [1, ∞) and d ∈ (0, ∞) only depending on Γ and p. Conversely, if 
X is nearly unconditional, then there is L depending only on φ such that X is L-QGLC.

Proof. Nearly unconditional bases are quasi-greedy for largest coefficients by Lemma 2.1. 
To prove the converse, we consider the constants C1 ∈ [1, ∞) and s ∈ (1, ∞) provided 
by Lemma 2.5. Choose a ∈ (0, 1) close enough to 1 so that

1
a
< s and C2p

1 Γp (1 − a)p

ap
≤ 1

2 .

Given f ∈ Q and A ⊂ A(f, a), we have

‖SA(f)‖p ≤ Cp
1
∥∥1ε(f),A

∥∥p ≤ Cp
1Γp

∥∥1ε(f),A + f − SA(f)
∥∥p

≤ Cp
1Γp ‖f‖p + Cp

1Γp

∥∥∥∥∥∑
n∈A

(1 − |x∗
n(f)|) sign(x∗

n(f))xn

∥∥∥∥∥
p

≤ Cp
1Γp ‖f‖p + C2p

1 Γp

∥∥∥∥∥∑
n∈A

a−1(1 − a)x∗
n(f)xn

∥∥∥∥∥
p

= Cp
1Γp ‖f‖p + C2p

1 Γp (1 − a)p

ap
‖SA(f)‖p .

Thus,

‖SA(f)‖ ≤ 21/pC1Γ ‖f‖ .
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It follows that X is nearly unconditional at level a, with φ(a) ≤ 21/pC1Γ. By Lemma 2.4, 
we are done. �
Remark 2.7. In light of Theorem 2.6, we can give a more precise formulation of [4, 
Theorem 3.4] involving the function ρ. Since the proof of [4, Lemma 3.3] works replacing 
λ with ρ, if X is a QGLC basis of a p-Banach space, 0 < p ≤ 1, then there are constants 
C1 and C2 depending only on Γ and p such that

ρ(a) ≤ λ(a) ≤ C1θ(a) and θ(a) ≤ φ(a) ≤ C2
ρ(a)
a

, 0 < a ≤ 1.

It is also worth mentioning that

λ(a) ≤ C3φ(a), 0 < a ≤ 1,

where the constant C3 only depends on p. Indeed, given 0 < a ≤ 1 and f ∈ Q, by [5, 
Corollary 2.3], ∥∥∥∥∥∥

∑
n∈A(f,a)

an x
∗
n(f)xn

∥∥∥∥∥∥ ≤ Apφ(a) ‖f‖

whenever 0 ≤ an ≤ 1, where Ap is the geometric constant defined by

Ap = (2p − 1)−1/p. (2.9)

Choosing an = b/ |x∗
n(f)|, where

b = min
n∈A(f,a)

|x∗
n(f))| ,

we obtain the desired inequality with C3 = Ap.

If the space is locally convex we can give precise estimates in terms of Γ for the 
constants C and d in Theorem 2.6. Our approach to these estimates relies on proving 
that the function φ is “smooth enough”.

Given a real interval I and 0 < p ≤ 1, a function ψ : I ⊂ R → F is said to be 
p-Lipschitz if

Lipp(ψ) = Lipp(ψ, I) := sup
s,t∈I
s �=t

|ψ(t) − ψ(s)|
|t− s|p < ∞.

Proposition 2.8. Let X be a nearly unconditional basis of a p-Banach space X, 0 < p ≤ 1. 
Then φ, θ and ρ are continuous on [c, 1] and p-Lipschitz on [c, d] for all 0 < c < d < 1. 
Moreover, if n = �logd c� − 1,
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Lipp(φ, [c, d]) ≤
n1−p

pcp
(
φ 1−p(c)φ p(d) + φ(c)θ p(d)

)
,

Lipp(θ, [c, d]) ≤
n1−p

pcp
(
θ p(d)(θ 1−p(c) + θ(c))

)
, and

Lipp(ρ, [c, d]) ≤
n1−p

pcp
ρ(c)θ p(d).

Proof. Depending on whether we consider as threshold function ψ = φ, ψ = θ, or ψ = ρ, 
we put

β(c, d) = φ p(d) + φ p(c)θ p(d),

β(c, d) = θ p(d)(1 + θ p(c)), or

β(c, d) = ρ p(c)θ p(d), 0 < c, d ≤ 1.

If 0 < s ≤ t ≤ d are such that d ≤ s/t, by Lemma 2.2,

ψ p(s) − ψ p(t)
(t− s)p ≤ β(t, d)

tp
.

Given c ≤ s ≤ t ≤ d, there are numbers (tj)nj=0 with t0 = s, tn = t, and dtj ≤ tj−1 ≤ tj
for all j = 1, . . . , n. Then, since β(·, d) is non-increasing,

ψ p(s) − ψ p(t) =
n∑

j=1
ψ p(tj−1) − ψ p(tj) ≤

β(c, d)
cp

n∑
j=1

(tj − tj−1)p.

Combining these inequalities with the elementary estimate

x− y

xp − yp
≤ x1−p

p
, 0 < y < x,

and Hölder’s inequality gives

Lipp[ψ, [c, d]) ≤
n1−pψ 1−p(c)β(c, d)

pcp
,

as desired.
It remains to prove that ψ is left-continuous at 1. To that end, let C1 be the constant 

of Lemma 2.5. Let 0 < a < 1 and fix f ∈ Q and A ⊂ A(f, a). Note that g := f −SA(f) +
1ε(f),A ∈ Q. Since A ⊂ A(g, 1),

‖SA(f)‖p ≤ ‖SA(g)‖p +
∥∥SA(f) − 1ε(f),A

∥∥p ≤ φ p(1) ‖g‖p +
∥∥SA(f) − 1ε(f),A

∥∥p .
In the particular case that A = A(f, a) we have A = A(g, 1), so that
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∥∥SA(f,a)(f)
∥∥p ≤ θ p(1) ‖g‖p +

∥∥SA(f) − 1ε(f),A
∥∥p

and, since ε(f) = ε(g),

a
∥∥1ε(f),A(f,a)

∥∥ ≤ ρ p(1) ‖g‖p .

By the p-triangle law, ‖g‖p ≤ ‖f‖p +
∥∥SA(f) − 1ε(f),A

∥∥p. In turn,

∥∥SA(f) − 1ε(f),A
∥∥ ≤ C1(1 − a)

∥∥1ε(f),A(f,a)
∥∥ ≤ C1(1 − a)ρ(a) ‖f‖ .

Summing up, each of the three possible threshold functions satisfies

ψ p(a) ≤ ψ p(1) + KψC
p
1 (1 − a)pρ p(a),

where Kφ = 1 + φ p(1), Kθ = 1 + θ p(1) and Kρ = ρ p(1). Since ψ is nonincreasing and 
lima→1−(1 − a)ρ(a) = 0, we are done. �

We observe that the smaller p is, the coarser the estimates for the Lipschitz constants 
obtained in Proposition 2.8 are. This obstruction compels us to establish the following 
consequence in the setting of locally convex spaces.

Corollary 2.9. Let X be a nearly unconditional basis of a Banach space X. Then φ, θ, and 
ρ are Lipschitz on [c, 1] for each 0 < c < 1, with respective Lipschitz constants bounded 
as follows:

Lip(φ, [c, 1]) ≤ Γ(1 + φ(c))
c

,

Lip(θ, [c, 1]) ≤ Γ(1 + θ(c))
c

,

Lip(ρ, [c, 1]) ≤ Γρ(c)
c

.

Proof. Let ψ be one the functions φ, θ or ρ, and set

Lφ = 1 + φ(c)
c

, Lθ = 1 + θ(c)
c

, Lρ = ρ(c)
c

.

Let 0 < c < d < 1 and ε > 0. The continuity of φ at 1 combined with Lemma 2.1 gives 
d < δ < 1 such that θ(δ) ≤ φ(δ) ≤ Γ + ε. By Proposition 2.8,

Lip(ψ, [c, d]) ≤ Lip(ψ, [c, δ]) ≤ (Γ + ε)Lψ.

Since ε > 0 and d < 1 are arbitrary, and ψ is continuous at 1, Lip(ψ, [c, 1]) ≤ ΓLψ. �
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Theorem 2.10. Let X be a basis of a Banach space X. If X is quasi-greedy for largest 
coefficients then the functions

a �→ (φ(a) + 1)aΓ, a �→ (θ(a) + 1)aΓ, a �→ ρ(a)aΓ,

are non-decreasing on (0, 1]. Thus, in particular,

φ(a) ≤ Γ + 1
aΓ − 1, ρ(a) ≤ Γ

aΓ , 0 < a ≤ 1.

Proof. Set bφ = bθ = 1, and bρ = 0, and let ψ be one of the functions bφ + φ, bθ + θ

or bρ + ρ. Since Lipschitz functions are absolutely continuous, from Corollary 2.9 we 
infer that ψ is locally absolutely continuous, i.e., absolutely continuous on each closed 
subinterval of (0, 1], and

−ψ′(a) = |ψ′(a)| ≤ Γψ(a)
a

, a.e. a ∈ (0, 1].

Hence, the function τ : (0, 1] → R given by

τ(a) = log(ψ(a)) + Γ log(a)

is locally absolutely continuous, and τ ′ ≥ 0 almost everywhere. Hence, τ is non-
decreasing. Therefore, eτ is non-decreasing, as desired. In particular, by Lemma 2.1,

ψ(a)aΓ ≤ ψ(1) = bψ + Γ. �
We put an end to this section with a characterization of quasi-greediness for largest 

coefficients in terms of a formally weaker property, which might simplify the computa-
tions required to determine that a basis is nearly unconditional. To prove it, it will be 
convenient to use a geometric constant introduced in [5]. Given 0 < p ≤ 1 we set

Bp =
{

21/pAp if F = R,

41/pAp if F = C,

where Ap is the constant defined in (2.9).

Proposition 2.11. Let X = (xn)∞n=1 be a basis of a quasi-Banach space X. Suppose that 
there are K > 0 and ε̃ = (ε̃n)∞n=1 ∈ EN such that

‖1ε̃,A‖ ≤ K ‖1ε̃,A + f‖

for all finite sets A ⊂ N and all f ∈ Q with supp(f) ∩A = ∅. Then X is QGLC.
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Proof. Although the proof can be simplified in the case when F = R, we will write down 
a unified proof that works for both real and complex spaces. Assume without loss of 
generality that X is a p-Banach space, 0 < p ≤ 1. Replacing xn with ε̃n xn for each 
n ∈ N, we may assume that ε̃n = 1 for all n ∈ N. Let then denote

1A = 1ε̃,A, A ⊂ N, |A| < ∞.

We have ‖1B‖ ≤ K ‖1A‖ whenever B ⊂ A. By p-convexity (see [5, Corollary 2.4]),∥∥∥∥∥∑
n∈A

an xn

∥∥∥∥∥ ≤ BpK ‖1A‖ , A ⊂ N, |A| < ∞, |an| ≤ 1. (2.10)

Set

δ =
(
1 − 2−p

)1/p
B−1

p K−2 = 2A−1
p B−1

p K−2.

Fix A ⊂ N finite, f ∈ Q with supp(f) ∩A = ∅, ω ∈ E, and ε = (εn)n∈A with |εn − ω| ≤ δ

for all n ∈ A. We have

‖1A‖p ≤ Kp
∥∥1A + ω−1f

∥∥p
= Kp ‖ω1A + f‖p

≤ Kp ‖ω1A − 1ε,A‖p + Kp ‖1ε,A + f‖p

≤ Bp
pK

2pδp ‖1A‖p + Kp ‖1ε,A + f‖p

=
(
1 − 2−p

)
‖1A‖p + Kp ‖1ε,A + f‖p

Summing up,

‖1A‖ ≤ 2K ‖1ε,A + f‖ .

To obtain a similar estimate without assuming that the scalars in ε are close enough 
to a suitable scalar ω ∈ E, we pick a finite partition (Ek)Nk=1 of E for which there is 
(ωk)Nk=1 ∈ EN such that

sup
ω∈Ek

|ω − ωk| ≤ δ, k = 1, . . . , N.

Fix B ⊂ A ⊂ N with A finite, ε = (εn)n∈A ∈ EA, and f ∈ Q with supp(f) ∩A = ∅. Set

Bk = {n ∈ B : εn ∈ Ek}, and fk = 1ε,A\Bk
+ f, k = 1, . . . , N.

Since fk ∈ Q and supp(fk) ∩Bk = ∅ for all k = 1, . . . , N ,
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‖1B‖p ≤
N∑

k=1

‖1Bk
‖p ≤ (2K)p

N∑
k=1

‖1ε,Bk
+ fk‖p = N(2K)p ‖1ε,A + f‖p .

Set L = 2BpN
1/pK. Applying again [5, Corollary 2.4] we obtain∥∥∥∥∥∑

n∈A

an xn

∥∥∥∥∥ ≤ L ‖1ε,A + f‖ , A ⊂ N, |A| < ∞, ε ∈ EA, |an| ≤ 1.

That is, X is L-QGLC. �
Remark 2.12. The proof of Proposition 2.11 works verbatim using

{
1ε,B : B ⊂ N, |B| < ∞, ε ∈ EB

}
instead of Q. This way, we obtain a new characterization of suppression unconditionality 
for constant coefficients. Namely, a basis X of a quasi-Banach space X is SUCC if and 
only if there are ε̃ ∈ EN and K > 0 such that

‖1ε̃,A‖ ≤ K ‖1ε̃,A + 1ε,B‖

for all A, B ⊂ N finite with A ∩B = ∅, and all ε ∈ EB .

3. On the growth of the threshold functions

We get started by recalling a result that shows that the unconditionality threshold 
function of a truncation quasi-greedy basis satisfies a better estimate than the one pro-
vided by Theorem 2.6.

Theorem 3.1 ([3, Theorem 6.5]). Let X be a truncation quasi-greedy basis of a p-Banach 
space X, 0 < p ≤ 1. Then there is a constant C such that

φ(a) ≤ C(1 − log a)1/p, 0 < a ≤ 1.

Proposition 3.3 below improves Theorem 3.1. In order to prove it we need an auxiliary 
lemma that allows us to estimate φ in terms of ρ.

Lemma 3.2. Let X be a basis of a p-Banach space X, 0 < p ≤ 1. Suppose X is C-SUCC, 
1 ≤ C < ∞. Then there is a constant C1 depending only on C and p such that, for all 
n ∈ N and all 0 < a ≤ 1,

φ(an) ≤ C1

a

(
n∑

ρ p(ak)
)1/p

.

k=1
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Proof. If a = 1 the result follows from Lemma 2.1. To show the result in the case 
when 0 < a < 1 we consider the constant C1 provided by Lemma 2.5. Pick f ∈ Q and 
A ⊂ A(f, an). Consider the partition (Ak)nk=1 of A given by A1 := A ∩A(f, a) and

Ak := A ∩
(
A(f, ak) \A(f, ak−1)

)
, k = 2, . . . , n.

By p-convexity, ‖SA(f)‖p ≤
∑n

k=1 ‖SAk
(f)‖p. Then,

‖SAk
(f)‖ =

∥∥SAk

(
a1−kf

)∥∥
a1−k

≤ C1

a1−k

∥∥1ε(f),A(f,ak)
∥∥ ≤ C1

a
ρ(ak)‖f‖. �

Proposition 3.3. Let X be a basis of a p-Banach space X, 0 < p ≤ 1. Suppose X is nearly 
unconditional. Then, there is a constant C ∈ [1,∞) such that, for all 0 < a ≤ 1 and all 
0 < b < 1,

φ(a) ≤ Cθ(b)
b

(
1 + log(a)

log(b)

)1/p

ρ(a).

Thus there is C0 ∈ [1,∞) such that, for all 0 < a ≤ 1,

φ(a) ≤ C0(1 − log(a))1/pρ(a). (3.1)

Proof. For a ≥ b, this follows readily from Lemma 3.2, so we need only consider the case 
a < b. Choose n ∈ N, n ≥ 2, so that bn ≤ a < bn−1, that is

n− 1 < logb(a) = log(a)
log(b) ≤ n.

Taking into account that

1 + (1 − b)pθ p(b) ≤ 2θ p(b),

a combination of Lemma 3.2 with inequality (2.3) yields

φ(a) ≤ φ(bn) ≤ C1

b
n1/pρ (bn) ≤ 21/pC1θ(b)

b
n1/pρ

(
bn−1)

≤ 21/pC1θ(b)
b

n1/pρ(a) ≤ 21/pC1θ(b)
b

(1 + logb a)
1/p

ρ(a).

Since for a fixed 0 < b < 1 we have 1 + logb a ≈ 1 − log a, the proof is over. �
In light of Theorem 2.6, Theorem 2.10, and Theorem 3.1, we wonder how a function 

f must be so that there is a nearly unconditional basis with φ ≈ f . Specifically, it seems 
to be unknown whether there is a nearly unconditional basis whose unconditionality 
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threshold function does not have a logarithmic growth. For the time being, we try to 
shed light onto this question by proving that, oddly enough, the optimality of inequality 
(3.1) ensures that the unconditionality threshold function φ grows slowly.

Proposition 3.4. Let X be a nearly unconditional basis of a p-Banach space X, 0 < p ≤ 1.

(i) If

lim inf
a→0+

φ(a)
(− log(a))1/p ρ(a)

> 0,

there are D, d > 0 such that

φ(a) ≤ D(1 − log(a))d, 0 < a ≤ 1.

(ii) If

� := lim sup
a→0+

φ(a)
(− log(a))1/p ρ(a)

> 0,

then for every d > 0 there is Cd > 0 such that

φ(a) ≤ Cda
−d, 0 < a ≤ 1.

Proof. The proof of both (i) and (ii) is based on the following claim.

Claim. Let C1 be as in Lemma 3.2. Suppose that 0 < a < 1, C2 ∈ (0, ∞), M > 1 and an 
integer n ≥ 2M − 1 are such that

− 2Cp
1C

p
2

ap log(a)M ≤ 1 − 2−p and (− log(an))1/p ρ(an) ≤ C2φ(an).

Then, if α = 1 − 1/M ,

φ(an) ≤ 2α1/pC1

a
(n− 1)1/pρ(aα(n−1)).

To prove the claim we put kn = �α(n− 1)�. We have

φ p(an) ≤ Cp
1

ap

(
kn∑
k=1

ρ p(ak) +
n∑

k=kn+1

ρ p(ak)
)

≤ Cp
1 (

knρ
p(akn) + (n− kn) ρ p(an)

)

ap
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≤ Cp
1

ap

(
knρ

p(akn) +
(
1 + α + n

M

)
ρ p(an)

)
≤ Cp

1
ap

(
knρ

p(akn) + 2n
M

ρ p(an)
)

≤ Cp
1

ap

(
knρ

p(akn) − 2Cp
2n

M log(an)φ
p(an)

)
≤ Cp

1
ap

knρ
p(akn) + (1 − 2−p)φ p(an).

Hence,

φ(an) ≤ 2C1

a
k1/p
n ρ

(
akn

)
≤ 2α1/pC1

a
(n− 1)1/pρ(aα(n−1)),

as desired.
Let us now show (i). Note that since φ/ρ is bounded away from zero on each interval 

[c, 1] with c > 0, there is 0 < C2 < ∞ such that

(− log(a))1/p ρ(a) ≤ C2φ(a) 0 < a ≤ 1.

Hence, we can apply the claim with such a constant C2 and any 0 < a < 1. To apply it 
with a = e−1, we pick M > 1 with

M ≥ 2epCp
1C

p
2

1 − 2−p
,

and we set α = 1 − 1/M . For every integer n ≥ 2M − 1 we have

φ(e−n) ≤ 2eα1/pC1(n− 1)1/pρ(e−α(n−1)) ≤ 2eC1C2φ(e−α(n−1)).

We infer that there is a constant K such that φ(e−n) ≤ Kφ(e−α(n−1)) for all n ∈ N. 
Given 0 < t ≤ 1, pick n ∈ N such that e−n < t ≤ e−(n−1). We have

φ(t) ≤ φ(e−n) ≤ Kφ(e−α(n−1)) ≤ Kφ(tα).

Hence, the non-increasing map ψ : (0, ∞) → [1, ∞) given by ψ(t) = φ(e−1/t) satisfies

ψ(αt) ≤ Kψ(t), t > 0.

In particular, ψ(αn) ≤ Kψ(αn−1) for all n ∈ N. Set D = Kφ(e−1) and d = − logα(K). 
By Lemma 2.3,

φ(e−1/t) = ψ(t) ≤ Dt−d, 0 < t ≤ 1.

In other words,
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φ(a) ≤ D(− log a)d, 0 < a ≤ e−1.

Since φ is bounded on [e−1, 1], the proof of (i) is complete.
Let D be the set of indices d ∈ (0, ∞) such that φ(a) � a−d for 0 < a ≤ 1. By 

Lemma 2.4, (η, ∞) ⊂ D, where

η := lim inf
c→0+

−1
p

logc (1 + (1 − c)pφ p(c)) = lim inf
c→0+

log(φ(c))
− log(c) .

So, in order to prove (ii) it suffices to show that η = 0. To that end, we will use a 
bootstrap argument. Namely, we will check that there is α ∈ (0, 1) such that d ∈ D
implies η ≤ αd. For that, we apply our claim. Pick C2 > 1/� and set α = 1 −1/M , where 
M > 1 satisfies

M ≥ 2e2pCp
1C

p
2

1 − 2−p
.

Notice that

− 2Cp
1C

p
2

ap log(a)M ≤ 1 − 2−p, e−2 ≤ a ≤ e−1.

Now we pick a sequence (cm)∞m=1 in (0, e−2M ] with limm cm = 0 and

(− log(cm))1/p ρ(cm) ≤ C2φ(cm), m ∈ N.

For each m ∈ N, put nm = �− log(cm)�. Since − log(cm) ≤ 1 +nm, we have nm ≥ 2M−1. 
In particular, nm ≥ 1 and so

nm ≤ − log(cm) ≤ 2nm.

We deduce that cm = anm
m for some am ∈ [e−2, e−1]. Therefore, applying the claim with 

a = am gives

φ(cm) ≤ 2α1/pC1

am
(nm − 1)1/pρ(aα(nm−1)

m ) ≤ 2C1e
2α1/p (− log(cm))1/p ρ(cαm).

Using Remark 2.7,

η ≤ lim inf
m→∞

log(ρ(cαm))
− log(cm) ≤ lim inf

m→∞
log(φ(cαm))
− log(cm) .

Hence, if d ∈ D,

η ≤ lim inf log(c−αd
m ) = αd. �
m→∞ − log(cm)
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Roughly speaking, Proposition 3.4 says that if φ/ρ grows as fast as possible, then φ
grows slowly. Along the same lines, we finish this section with a result that points out 
that if ρ grows fast and steadily, then ρ grows as φ. We formulate it in terms of essentially 
decreasing functions, i.e., functions f : I ⊂ R → R for which there is a constant D ≥ 1
such that f(b) ≤ Df(a) whenever a ≤ b.

Proposition 3.5. Let X be a nearly unconditional basis of a p-Banach space X, 0 < p ≤ 1.

(i) Suppose there are 0 < c < 1 and C > 0 such that

(
n∑

k=1

ρ p(ck)
)1/p

≤ Cρ(cn+1), n ∈ N.

Then ρ ≈ λ ≈ θ ≈ φ. In particular, this holds if there is d > 0 such that the function 
a �→ adρ(a), 0 < a ≤ 1, is essentially decreasing.

(ii) Suppose there are 0 < c < 1 and C > 0 such that

(
n∑

k=1

θ p(ck)
)1/p

≤ Cθ(cn+1), n ∈ N.

Then θ ≈ φ. In particular, this holds if there is d > 0 such that the function a �→
adθ(a), 0 < a ≤ 1, is essentially decreasing.

Proof. By Remark 2.7, in order to show (i) it suffices to prove that φ � ρ. Now, to carry 
out a unified proof of (i) and (ii), we set ψ = ρ in the former case, and ψ = θ in the 
latter. By inequality (2.3),

ρ(cn+1) ≤ K0ρ(cn−1), n ∈ N,

where

K0 = max
{

(1 + ((1 − c2)θ(c2))p)1/p, ρ(c
3)

ρ(c) ,
ρ(c2)
ρ(1)

}
.

Thus, by Remark 2.7, there is a constant K (depending on c) such that

ρ(cn+1) ≤ Kψ(cn−1), n ∈ N.

Given a ∈ (0, 1], pick n ∈ N so that cn < a ≤ cn−1. Let C1 be the constant provided by 
Lemma 3.2. We have

φ p(a) ≤ φp(cn) ≤ Cp
1

cp

(
ρ p(c) + ρ p(c2) + Kp

n∑
ψ p(ck−2)

)

k=2
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≤ Cp
1

cp
(
ρ p(c) + ρ p(c2) + KpCpψ p(cn−1)

)
≤ Cp

1
cp

(
ρ p(c) + ρ p(c2) + KpCpψ p(a)

)
.

Since ψ is bounded away from zero, φ � ψ as desired.
If the function a �→ adψ(a) is essentially decreasing for some d > 0, then there is 

D ≥ 1 such that

ψ(b) ≤ D
(a
b

)d

ψ(a), 0 < a ≤ b ≤ 1.

Hence, for any c ∈ (0, 1) and n ∈ N,

n∑
k=1

ψ p(ck) ≤ Dpψ(cn+1)
n∑

k=1

c(n+1−k)dp ≤ Dpcdp

1 − cdp
ψ(cn+1),

and the proof is complete. �
4. Isometric QGLC bases

In non-linear approximation theory in Banach spaces, the specific case of greedy-like 
bases with constant 1 is of special interest and has been studied in several papers. The 
most relevant results within this area are probably the characterizations of 1-greedy, 
1-almost greedy, and 1-quasi-greedy bases, which we summarize for the convenience of 
the reader:

• A basis of a Banach space is 1-greedy if and only if it is 1-suppression unconditional 
and 1-symmetric for largest coefficients (i.e., it has Property (A)) (see [6, Theorem 
3.4]).

• A basis of a Banach space is 1-almost greedy if and only if it is 1-symmetric for 
largest coefficients (see [2, Theorem 1.5]).

• A basis of a Banach space is 1-quasi greedy if and only if it is 1-suppression uncon-
ditional (see [1, Theorem 2.1]).

In this context it is natural to wonder whether there is also a characterization of 1-
QGLC bases in terms of other properties that have already appeared in the literature. 
The main result of this section addresses this question. Before stating it we give an 
auxiliary lemma.

Lemma 4.1. Let (xn)n∈A be a finite family in a Banach space X. Suppose that∥∥∥∥∥∑ xn

∥∥∥∥∥ ≤
∥∥∥∥∥∑ xn

∥∥∥∥∥

n∈B n∈A
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for all B ⊂ A. Then, for all (λn)n∈A in [1, ∞),∥∥∥∥∥∑
n∈A

xn

∥∥∥∥∥ ≤
∥∥∥∥∥∑
n∈A

λn xn

∥∥∥∥∥ .
Proof. Using the Hahn-Banach theorem we can pick f∗ ∈ BX∗ such that∥∥∥∥∥∑

n∈A

xn

∥∥∥∥∥ = f∗

(∑
n∈A

xn

)
.

If we let B = {n ∈ A : �(f∗(xn)) ≥ 0} we have

∑
n∈B

�(f∗(xn)) ≤
∣∣∣∣∣f∗

(∑
n∈B

xn

)∣∣∣∣∣ ≤
∥∥∥∥∥∑
n∈B

xn

∥∥∥∥∥ =
∑
n∈A

�(f∗(xn)).

We infer that A \B = ∅, that is, �(f∗(xn)) ≥ 0 for all n ∈ A. Hence, given (λn)n∈A in 
[1, ∞),∥∥∥∥∥∑

n∈A

xn

∥∥∥∥∥ =
∑
n∈A

�(f∗(xn)) ≤
∑
n∈A

λn�(f∗(xn)) ≤
∣∣∣∣∣f∗

(∑
n∈A

λn xn

)∣∣∣∣∣ ≤
∥∥∥∥∥∑
n∈A

λn xn

∥∥∥∥∥ ,
and we are done. �
Proposition 4.2. Let X = (xn)∞n=1 be a basis of a Banach space X. The following are 
equivalent:

(i) X is 1-truncation quasi-greedy.
(ii) X is nearly truncation quasi-greedy with λ(a) = 1 for all 0 < a ≤ 1.
(iii) X is nearly truncation quasi-greedy with ρ(a) = 1 for all 0 < a ≤ 1.
(iv) X is 1-quasi-greedy for largest coefficients.
(v) For every finite set A ⊂ N, every ε ∈ EA, and every f ∈ X with supp(f) ∩A = ∅,

‖1ε,A‖ ≤ ‖1ε,A + f‖ .

Proof. (i)⇒(ii) and (ii)⇒ (iii) are immediate from the definitions, and (iii) ⇒ (iv) follows 
from Lemma 2.1.

To prove that (iv)⇒ (v), let us assume by contradiction that there are A ⊂ N, ε ∈ EA, 
and f ∈ X with supp(f) ∩ A = ∅ such that ‖1ε,A + f‖ < ‖1ε,A‖. The map F : R → R

given by

F (t) = ‖1ε,A + tf‖ , t ∈ R,
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is convex, F (0) = ‖1ε,A‖, and F (1) < ‖1ε,A‖. Hence, F (t) < ‖1ε,A‖ for all 0 < t < 1. 
Choosing t ∈ (0, 1) small enough we have tf ∈ Q, so that, by assumption, ‖1ε,A‖ ≤ F (t). 
We have reached an absurdity, as desired.

It remains to prove that (v) ⇒ (i). To that end, fix a finite set A ⊂ N. Let Y be the 
closed linear subspace of X given by

Y = {f ∈ X : supp(f) ∩A = ∅},

and let Q : X → X/Y be the canonical quotient map. Fix now ε = (εn)n∈A ∈ EA, and 
set zn = Q(εn xn) for all n ∈ A. By assumption,∥∥∥∥∥∑

n∈A

zn

∥∥∥∥∥ = ‖Q(1ε,A)‖ = ‖1ε,A‖ .

Moreover, for each B ⊂ A we have∥∥∥∥∥∑
n∈B

zn

∥∥∥∥∥ = ‖Q(1ε,B)‖ ≤ ‖1ε,B‖ ≤ ‖1ε,A‖ .

Hence, we can apply Lemma 4.1 to the family (zn)n∈A and we obtain

‖1ε,A‖ ≤
∥∥∥∥∥f +

∑
n∈A

λn εn xn

∥∥∥∥∥
for all (λn)n∈A in [1, ∞) and all f ∈ X with supp(f) ∩ A = ∅. This means that X is 
1-truncation quasi-greedy. �
5. Open questions

To the best of our knowledge, it is unknown whether there are QGLC bases that are 
not truncation quasi-greedy. In light of Theorem 2.6, this question extends beyond the 
bounds of approximation theory to become central within the theory of bases.

Question 5.1. Is there a nearly unconditional basis that is not truncation quasi-greedy? If 
the answer were positive, the problem of finding conditions on the quasi-Banach space X
which ensure that all nearly unconditional bases of X are truncation quasi-greedy would 
make sense.

Since, by Proposition 4.2, we know that 1-QGLC implies truncation quasi-greediness 
in the framework of Banach spaces, Question 5.1 connects with the problem of finding 
renormings that improve the QGLC constant of the basis. Besides, by Theorem 2.10, such 
a renorming would lead to a better control of the threshold unconditionality function φ. 
So, the renorming problem is of particular interest in this context.



24 F. Albiac et al. / Journal of Functional Analysis 285 (2023) 110060
Question 5.2. Let X be a Banach space. Is there a constant C such that any nearly 
unconditional basis of X becomes C-QGLC under a suitable renorming of X? Does this 
hold with C = 1 or, at least, C = 1 + ε for any ε > 0?

Note that an affirmative answer to Question 5.2 would give an absolute bound for the 
growth of the threshold unconditionality function.
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