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Abstract

In eukaryotic organisms the ensemble of 5’ splice site sequences reflects the balance
between natural nucleotide variability and minimal molecular constraints necessary to
ensure splicing fidelity. This compromise shapes the underlying statistical patterns in the
composition of donor splice site sequences. The scope of this study was to mine conserved
and divergent signals in the composition of 5’ splice site sequences. Because 5’ donor
sequences are a major cue for proper recognition of splice sites, we reasoned that statistical
regularities in their composition could reflect the biological functionality and evolutionary his-
tory associated with splicing mechanisms.

Results: We considered a regularized maximum entropy modeling framework to mine
for non-trivial two-site correlations in donor sequence datasets corresponding to 30 different
eukaryotes. For each analyzed species, we identified minimal sets of two-site coupling pat-
terns that were able to replicate, at a given regularization level, the observed one-site and
two-site frequencies in donor sequences. By performing a systematic and comparative anal-
ysis of 5’splice sites we showed that lineage information could be traced from joint di-nucleo-
tide probabilities. We were able to identify characteristic two-site coupling patterns for plants
and animals, and propose that they may echo differences in splicing regulation previously
reported between these groups.

Author summary

The main steps of the splicing process are similar across eukaryotes. However, differences
in splicing factors, gene architecture, and sequence divergences suggest clade-specific fea-
tures of splicing and its regulation. Using a regularized maximum entropy modeling
approach we investigated two-site statistical patterns to identify conserved and divergent
signals embedded in the 5’ splice sites of 30 eukaryotic species. We found that the joint
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dinucleotide probabilities of donor sequences carry lineage information, and we were able
to trace characteristic two-site coupling patterns for plants and animals, which could
reflect differences in splicing regulation previously reported between these groups. Our
study also extends the observation of negative epistatic signals in mammalian donor
sequences. Specifically, we showed that the average strength of coupling parameters
between intronic and exonic consensus nucleotides presented destabilizing negative val-
ues, which precluded the simultaneous co-occurrence of consensus nucleotides at the
intronic and exonic parts of a given donor sequence.

Introduction

The majority of eukaryotic genes are composed of alternating stretches of DNA known as
exons and introns. Introns are removed from the nascent transcript through a co-transcrip-
tional process called splicing [1-3]. RNA splicing results from a coordinated and sequential set
of biochemical reactions involving small nuclear ribonucleoproteins (snRNPs) which, together
with less stably associated non-snRNP proteins, conform to the dynamic molecular machinery
known as the spliceosome [1, 4]. Two types of spliceosomes are known to operate in eukary-
otes: a major U2 type (with U1, U2, U4, U5, and U6 snRNPs) that processes the majority of
pre-mRNAs, and a minor U12 type (with U11, U12, U4atac, U5, and U6atac snRNPs) that
splices a smaller fraction of pre-mRNAs possessing so-called U12 type introns [5].

Despite some lineage-specific deviations, four major sequence cues serve to place the spli-
ceosome at the correct locations on the immature transcripts. For the vast majority of U2 spli-
ceosomal introns, conserved GT and AG di-nucleotides are recognized at the beginning of an
intron (5’ splice site or donor site) and at its opposite end (3’ splice site or acceptor site) respec-
tively. In addition, a branching point (BP), presenting a conserved A residue, is located 18-40
nucleotides upstream of the 3’splice site (3’ss). Finally, a poly-pyrimidine tract follows the BP
and completes the necessary set of sequence cues used to guide the spliceosome assembly pro-
cess [5-7].

The 5’ splice site (5’ss) is an essential element in order for splicing to take place. These
donor sequences are involved in a key step in RNA splicing reactions in which the boundaries
between exons and introns are recognized. At this step, U1 identifies the 5 splice junction
between adjacent exons and introns through a complex formation that depends on highly con-
served base pairing between the 5’ss and the 5’ end of U1 snRNA. Specifically, the Ul snRNA
forms base pairs across intron-exon junctions, potentially base-pairing with the last three posi-
tions of the exon (positions -3 to -1) and the first six positions of the intron (positions +1 to
+6). This hybridization is stabilized by U1-C, one of the protein components of Ul snRNP, by
establishing hydrogen bonds between its polypeptide chain and the sugar-phosphate backbone
of the pre-mRNA. Because of the sequence-agnostic nature of U1-C interactions, it is particu-
larly relevant to account for splice site sequence variability [8]. Before the first catalytic step in
splicing, U1 is replaced by U5 and U6 snRNPs, for which the snRNA also needs to bind to the
exonic (-3 to +1) and intronic (+5,+6) portions of the 5’ss respectively [6, 9, 10]. Artemyeva
and Porter reported that U5 could also play a significant role in exon-intron boundary recog-
nition [11]. These findings support the idea that, despite the relevance of gene context, splicing
efficiency depends on 5’ss recognition to a great degree [12].

Given the relevance of donor sites, their sequence composition has been the subject of
many studies aimed at uncovering non-trivial sequence patterns associated with relevant
biology. Information-theoretic approaches have been widely used to provide insight into
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biological functionality and/or trace the evolutionary history of splicing. For instance, in the
early 90s, Stephens and Schneider used information theory to analyze 1800 human splice
sites. They could quantitatively estimate position-dependent contributions using a Shannon-
like information measure and found that more than 80% of the sequence information (i.e.
sequence conservation) was confined to the intronic part of the donor sites [13]. Sverdlov

et al. also considered the position-dependent information content measure to uncover differ-
ences in the way information was distributed between exonic and intronic parts of nucleo-
tide sequences in new (i.e. lineage-specific) and old (shared by two or more major eukaryotic
lineages) introns. According to their findings, 5’ss corresponding to old introns display
lower information in their exonic regions than in their intronic regions, whereas the oppo-
site trend was seen in newer introns. This result suggests an evolutionary splice signal migra-
tion from exons to introns during evolution [14]. More recently, Iwata and Gotoh
performed a comparative analysis of 61 eukaryotic species. Using annotated splice sites from
transcriptomic data, they showed that although donor site motifs resembled each other (sug-
gesting that the spliceosome machinery is well conserved among eukarya) they exhibited
some degree of specificity [15, 16].

Single-site statistics, such as logos or consensus sequences, do not fully characterize the
complex statistics embedded in 5’ss sequences. There have also been attempts to infer higher
correlation patterns in donor site sequences. One such result was reported by Stephens and
Schneider’s research. Using information theory they were able to find significant mutual infor-
mation values of approximately 0.05, 0.07 and 0.04 bits, between human 5’ss positions (-2,+4),
(-1,45) and (-2,+5) respectively [13]. Almost ten years later, following a completely different
route, Thanaraj and Robinson used decision trees to predict exon boundaries and found that
long-range dinucleotide associations (-1,+5) and (-2,+5) carried significant splicing signals
[17]. Couplings between the (-1,+5) and (-2,+5) position pairs have also been featured in a
comparative human-mouse genomic study carried out by Carmel et al. [18]. Sahashi et al. also
analyzed two-site correlations in human 5’ss and reported that non-complementary nucleo-
tides to U1 snRNA at specific positions were compensated by complementary nucleotides at
other positions, suggesting that a stretch of complementary nucleotides in either an exonic or
intronic region is essential for proper splicing [19]. Denisov et al. presented evidence to sup-
port and extend this idea. Through a comparative analysis of the genomes of three mammals
they found a well-defined pattern of epistatic interactions between nucleotides occupying dif-
ferent positions along the donor site. While the strength of correlations within both the intro-
nic and exonic sections was found to be positive (i.e. positive epistatsis), nucleotide strength
correlations between said regions were found to present negative epistasis [20]. Another rele-
vant study on RNA motifs in connection with splicing signals was presented by Yeo and Burge
[21]. Considering an entropy maximization framework, they showed that maximum entropy
distributions consistent with different sets of constraints (i.e. enforcing low-order marginal
probability distributions to match empirical values) could be used to recognize true RNA
splice sites in primary transcript sequences. They proposed a likelihood ratio statistic to dis-
criminate real splice sites from decoys and showed that relevant constraints could be identified
by studying the amount of entropy reduction induced by their procedure [21].

In decent decades, models rooted in the principle of maximum entropy have been widely
applied to various biological problems [22, 23]. The success of this modeling strategy is based
on the observation that low-order correlations, primarily pairwise interactions, play a signifi-
cant role in many biological systems. Consequently, accurate approximations of joint probabil-
ity distributions for systems with multiple interacting elements can often be achieved by
considering only pairwise interactions among the components of the system. This approach
has been applied to study biological systems of very different levels of organization, including
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protein sequences [24-26], networks of real neurons [27, 28], and bird flocking [29, 30]. The
present study aims to delve further into donor sequence regularities by following a similar
route. Considering a maximum entropy framework, we developed a generative probabilistic
model allowing an analysis of sequence composition for donor sequences in several eukaryotic
species.

Our approach sought to focus on lineage specific signatures in order to gain biological
insights about splicing; however, in contrast to Gotoh’s work [15], we explicitly considered
two-site marginal probabilities for donor sequences. To the best of our knowledge, this is the
first study to demonstrate that phylogenetic signals are embedded in two-site correlation pat-
terns. Our work is based on the analysis of two-site marginal probabilities for donor sequences
of 30 eukaryotic species, significantly expanding the number of taxa analyzed compared to pre-
vious studies that examined two-site epistatic interactions in 5’ss. For example, Schneider and
Thanaraj analyzed only human sequences [13, 17]. Additionally, Sverdlov, Carmel, and Deni-
sov conducted comparative studies of eight eukaryotic genomes [14], human and mouse
genomes [18], and three mammal genomes [31], respectively.

The remainder of this manuscript is organized as follows. First, we introduce and explain
the design of the modeling framework. We then discuss how our regularized models effectively
captured the observed one-site and two-site nucleotide frequencies. In addition, we demon-
strate how our approach progressively disentangles the hierarchy of coupling parameters while
maintaining the ability to reproduce observed correlations at a desired level of precision. Next,
we examine various aspects of the data-driven energy distribution function that naturally
emerges from our maximum entropy approach. Subsequently, our focus shifted towards char-
acterizing the identified coupling patterns. We conducted a comparative analysis of these pat-
terns to identify robust and conserved signatures, shedding further light on previously
detected epistatic signals within the donor sites. We also explored the structural characteristics
of di-nucleotide two-site probabilities, which encode phylogenetic information and enable the
characterization of plant-specific and animal-specific patterns. Finally, in the last section of
this paper, we discuss the biologically relevant implications of our findings and present our
conclusions.

Materials and methods
Analyzed genomes

Our analysis used genomic data from 30 eukaryotic species (Table A in S2 Text), including five
fungi, eight plantae, and 17 metazoan genomes, with the aim of uncovering specific features
for these groups. We considered nine-nucleotide (9-nt) long sequences to analyze donor sites,
in accordance with previous studies that found that most relevant information content was
restricted to the region including the last three nucleotides of the exon and the first six intronic
positions [13, 15, 19, 20, 32]. We wrote a custom script to automatically extract 9-base length
donor sequences based on the genome sequences (FASTA files) and annotations (GTF/GFF3
files) downloaded from Ensembl.

Statistical model

For each species, our aim was to estimate the joint probability distribution function, P(S),
associated with an observed ensemble of 5'ss. Each ensemble was a set of 9-nt long
sequences (the last three exonic positions followed by the first six intronic positions),
expressed as S= (5 508 9,515,815 89, 83,84, S5, S5) Where s; € {A, C, G, T}. Under the hypothesis
that the sought distribution should be compatible with observed 1-site and 2-site marginal
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probabilities f;(s;) and f;(s;, s;), we implemented an entropy maximization approach to find
the minimal structured distribution consistent with these constraints, A brief introduction
to maximum entropy models was included in S1 Text and further technical details can be
found in [23, 33]. Under this framework the estimated probability distribution function

aA =

P(S) takes the form of Boltzmann distribution:

p(@S) = %e’Ed(g) (1)

where

Ed(g) = _Z hi(s;) — Z]ij(siasj) (2)

i<j

plays the role of a data-driven energy. The partition function, Z = 3" e %), is simply a nor-
malization constant. Variables h,(s;) and J(s;, s;) are the fitting parameters of our model.
Overall, this model contains 36 single-site parameters h(s;) (four possible bases in nine sites)
and 576 two-site interactions J;j(s;, s;) (16 base combinations for 36 site-pairs) to be esti-
mated. For convenience, our notation will hence omit the explicit dependency on s; variables

(e.g. ]ij(5i> Sj) = ]ij)-

Time-tree

To make use of phylogenetic data, we obtained a time-tree from a publicly available data-
base at timetree.org (last access December 20, 2021) [34]. Two of our 30 analyzed species
were not found in the said database and were replaced by evolutionarily close species for
the sake of phylogenetic calculations. Specifically, Magnaporthe oryzae (mor) was
replaced by Pseudohalonectria lignicola (both from the Magnaporthacease family) and
Coprinopsis cinerea (cci) was replaced by Coprinopsis lagopus (both from the genus
Coprinopsis).

Phyogenetic signals

We used the Maddison-Slatkin randomization procedure [35] to survey statistically supported
associations between 41 non-zero model coupling parameters and phylogenetic signals. This
non-parametric bootstrapping approach is employed to generate a distribution of expected
values for a given test statistic. Our chosen test statistic was a parsimony score defined as the
number of changes (in parsimony steps) of the binary trait of interest, that is, the presence/
absence state of the analyzed coupling parameter. Specifically, for each coupling parameter a
presence/absence binary state was assigned to taxa 10000 times and parsimony scores (Sankoff
methodology [36]) were estimated for each random assignment using the function parsimony
implemented in the phagorn package for the R programming language [37]. Bonferroni-cor-
rected p-values were estimated from the fraction of random events with parsimony scores
equal to or greater than the observed value.

Dendrograms inferred from two-site probabilities

As a distance function, we considered the Euclidean metric between the vectorized upper-tri-
angular matrices of two-site probabilities P;; generated by the models fitted to the analyzed spe-
cies. A dendrogram was then constructed using the complete agglomeration method.
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Dendrogram comparisons

The functionality implemented in the R-package dendextend [38] was used to carry out den-
drogram comparisons. We found tanglegrams, a specific type of diagram to visually compare
two dendrograms, to be an informative tool when used to qualitatively compare pairs of hier-
archical ordinations. In addition, the function Bk-permutations was used to carry out a boot-
strap analysis (10000 permutations) of Fowlkes-Mallows indices [39] to compare partitions
induced at different cut-levels from the dendrograms of interest (see Section G in S1 Text).

Results
Maximum entropy model for 5’ss

The first step in our procedure was to use a maximum-entropy framework to fit the discussed
parameters to the observed sequence ensembles. The workflow for a single given species is
illustrated in Fig 1. After identifying the ensemble of donor sequences, we estimated the rela-
tive nucleotide appearance frequencies at each single site fi(s;), as well as two-site frequencies
between bases f;i(s;, 5;). These experimental measurements were then used to infer the fitting

parameters h(s;) and Ji(s;, s;) of our model f’(§ ) (see Methods section for details).

Statistical coupling patterns. The inset of the right panel of Fig 1 shows a circos graphical
representation of the coupling connectivity pattern obtained for human 5’ss using the
¥ = 0.025 model. The outer ring of 36 boxes represents the relative frequencies of the four pos-
sible nucleotides occurring in each position in different 9-site donor sequences. Warm colors
were used for the three exonic sites, whereas cold colors represented the six intronic sites. Four
blocks of different areas, representing the frequency of a given base A, C, G, T, were included
for each site (i.e. the largest area was associated with the site’s consensus base). Positive and
negative couplings are depicted by green and red curves, respectively. We noticed negative
interactions between exonic and intronic consensus site-base combinations. We also recog-
nized positive stabilizing interactions between consensus pairs within exons and introns. A
detailed analysis of these patterns is presented in the following sections.

Data-driven energetics. According to the estimator of sequence probabilities introduced
in Eq 1, the energy function defined in Eq 2 provides a quantitative measure of how often a
given sequence can be found along the entire genome. Low energy sequences correspond to
the most prevalent 5’ss, whereas high-energy sequences are associated with rare and infrequent
donor sequences.

The right panel of Fig 1 shows the frequency distribution of donor sequence energies for
the 502197 exon-intron annotated boundaries in the human genome (y = 0.025 model). We
can observe a slight skew in the energy distribution, toward a high energy value. Ninety per-
cent of the sequences had data-driven energy values laying in the E; € [4.1, 9.7] energy range.
On the low-energy side, the sequence of minimal energy, S = {C,A,G,G, T,A,A,G, T},
exhibited perfect complementarity to the Ul snRNA stretch, presenting an energy value of
E,(S*) = 3.50. This particular state was found to be the global minimum in the data-driven
energy landscape of the entire ensemble of natural sequences (see Section F in S1 Text).

Although the main goal of this study was not to identify splice sites, valuable insights can be
obtained by analyzing the results obtained when applying data-driven energetics to four differ-
ent kinds of sequences not associated with splicing. We began by considering an ensemble of
10000 randomly generated sequencies as a null reference dataset for the data-driven energy
scale (row of gray ticks in Fig 1). This null-model distribution can be characterized by its mean
energy and standard deviation E, 40, = 21.14.6, and serves to establish a proxy for the
completely disordered limit. Another relevant ensemble is depicted by green ticks in Fig 1; this
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Fig 1. The left panel of the figure shows the workflow diagram of our modeling methodology: we identified 9-base length annotated donor
sequences from each analyzed genome and estimated 1-site and 2-site marginal probabilities fi(s;) and fii(s; s;). The bottom panel displays
mathematical expressions defining the maximum entropy model as a function of the fitting parameters h,(s;) and Jii(s;, s;). In the upper-right
panel, we present the energetics of human donor sequences (y = 0.025), showing the distribution of data-driven energy values for the 502197 5’ss
sequences observed from the human genome. Rows are added to represent the distribution of ul2 junctions along with decoy-A, decoy-B, and
random sequences (sample of 10000), denoted by green, red, orange, and gray ticks, respectively. Black points represent mean values, whereas
black lines represent o energy intervals. The inset shows a circos representation of coupling interactions, where an outer ring of 36 boxes
represents single-site relative frequencies. Warm colors are used for the three exonic sites, while cold colors represent intronic sites. The area of
each box is proportional to the nucleotide-site observed probability f(s;). Positive and negative couplings are depicted connecting different site-
base combinations in green or red curves, respectively.

https://doi.org/10.1371/journal.pchi.1011540.9001

corresponds to 136 5’ss reported to be targets of the minor U12 spliceosome according to the
Intron Annotation and Orthology Database [40]. A high energy bias can be observed for these
sequences, suggesting that, from our model’s point of view, these U12 donor sites involved
rather unusual sequences that came from a different statistical distribution. We verified that
our main findings, such as coupling patterns, remained unaltered regardless of whether these
sequences were present or absent from our training dataset. The final analysis involved the cre-
ation of a “decoy sequence” dataset. We randomly sampled 100,000 GT loci from the Homo
sapiens genome. For each selected locus, we retained 3-nt upstream and 4-nt downstream of
the GT dinucleotide, resulting in a 9-nt decoy sequence. Given the fact that there are approxi-
mately 500,000 annotated 5’ss sequences in the human genome and about 150 million GT
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dinucleotide sites, the probability of randomly sampling a 5’ss locus is approximately 0.3%.
The decoy ensemble was comprised of 12,996 unique sequences. Among them, approximately
60% (7,629) were not found in the set of 5’ss sequences, whereas the remaining 40% of non-
donor sequences (5,367) matched with at least one annotated 5’ss sequence. We refer to these
disjoint groups as decoy-A and decoy-B sequence sets, respectively. In the right panel of Fig 1
decoy-A and decoy-B sequences are sown in rows of red and orange ticks, respectively. Decoy-
A sequences (centered at (E4) = 13.9) presented the highest energy values of both decoy
groups, emphasizing the importance of the nucleotide composition surrounding the GT di-
nucleotide. The decoy-B set (centered at (E) = 10.8) presented significantly lower energy val-
ues (with a p-value of 2.2e-16 on a Wilcoxon test) but still lay on the high energy tail of the U2
sequences. Although the sequence composition of the decoy-B loci was identical to that of the
identified donor sites, they were not annotated as splice sites in the genome. This discrepancy
may be attributed to either an incomplete genome annotation or the presence of unfavorable
genomic contexts that hinder the effective recognition of these loci by the spliceosome
machinery.

Finally, Fig 1 suggests that the data-driven energy (Eq 2) provides a reasonable scale for the
characterization of donor sites, going from completely ordered (perfect match against U1) to
completely disordered sequences. The vast majority of exon-intron boundary sequences lies
between these extreme behaviors, in a region of natural variability where recognition is possi-
ble, but full binding with the recognition machinery is avoided. In addition, we found that our
data-driven characterization correlated with the energy scales calculated using physics-based
methodologies. Not only did the perfect complementary sequence to U1 (i.e. the one that min-
imized the binding energy) present the minimal energy value but, more generally, we can
observe a monotonically increasing relationship between our modelled sequence energies and
estimations of the biochemical dimerization energy of 5’ss sequences against the U1 RNA
stretch (see Fig A in S2 Text).

Transcriptomic vs Genomic 5’ss models. The dataset used for model training plays a
critical role in statistical learning. In our case, we aimed to assess whether the genomic or tran-
scriptomic origin of the data could have possibly biased our results.

We first fitted two different y = 0.025 models considering the complete (502497) and GT-
restricted (488939) ensemble of human donor sequences extracted from genomic annotations.
We additionally trained a model supported by transcriptomic data obtained from the publi-
cally available resource RJunBase, located at http://www.rjunbase.org/. This database inte-
grates information about RNA splice linear junctions in normal and cancerous human tissues
present in 10,283 RNA-seq samples from The Cancer Genome Atlas (TCGA) and from the
Genotype-Tissue Expression (GTEx) portal [41]. We kept only annotated linear junctions of
protein-coding genes with a median expression level greater than five in normal tissues
(114745 5’ss, aprox. top 50%). Fig 2 shows a circos representation of the obtained coupling
patterns.

It can be seen from this figure that the regularized models were able to learn very similar
coupling patterns from these four ensembles, supporting the robustness of the inferred pair-
wise connectivity patterns.

Conserved coupling patterns

We identified conserved signatures by examining the average strength of coupling parameters
found between consensus (C) and non-consensus (NC) bases at the exonic (E) and intronic (I)
parts of donor sequences. Looking at those values obtained with y = 0.025 models (Table B in
S2 Text), we found that interactions between consensus bases, either at intronic (IC-IC mean
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interaction) or exonic sites (EC-EC mean interaction) consistently presented stabilizing posi-
tive values. Similarly, we found a consistent bias toward negative interaction values between
intronic and exonic consensus sites (IC-EC) for almost all analyzed species. These results were
also observed for less regularized (and hence more complex) y = 0.015 models (see Table C in
S2 Text) and suggest a statistical aversion to the co-appearance of consensus bases at intronic
and exonic sites simultaneously. This observation agrees with (and extends) already presented
evidence of negative epistatic signals found in mammalians donor sequences [19, 20].

Divergent coupling signals

Despite the high degree of conservation of the spliceosome, single site frequencies have been
shown to display a non-trivial degree of specificity in eukaryotes [15, 42]. Notably, we found
that the two-site marginal probabilities captured by our model also exhibited this behavior. In
fact, the hierarchical structure obtained from P;; probabilities is identical to that inferred from
logo motifs, that is, one-site statistics P; (see Fig B in S2 Text).

To compare the hierarchical structure of P;; probabilities against pre-existing evolutionary
data, we turn to the tanglegram shown in the left panel of Fig 3. This plot contains two dendro-
grams (with the same set of labels), one facing the other, with their labels connected by lines.
The left-most dendrogram was constructed from two-site probabilities P;; for y = 0.025 mod-
els, whereas its counterpart to the right is the aforementioned time-tree inferred from phyloge-
netic signals (see Fig C in S2 Text). We can observe from the figure that the structure that
emerges by comparing two-site statistics P;; displayed strong concordance with the underlying
phylogenetic relationships between the species compared. In particular, we observed a clear
separation between plants, animals and fungi. Several quantitative figures of merit support this
hypothesis. For instance, a cophenetic correlation value of 0.9 was found between both den-
drograms, along with statistically significant Fowlkes-Mallows indices (p, < 10~*) for almost
the entire range of k-cluster groups (2 < k < 29) (see Fig ] in S1 Text). Additionally, the entan-
glement value of 0.01 suggested a high quality tanglegram layout (see Materials and methods).

Coupling parameters and phylogenetic signals

The left panel of Fig 3 suggests that the two-site statistics captured by our model contain infor-
mation that is compatible with phylogenetic signals. Thus, we may wonder whether this signal

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011540 October 13, 2023 9/18


https://doi.org/10.1371/journal.pcbi.1011540.g002
https://doi.org/10.1371/journal.pcbi.1011540

PLOS COMPUTATIONAL BIOLOGY Conserved and divergent signals in 5' splice site sequences

Pij similarity phylogeny & & § § F
sly sly
mtr ptri
AE ath % mtr
ptri ath
wi wi
hvu hvu
4_(: osa osa T
ppa ppa
ol o E m = |
— _+ AMe  w—— T ) B || [ |
08  e— OAN — B o
ggo hsa [ |
ocu ggo ] . .
ssc mmu — — [ | [ |
hsa ocu —
1 mmu ssc = :
bt e— bia | o
| eca eca } U [ | o
clu clu - —] . .
— Sha  e— | ShE — . .
MU0 s———— 100 I . .
4 E apl apl — [ | [ | o
dre xtr —— r . .
xtr >< dre . .
sa sa ] | O
[ ani ani [ | [ | [ |
I_ NCT Se——— N\CT J . -
—— mor mor [ — [ | [ |
| — | CCI ) [ | ||
cne cne .
I T T T T 1 I T T T T T T 1
25 20 15 10 05 00 0.00 0.10 0.20 0.30
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https://doi.org/10.1371/journal.pchi.1011540.g003

is also reflected in a given subset of the coupling parameters found by our maximum entropy
model.

For each non-zero Jj; identified in any of the analyzed species, we performed a Maddison-
Slatkin procedure as a test for a phylogenetic signal (see Materials and methods). We found
five interactions displaying statistically significant association with the said signal, and report
the corresponding results in Table 1. The number of observed evolutionary steps for the ana-
lyzed coupling parameter, inferred using the Sankoff parsimony methodology [43], is shown
in column MS.obs. The minimum, median and maximum number of evolutionary steps
detected in 10000 bootstrapped samples, and Bonferroni adjusted p-values are reported in col-
umns MS.null and MS.pv respectively. The corresponding presence/absence of these interac-
tions in different species is shown in the right panel of Fig 3. For clarity, we use a simplified
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Table 1. Phylogenetic signals associated with coupling parameters. Each row depicts a model parameter found to be statistically significant in discerning animals, plants
and/or fungi by a Maddison-Slatkin test. For each coupling parameter (first column) we can see the number of plants, animals and fungi the interaction was detected in
(second, third and fourth columns). The observed number of Sankoff inferred evolutionary steps is reported in the fifth column. Minimum, median and maximum values
for this quantity for bootstrapped samples are reported in the sixth column (comma separated values). Bonferroni corrected p-values were included in the last column of

the table.

Parameter

-1G:+6T
-1G:+5G
-1G:+4A
+3G:+5G
+3T:+4A

https://doi.org/10.1371/journal.pcbi.1011540.t001

plants

0
8
8
0

5

animals fungi MS.obs MS.null MS.pvD
16 4 3 3,9,10 4.1e-3
3 0 3 49,11 0
4 5 3 3,10,13 4.1e-3
12 0 4 4,10,12 4.1e-3
2 1 3 3,7,7 5.0e-2

notation for the coupling parameters: for instance, -1G:+6T denotes the J_; (G, T)
parameter.

As expected, we can see from this figure that the coupling patterns identified as significant
were selectively present in plants, animals, or fungi. The first three entries in Table 1 corre-
spond to negative interactions between intronic and exonic consensus occurrences; specifi-
cally, those connecting the -1G exonic site-base combination with the last three intronic
positions. The interaction -1G:+6T was found to be a trait for animals and fungi, whereas -1G:
+5G was mainly present in plants. On the other hand, the -1G:+4A coupling could be consid-
ered a shared trait in plants and fungi.

The fourth entry in Table 1 corresponds to a positive intron-intron interaction between
consensus nucleotides (+3G:+5G), which appeared in 70% of the analyzed metazoans and was
completely absent in plants and fungi. Finally, +3T:+4A negative coupling was found in 60%
of the analyzed plant genomes.

Our findings suggest that non-trivial phylogenetic information is present in two-site corre-
lations, which were used by our model to infer statistical coupling patterns. The strongest phy-
logenetic signals were reported for coupling parameters involving a negative interaction
between a consensus nucleotide in the last exonic position and consensus nucleotides located
at the last three intronic positions.

Consolidated models

To further investigate the specificity of coupling signatures, we examined whether distinct cou-
pling patterns could emerge by grouping species into animals, plants, and fungi categories. To
accomplish this, we analyzed a single consolidated ensemble of sequences per group. These
consolidated ensembles were constructed by uniformly and proportionally sampling 800000
splicing sequences from 17 metazoan genomes to create an ‘animal’ ensemble, 800000 splicing
sequences from eight plant genomes to form a general plant ensemble, and 161547 sequences
from five fungal genomes to establish a fungus ensemble. The smaller size of the fungal dataset
was due to the limited number of donor sites in the smaller fungal genomes. We then fitted the
maximum entropy models for each dataset to obtain the representative coupling patterns for
each analyzed group. The resulting coupling diagrams for the y = 0.025 models are shown in
Fig 4. This regularization value was sufficiently strict to highlight the main coupling patterns
corresponding to the most significant two-site interactions obtained from each dataset (see Fig
Cinset in S1 Text).

We can observe the re-emergence of coupling parameters identified as important in the
previous sections. Regarding conserved signals, positive couplings between consensus sites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011540 October 13, 2023 11/18


https://doi.org/10.1371/journal.pcbi.1011540.t001
https://doi.org/10.1371/journal.pcbi.1011540

PLOS COMPUTATIONAL BIOLOGY Conserved and divergent signals in 5' splice site sequences

plants animals fungi

% =3

A
6T
3
C

B
3

& L Q, 7 b o) £ o o
. . L3 e © 2 <
o 8 v 9 2 % o5 Q, £ 25
R | # 4 ¥ s $
3, : 3
9

%,
< %5

N A

Vigy, Vigs, 1A Vigs
- d :
i 2 S

X ¥ il
o 4
9, 2 o o o
Y 2© / 26
6, & Oigy. i 2%
A
%,
4 s d
2 / N
" ‘@ yv‘ @ & ‘
¥ b <
& o & %
& . & 3 ©
“Nom ¥ - 3 o/
] £ PR NS
& s o &
5 5

Digy.
. 1.c L+ ac Liv+
L]
' i oip+ orp+
oip+ o+ .
0 -+
faa ’»lc LG o '»zg

2,
©
v
X
&3
Lo
T P

Fig 4. Pairwise interaction patterns. Circos diagrams for coupling parameters (y = 0.025 model) identified for plants, animals and fungi donor
sequences.

https://doi.org/10.1371/journal.pcbi.1011540.9004

within the intronic and exonic sections of the splicing junction (e.g. -2A:-1G or +5G:+6G)
were present in plants, animals and fungi. Another ubiquitous interaction was the negative
coupling between non-consensus and consensus exonic nucleotides -2A:-3T.

We may also notice patterns consistent with the divergent behavior uncovered by the Mad-
dison-Slatkin analysis in the last section. A strong negative coupling was observed between
+6T and -1G occurrences in the metazoan and fungal groups, which was replaced by a negative
interaction between +5G and -1G occurrences in the plant group. The negative coupling -1G:
+4A was detected in plants and fungi, but not in metazoans, whereas the positive coupling
+3G:+5G was a signature exclusively detected in this last group. These patterns persisted when
regularization levels were relaxed, such as in the y = 0.015 case shown in the second row of Fig
D in S2 Text.

Discussion

The molecular recognition of 5’ss faces numerous challenges. First, with the exception of the
first GT intronic nucleotides, natural 5’ss sequences are highly degenerate. Second, recognition
occurs at different stages of the splicing cycle from various complexes that bind completely or
partially to the 5’ss sequence. Third, not only are snRNA complexes involved in recognition,
but many proteins present within them are also important for binding stabilization. Finally,
splicing occurs in a genomic context in which factors such as gene structure and the presence
of cis and/or trans signals can significantly influence the fine regulation of each splice site. In
this study we aimed to mine conserved and divergent signals in 5 donor sequences. The ratio-
nale for our approach was that the underlying statistical patterns in donor sequences composi-
tion should reflect aspects of the complex scenario described.

Our entropy maximization strategy allowed us to recapitulate previous results within a uni-
fied framework and to gain new insights into the regularities embedded in the statistics behind
donor splicing sequences. For instance, the data-driven energy scale E; (Eq 2) naturally accom-
modates the idea behind the SD-Score (defined as the logarithm of the frequency of a donor
sequence) introduced by Sahashi et al. to predict splicing outcomes observed in artificially
designed minigenes [19]. E; also correlated with the estimated dimerization energies against
Ul snRNA (see Fig A in S2 Text). Despite the large number of cis and trans elements that con-
tribute to the regulation of splicing, this finding suggests that E, by itself might, to some
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degree, reflect the strength of a given donor site. In this sense, E; not only serves, by definition,
to quantify the extent to which a given sequence is represented along a genome, it also provides
a meaningful scale for measuring the degree of complementarity to the spliceosome machin-
ery. The majority of naturally occurring sequences presented intermediate E; values (Fig 1),
suggesting a statistical aversion to 9-nt perfect matches. This concurs with previous observa-
tions stating that a minimum of 5-6 Watson-Crick pairs are required for splice site recogni-
tion, but excessive pairing (>7 bases) is detrimental [18]. This loose binding could favor
splicing reaction processivity, and favor scenarios in which effective binding is regulated by
third parties.

With the aid of our model we also identified general two-site interaction patterns, which
suggests that this free-energy deficit is rooted in a non-trivial spatial distribution of matching
pairs along splice site sequences. Despite some degree of specificity, couplings between con-
sensus sites within exonic and intronic parts of donor sequences were biased toward positive
values (columns 5 and 8 of Table B in S2 Text). In contrast, predominantly negative interac-
tions were found between consensus nucleotides lying on different sides of the exon-intron
boundary (first column of Table B in S2 Text). These results are in accordance with previous
observations obtained from human and mouse donor sequence data [18-20] and support the
idea that a high complementarity level is alternatively favored at either the exonic or intronic
sections of the donor splice site.

Consistent identification of two-site couplings suggests that nucleotide occurrences at dif-
ferent positions of the 5’ss are not independent. While this observation has been reported pre-
viously, we were able to show that the joint probabilities of nucleotide pairs carry biologically
meaningful information. This is shown through dendrograms constructed from the probabil-
ity distributions, which closely follow the phylogenetic relationships between the analyzed spe-
cies (see Fig 3). Donor splice site sequences constitute recognition sites not only for Ul
snRNA in the early spliceosome complex, but also for U6 and U5 in the pre-catalytic reaction
step. Subtle compensation mechanisms could then be expected to occur to enssure splicing
fidelity even in the presence of large site variability. In this conext, our findings suggest uncov-
ered statistical regularities to echo divergent evolutionary processes linked to structural speci-
ficities in the splicing machinery used to define exon-intron boundaries. However,
establishing a direct relationship between the interactions identified by our model and the
details of the splicing recognition mechanism can be a challenging task to accomplish. Studies
such as Schwartz et al. [42] have not been able to definitively show a clear correlation between
sequence variations generated at 5’ss sites and the complementary sequence in the Ul snRNA.
This is partly because splice site recognition results from a large number of factors. For exam-
ple, a recent study [44] determined that the fidelity of the spliceosome is highly influenced by a
large number of accessory factors that are not indispensable for the splicing process to take
place.

Our results also suggest that phylogenetic signals can be captured by coupling parameters
within our model. These associations proved robust insofar as they were detected for both
strongly and weakly regularized models, when coupling patterns were analyzed on a species-
by-species basis, and when donor sequences were consolidated into separate groups for plants,
animals and fungi.

Many of the two-site interactions detected in this contribution for different species have
already been reported in the literature, in the context of narrower studies focused on human,
mouse or other mammalian genomes [13, 17-21]. For instance, our model readily captured
positive couplings between intronic +4:+5 and +5:+6 position pairs, as well as a negative -2:+5
interaction. Notably, we found a -1:+5 negative coupling for plants; however, unlike the results
obtained in previous studies on humans and mammals, we did not detect it for metazoans.
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Both sites linked by this interaction are highly informative (see Fig E in S2 Text) and previous
studies reporting a negative interaction between them includes the work of Yeo and Burge,
who analyzed 12700 introns of 1821 non-redundant transcripts [21], and the contribution of
Carmel and collaborators, who inferred the -1G:+5G compensatory relationship from a com-
parative analysis of 8869 human-mouse homolog exons [18]. Notably, a different result was
reported in a recent study by Wong et al., who quantified the activity of 32,768 unique artifi-
cially engineered 5’ss sequences in three different genomic contexts and found a positive epi-
static interaction between these sites [12]. While our comparative analysis managed to detect
this interaction in a few animals, Homo sapiens was not one such species; neither did our
model retrieve the said coupling parameter when trained with a consolidated metazoan
ensemble. This is supported by the low observed correlation between the -1G and +5G occur-
rences in our metazoan 5’ss dataset, indicating that this discrepancy comes from the data, and
not from model training. This result was robust, whether we made use of the complete set of
annotated 5’ss, or the calculation was restricted to donor sequences presenting the canonical
GT nucleotides at the start of the intron section (see Fig F in S2 Text). Moreover, we found no
major qualitative differences in the coupling patterns inferred either from GT-5ss or from the
complete set of annotated donor sequences (see Fig G in S2 Text).

According to our model, the compensatory behavior reported between the last exonic and
intronic sites can be understood through an interwoven set of stabilizing (+5G:+6T and -1G:-
2A) and destabilizing (-2A:+5G and -1G:+6T) interactions (see Fig 4). This complex interac-
tion pattern is consistent with recent observations by Artemyeva and Porter, who reported
that the base pair composition at positions -1 and -2 was significantly altered based on the
occurrence (or lack thereof) of a +5G nucleotide (Fig 4 in [11]). In addition, the relevance of
position +6 has already been noticed by Carmel et al. in connection with splicing aberrations
leading to familial dysautonomia [18]. This study provides experimental evidence that a base
pair at position -1 prevents the aberrant splicing of the 20th intron of the IKBKAP gene caused
by a mispair of position +6 with Ul snRNA. We found a similar compensatory setup between
intronic (+5 and +6) and exonic (-2 and -1) positions in plants and animals. In the case of
plants, however, we detected a -1G:+5G negative coupling which replaced the -1G:+6T inter-
action observed in metazoans (see Fig 4). Notably, these two-site interactions affected intronic
positions that had fairly low information content in plants (0.27 bits and 0.21 bits for positions
+5 and +6 respectively, see Fig E in S2 Text) suggesting that the detected network of pair-wise
interactions could play a major role in the way these species deal with sequence variability.

Several differences have been highlighted between plants and animals in terms of splicing
mechanisms. Arguably the most straightforward differences are the large differences
reported in typical intron lengths and the prevalence of different types of splicing events:
exon skipping in animals and intron retention in plants [5, 45]. Many recent studies have
pointed out not only gene-architecture but also functional differences between alternative
splicing in animals and plants [46-49]. For instance, although the spliceosome in plants has
not yet been isolated, the number of splicing factors identified in Arabidopsis thaliana nearly
doubles taht observed in humans [50]. In addition, the prevalence of intron retention events
coupled with NMD transcript degradation and nuclear sequestration suggests that, in con-
trast to animal organisms, splicing in plants could play a major functional regulatory role,
closely related to stress response, as well as expanding proteomic diversity [5, 45, 51-53]. In
this context, our results highlight significant differences in two-site interactions involving
donor site nucleotide positions relevant to functional and evolutionary considerations.
Based on our findings, we believe that further investigation is warranted concerning the con-
nection between these differences and the distinctive mechanistic features of the splicing
processes in plant and animal species.
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Conclusion

In this study, we employed a maximum-entropy approach to obtain regularized probabilistic
generative models of donor sequences for 30 different eukaryotic species.

Our model incorporates a data-driven energy scale that captures the abundance of a given
sequence within a specific genome. This energy statistic serves as a practical measure for char-
acterizing sequences, representing the continuum between completely ordered and disordered
sequence states.

We also showed that the joint di-nucleotide probabilities in donor sequences carry lineage-
relevant information. With the aid of our models, we were able to identify minimal sets of cou-
pling patterns that could replicate, at a given regularization level, observed two-site frequencies
in the donor sequences. Analysis of these interactions across species allowed us to identify spe-
cific two-site coupling patterns that differentiate plants, animals and fungi. This sequence
composition signature was embedded in two-site interactions involving the last nucleotides of
the intronic part of the sequences, suggesting that they could be related to taxon-specific fea-
tures of the early and pre-catalytic spliceosome.
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