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ON THE ZEROS OF UNIVARIATE E-POLYNOMIALS

MARÍA LAURA BARBAGALLO, GABRIELA JERONIMO, AND JUAN SABIA

Abstract. We consider two problems concerning real zeros of univariate
E-polynomials. First, we prove an explicit upper bound for the absolute
values of the zeroes of an E-polynomial defined by polynomials with inte-
ger coefficients that improves the bounds known up to now. On the other
hand, we extend the classical Budan–Fourier theorem for real polynomials to
E-polynomials. This result gives, in particular, an upper bound for the number
of real zeroes of an E-polynomial. We show this bound is sharp for particular
families of these functions, which proves that a conjecture by D. Richardson
is false.

1. Introduction

In the ’70s, Khovanskii introduced a class of real analytic functions, called Pfaf-
fian functions, that includes polynomials, exponentials, logarithms, and trigono-
metric functions in bounded intervals, among others (see [7]). A fundamental
result proved by Khovanskii (see [8]) states that a system of n equations given by
Pfaffian functions in n variables defined over a domain U ⊂ Rn has a finite number
of non-degenerate zeros in U and that the number of these zeros can be bounded
explicitly in terms of parameters associated to the system.

Among the most elementary Pfaffian functions (besides the polynomials) we
can find the E-polynomials, which are functions of the kind F (x, eh(x)) with F ∈
R[X, Y ] and h ∈ R[X]. The interest in these functions goes back to Tarski’s
foundational work [13], where he posed the decidability problem for the first order
theory of the reals extended with exponentiation. Although E-polynomials may
seem simple functions, there are fundamental questions concerning them that have
not been completely answered. In this paper we deal with two of these questions.

First, we consider the so-called ‘last root’ problem for E-polynomials. This
problem was posed in [14] as follows: Consider non-zero real E-polynomials of
“bounded complexity”. Is there an intelligible function of the parameters on which
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the E-polynomial depends, which bounds the absolute value of its real roots? A pos-
itive answer to this question was given in [15], where the existence of such a bound
was proved for general exponential terms. However, even though the bound is
deduced by an inductive argument with a computable number of iterations, it is
not an explicit function. Later, in [9], the author presented an algorithm comput-
ing upper bounds for the absolute values of the real zeros of E-polynomials of the
type F (x, ex), but no complexity estimate is given for the algorithm and, therefore,
these bounds cannot be computed explicitly as a function of syntactic parameters
associated with F . More generally, in [10], an algorithm for the same task is given
for functions of the kind F (x, trans(x)) with trans(x) = ex, ln(x) or arctan(x), mo-
tivated by its application to the design of numerical algorithms that approximate
zeros of these functions. In this case, when trans(x) = ex, further computations
following the algorithm would enable one to deduce an a priori bound. The first
explicit upper bound for the absolute value of the real zeros of an E-polynomial
f(x) = F (x, eh(x)) defined from polynomials F and h with integer coefficients was
given recently in [1].

Here, in Section 3, we prove a new explicit upper bound for the absolute value
of the real zeros of an E-polynomial defined by polynomials with integer coeffi-
cients in terms of the degrees and the heights of the polynomials involved, which
improves the previous bounds. We also exhibit families of examples showing that
the dependence of the bound on the parameters considered is unavoidable.

The second question about E-polynomials we consider in this paper concerns
bounds for the number of real zeros of an E-polynomial. For real univariate poly-
nomials, classical results such as the Descartes rule of signs or, more generally,
the Budan–Fourier theorem ([4, 6]; see also [3, Theorem 2.46]) enable us to obtain
upper bounds for the number of real zeros of the polynomial in an interval by sim-
ply counting the number of variations in sign of finite sequences of real numbers.
In Section 4, we use the notion of pseudo-derivative of an E-polynomial already
introduced in [10] to generalize the classical Budan–Fourier theorem to the context
of E-polynomials. Another generalization of this theorem can be found in [5].

As a consequence of our generalization of the Budan–Fourier theorem, we deduce
that an upper bound for the number of real zeros of an E-polynomial counting
multiplicities can be obtained by simply considering the degrees of the polynomials
involved in its definition and the signs of certain coefficients. Finally, for the
particular case of E-polynomials of the form f(x) = F (x, ex), we prove a sharp
upper bound for their number of zeros. In Section 5, we deduce from our previous
arguments that if degX(F ) = n and degY (F ) = m, then f(x) = F (x, ex) has at
most N = (n+1)(m+1)−1 real roots and we show the existence of E-polynomials
of this kind with N real roots. This also provides a negative answer to a conjecture
on the number of roots of an E-polynomial raised in [12].

2. Preliminaries

A real univariate E-polynomial (which we will simply call an E-polynomial) is
a function of the type f(x) = F (x, eh(x)), where F ∈ R[X, Y ] and h ∈ R[X]. In
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this case, we will say that f is the E-polynomial defined from the polynomials
F ∈ R[X, Y ] and h ∈ R[X].

For a polynomial F ∈ R[X, Y ], we will write deg(F ) for its total degree, and
degY (F ) (respectively, degX(F )) for its degree as a polynomial in R[X][Y ] (re-
spectively, in R[Y ][X]). We will use the same notation deg(h) for the degree of a
univariate polynomial h ∈ R[X].

Also, for a (univariate or bivariate) polynomial G with integer coefficients, we
define its height, which we will denote H(G), as the maximum of the absolute
values of its coefficients.

We will use the classical Cauchy bound for the size of roots of univariate poly-
nomials (see, for instance, [11, Corollary 2.5.22]):

Lemma 2.1. If p(X) =
∑n

i=0 piX
i ∈ R[X] is a polynomial of degree n and α is a

root of p, then |α| < 1 + max
{

|pi|
|pn| : 0 ≤ i ≤ n − 1

}
. In particular, for p ∈ Z[X],

we have that |α| < 1 + H(p) for every root α of p.

3. On the problem of the last root

In this section, we show a new upper bound for the absolute values of all the
real zeros of an E-polynomial defined by polynomials with integer coefficients. The
bound is given in terms of the degrees and heights of the polynomials involved.

Theorem 3.1. Let f(x) = F (x, eh(x)) be an E-polynomial defined by polynomials
F ∈ Z[X, Y ] and h ∈ Z[X] such that degX(F ) = n, degY (F ) = m ≥ 1, and
deg(h) = δ ≥ 1. Let H and T ∈ Z be upper bounds for the heights of F and h
respectively. If α ∈ R is such that f(α) = 0, then

|α| < max
{

3H, 4T + 1,

(
8n

δ
ln(n)

)1/δ
}

.

Before proving the theorem, we state some auxiliary bounds for polynomials.

Lemma 3.2. Let p(X) =
∑n

i=0 ciX
i ∈ Z[X] be a polynomial of degree n ≥ 1 and

height at most Λ. Then:
(a) for every α ∈ C such that |α| ≥ 2, we have that |p(α)| ≤ 2Λ|α|n − 1;
(b) if k ≥ 1, every α ∈ C such that |α| ≥ kΛ + 1 satisfies |p(α)| >

(
1 − 1

k

)
|α|n.

Proof. (a) If |α| ≥ 2, then

|p(α)| ≤
n∑

i=0
|ci||α|i ≤ Λ|α|n + Λ

n−1∑
i=0

|α|i = Λ
(

|α|n + |α|n − 1
|α| − 1

)
≤ Λ (|α|n + |α|n − 1) ≤ 2Λ|α|n − 1.

(b) For every α ∈ C such that |α| ≠ 1, we have that

|p(α)| ≥ |cn||α|n −
n−1∑
i=0

|ci||α|i ≥ |α|n − Λ
n−1∑
i=0

|α|i = |α|n − Λ
(

|α|n − 1
|α| − 1

)
.
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If |α| ≥ kΛ + 1, then Λ
|α| − 1 ≤ 1

k
, and so

|p(α)| ≥ |α|n − 1
k

(|α|n − 1) >
(

1 − 1
k

)
|α|n.

□

Now we can prove Theorem 3.1:

Proof. Assume F (X, Y ) =
∑m

i=0 ai(X) Y i ∈ Z[X, Y ], and h(X) =
∑δ

k=0 hkXk ∈
Z[X].

If degX(F ) = 0, for α ∈ R such that f(α) = 0, Lindemann’s theorem implies
that h(α) = 0, and therefore, using a well-known bound for the size of zeroes of
polynomials (see, for instance, Lemma 2.1), we have that

|α| < 1 + max
{∣∣∣∣ hi

hδ

∣∣∣∣ : 0 ≤ i ≤ δ − 1
}

≤ 1 + T

and the theorem is true.
If degX(F ) ≥ 1, we may assume without loss of generality that a0(X) ̸≡ 0,

because eh(x) ̸= 0 for all x ∈ R. For every 0 ≤ i ≤ m such that ai(X) ̸≡ 0, let
di := deg(ai).

Let α ∈ R be such that |α| ≥ max
{

3H, 4T + 1,
(8n

δ
ln(n)

)1/δ}
.

As |α| ≥ 3H ≥ 2H + 1 ≥ 2, for every i such that di ≥ 1:
• from Lemma 3.2 (a), it follows that |ai(α)| ≤ 2H|α|di − 1 ≤ 2H |α|n − 1;
• from Lemma 3.2 (b) applied for k = 2, it follows that |ai(α)| > 1

2 |α|di ≥ 1;
that is,

1 ≤ |ai(α)| ≤ 2H |α|n − 1.

Note that these bounds also hold when di = 0, because in this case 1 ≤ |ai(α)| ≤
H ≤ 2H |α|n − 1.

Then, using again Lemma 2.1 for the polynomial F (α, Y ) ∈ R[Y ], we conclude
that, if F (α, β) = 0, then

|β| < 1 + max
i

{
|ai(α)|
|am(α)|

}
≤ 1 + max

i
{2H |α|n − 1} = 2H|α|n.

Note that if F (α, β) = 0, then β ̸= 0 since a0(α) ̸= 0. In order to get a lower
bound on |β|, we consider the polynomial F ∗(Y ) := Y mF (α, 1/Y ), which satisfies
F ∗(1/β) = 0. Since the coefficients of F ∗ are those of F (α, Y ) in reverse order, the
previous upper bound also holds for the roots of F ∗; therefore, |β| > (2H|α|n)−1.

In this way, we obtain that, if |α| ≥ 3H, for every zero β ∈ R of F (α, Y ) the
following inequalities hold:

(2H|α|n)−1 < |β| < 2H|α|n. (3.1)

We will now show that if |α| ≥ max
{

3H, 4T +1,
( 8n

δ ln(n)
)1/δ

}
, then β = eh(α)

does not verify one of the previous inequalities and, therefore, α is not a zero of
f(x) = F (x, eh(x)).
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Due to Lemma 3.2 (b) applied to the polynomial h with k = 4, we have that

|h(α)| >
3
4 |α|δ

for every α ∈ R such that |α| ≥ 4T + 1, and so

eh(α) > e
3
4 |α|δ

if h(α) > 0 and eh(α) < e− 3
4 |α|δ

if h(α) < 0. (3.2)

Then, because of (3.1) and (3.2), it suffices to show that e
3
4 |α|δ ≥ 2H|α|n or,

equivalently, that
3
4 |α|δ ≥ ln(2H) + n ln(|α|). (3.3)

Let us note first that, if |α| ≥ 3H, then
1
4 |α|δ ≥ 1

4 |α| ≥ 3
4H ≥ ln(2H). (3.4)

On the other hand, if n ≥ 2, for |α| ≥
( 8n

δ ln(n)
)1/δ, we have that

1
2 |α|δ > n ln(|α|), (3.5)

since c(t) = 1
2 tδ − n ln(t) is a strictly increasing function in

( ( 2n
δ

)1/δ ; +∞
)

and

c
((8n

δ
ln(n)

)1/δ)
= 4n

δ
ln(n) − n

δ
ln

(8n

δ
ln(n)

)
= n

δ
ln

( n3δ

8 ln(n)

)
> 0

(note that n3δ ≥ n3 > 8 ln(n) for n ≥ 2). If n = 1 and |α| ≥ 2, we have that
1
2 |α| > ln(|α|); then, inequality (3.5) also holds in this case. Combining (3.4) and
(3.5), we obtain (3.3). □

Example 3.3. Using the notation in Theorem 3.1, the following simple examples
show that any bound for the absolute value of a zero of an E-polynomial must
depend on H, T , and n.

(1) Let f(x) = (x − H)ex + x − H. Then F (X, Y ) = (X − H)Y + X − H and
h(X) = X. A zero of f is α = H.

(2) Let f(x) = ex−T − 1. Then F (X, Y ) = Y − 1 and h(X) = X − T . A zero
of f is α = T .

(3) Let f(x) = xne−x − 1 with n ≥ 3. Then F (X, Y ) = XnY − 1 and h(X) =
−X. As f(n ln(n)) = lnn(n) − 1 > 0 for n ≥ 3, and lim

x→+∞
f(x) = −1 < 0,

we deduce that f has a zero α > n ln(n).

4. Budan–Fourier theorem for E-polynomials

In this section, we will generalize the classical Budan–Fourier theorem for poly-
nomials (see for example, [3, Theorem 2.46]) to the family of E-polynomials. This
result provides an upper bound for the number of zeros of a polynomial in a real
interval by counting the number of variations in sign of suitable sequences of real
numbers.
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For γ = (γ0, . . . , γD) ∈ RD+1 with γi ̸= 0 for every 0 ≤ i ≤ D, the number of
variations in sign of γ is the cardinality of the set {1 ≤ i ≤ D | γi−1γi < 0}, and
for a tuple γ of arbitrary real numbers, the number of variations in sign of γ is the
number of variations in sign of the tuple which is obtained from γ by removing its
zero coordinates.

We start by introducing some definitions and notation in our setting of E-
polynomials.

Recall that, for c ∈ R and a non-zero analytic function f , the multiplicity of
c as a zero of f , which we will denote with mult(c, f), is defined as mult(c, f) =
min{µ ∈ Z≥0 | f (µ)(c) ̸= 0}.

For an E-polynomial f(x) = F (x, eh(x)) with F ∈ R[X, Y ] and h ∈ R[X], the
derivative of f is the E-polynomial f ′(x) = F̃ (x, eh(x)), where

F̃ (X, Y ) = ∂F

∂X
(X, Y ) + h′(X)Y ∂F

∂Y
(X, Y ).

Note that degY (F̃ ) = degY (F ) and degX(F̃ ) ≤ degX(F ) + deg(h) − 1.
The sequence of successive derivatives (f (i))i∈Z≥0 of an arbitrary E-polynomial

is not finite; so, in order to establish a result similar to the Budan–Fourier theorem
in this context we will consider an alternative construction which keeps the main
properties of the derivation.

Definition 4.1 (see [10] and [2]). Let f(x) = F (x, eh(x)) with F ∈ R[X, Y ], F ̸= 0.
The pseudo-degree of f is defined as

pdeg(f) =
{

(degY (F ), degX(F (X, 0))) if F (X, 0) ̸= 0;

(degY (F ), 0) if F (X, 0) = 0.

We define the pseudo-derivative of f as

pder(f)(x) =
{

e−kh(x)f ′(x) if f ′(x) ̸= 0, Y k | F̃ (X, Y ), and Y k+1 ∤ F̃ (X, Y );

0 if f ′(x) = 0.

For an E-polynomial f , we write pder(0)(f) = f and, for every i ∈ N, pder(i)(f)
for the ith successive pseudo-derivative of f , that is, pder(i)(f) = pder(pder(i−1)(f)).

Lemma 4.2. Let f be an E-polynomial.
(1) If f /∈ R, pdeg(pder(f)) <lex pdeg(f), where <lex denotes the lexicographic

order.
(2) For every x ∈ R, sg(pder(f)(x)) = sg(f ′(x)).
(3) For every c ∈ R such that f(c) = 0, mult(c, pder(f)) = mult(c, f) − 1.

Moreover, for every c ∈ R, mult(c, f) = min{µ ∈ Z≥0 | pder(µ)(f)(c) ̸= 0}.

Proof. (1) It follows straightforwardly from the definitions of pder and pdeg.
(2) The equality of signs is a consequence of the fact that, if f ′ ̸= 0, then

pder(f)(x) = e−kh(x)f ′(x) for a certain k ∈ Z≥0.
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(3) If f(c) = 0, we have that mult(c, pder(f)) = mult(c, f ′) = mult(f, c) − 1,
where the first equality follows from the fact that pder and f ′ differ by an
exponential factor.

To prove the second statement, we proceed by induction on the multi-
plicity ν ≥ 0. If c ∈ R has multiplicity ν = 0 as a zero of f , we have that
pder(0)(f)(c) = f(c) ̸= 0, and the equality holds.

Assume ν ≥ 1 and let c ∈ R be a zero of multiplicity ν of f . Then f(c) =
0 and mult(c, pder(f)) = mult(f, c) − 1 = ν − 1. By the inductive assump-
tion applied to pder(f), we have that min{µ ∈ Z≥0 | pder(µ)(pder(f))(c) ̸=
0} = ν − 1. Since pder(0)(f) = f and pder(µ)(f) = pder(µ−1)(pder(f)) for
µ ≥ 1, it follows that min{µ ∈ Z≥0 | pder(µ)(f)(c) ̸= 0} = ν.

□

By Lemma 4.2 (1), we have that {pder(i)(f) | i ∈ Z≥0} is a finite set, since <lex
in (Z≥0)2 is a well-ordering. Let D = min{i | pder(i+1)(f) = 0}.

Notation 4.3. For an E-polynomial f , we denote PDer(f) = (pder(i)(f))0≤i≤D.
Given a, b ∈ R, a < b, we write V (PDer(f), a, b) for the number of variations in sign
of the sequence (pder(0)(f)(a), . . . , pder(D)(f)(a)) minus the number of variations
in sign of the sequence (pder(0)(f)(b), . . . , pder(D)(f)(b)).

Lemma 4.4. Let f(x) = F (x, eh(x)) be a non-constant E-polynomial defined by
F ∈ R[X, Y ] and h ∈ R[X]. Let I = [a, b] and c ∈ (a, b) be such that the
functions pder(i) do not vanish in I except possibly at c for i = 0, . . . , D. Then
V

(
PDer(f), c, b

)
= 0 and V

(
PDer(f), a, c

)
− mult(c, f) is a non-negative even in-

teger.

Proof. We will prove it by induction on pdeg(f) = (m, n0), considering the lexico-
graphic order.

If m = 0, f is a univariate polynomial and in this case the result is true (see [3,
Theorem 2.46]).

Let f be an E-polynomial such that pdeg(f) = (m, n0), with m > 0, and assume
the result holds for every E-polynomial with pseudo-degree smaller than (m, n0).
Let µ := mult(c, f) ≥ 0. As f is non-constant, pdeg(pder(f)) <lex pdeg(f). Then,
by the inductive hypothesis applied to pder(f), if µ′ := mult(c, pder(f)) ≥ 0, we
have that

• V (PDer(pder(f)), c, b) = 0,
• V

(
PDer(pder(f)), a, c

)
− µ′ = 2j for some j ∈ Z≥0.

We will now relate the number of variations in sign in PDer(f) with those in
PDer(pder(f)), taking into account that PDer(f) = (f, PDer(pder(f))) and the
following facts:

(a) For i = 0, . . . , D, the sign of pder(i)(f) is constant and non-zero in each
of the intervals [a, c) and (c, b]. In particular, if pder(i)(f)(c) ̸= 0 then
sg

(
pder(i)(f)

)
is constant and non-zero in [a, b].
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(b) If pder(i)(f)(c) = 0, for i < D, then:

{
sg

(
pder(i)(f)

)
= − sg

(
pder(i+1)(f)

)
in [a, c),

sg
(
pder(i)(f)

)
= sg

(
pder(i+1)(f)

)
in (c, b].

This follows from the fact that sg
(
pder(i+1)(f)

)
is constant and non-zero

in [a, c) and in (c, b]. Since pder(i+1)(f) has the same sign as the derivative
of pder(i)(f) (see Lemma 4.2 (2)), this implies that pder(i)(f) is strictly
increasing (resp., decreasing) in [a, c) and in (c, b] if pder(i+1)(f) is positive
(resp., negative) in those intervals.

Assume first that f(c) = 0. Then, µ ≥ 1 and µ′ = µ − 1. Using (b) for i = 0, we
have that sg(f(a)) = − sg(pder(f)(a)) and sg(f(b)) = sg(pder(f)(b)), that is, for
σ1, σ2 ∈ {1, −1}, the signs of f and pder(f) at a, c and b are as follows:

a c b

f −σ1 0 σ2

pder(f) σ1 σ2

Therefore V
(
PDer(f), c, b

)
= V

(
PDer(pder(f)), c, b

)
= 0 and V

(
PDer(f), a, c

)
=

1 + V
(
PDer(pder(f)), a, c

)
, and so V

(
PDer(f), a, c

)
− µ = 1 + µ′ + 2j − µ = 2j, as

we wanted to prove.
Now, if f(c) ̸= 0 (that is, µ = 0), f has a non-zero constant sign σ0 in [a, b]. We

consider separately the cases when pder(f)(c) ̸= 0 and pder(f)(c) = 0:

• If pder(f)(c) ̸= 0 (that is, µ′ = 0), then pder(f) has a non-zero constant
sign σ1 in [a, b]. Then:

a c b

f σ0 σ0 σ0

pder(f) σ1 σ1 σ1

and we conclude that V
(
PDer(f), c, b

)
= V

(
PDer(pder(f)), c, b

)
= 0 and

V
(
PDer(f), a, c

)
= V

(
PDer(pder(f)), a, c

)
= 2j+µ′ ≥ 0 is an even integer.

• If µ′ ≥ 1, pder(i)(f)(c) = 0 for i = 1, . . . , µ′ (see Lemma 4.2 (3)). Re-
mark (a) implies that pder(µ′+1)(f) has a non-zero constant sign σ1 in
[a, b]. In addition, according to (b), we have that sg

(
pder(i)(f)(b)

)
=

sg
(
pder(µ′+1)(f)(b)

)
for every i = 1, . . . , µ′, and that the signs of

pder(i)(f)(a) alternate for i = 1, . . . , µ′ + 1.
– If µ′ is odd, it follows that sg

(
pder(µ′+1)(f)(a)

)
= − sg

(
pder(f)(a)

)
.

Summarizing:
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a c b

f σ0 σ0 σ0

pder(f) −σ1 0 σ1
...

...
...

...
pder(µ′)(f) −σ1 0 σ1

pder(µ′+1)(f) σ1 σ1 σ1

Thus, if σ1 = σ0, V
(
PDer(f), c, b

)
= V

(
PDer(pder(f)), c, b

)
= 0 and

V
(
PDer(f), a, c

)
= V

(
PDer(pder(f)), a, c

)
+ 1 = 2j + µ′ + 1 ≥ 0 is an

even integer. On the other hand, if σ1 = −σ0, then V
(
PDer(f), c, b

)
=

1 − 1 + V
(
PDer(pder(f)), c, b

)
= 0 and V

(
PDer(f), a, c

)
= −1 +

V
(
PDer(pder(f)), a, c

)
= −1 + 2j + µ′ ≥ 0 is an even integer.

– If µ′ is even, we have that sg
(
pder(µ′+1)(f)(a)

)
= sg

(
pder(f)(a)

)
,

and so the situation is as follows:

a c b

f σ0 σ0 σ0

pder(f) σ1 0 σ1
...

...
...

...
pder(µ′)(f) −σ1 0 σ1

pder(µ′+1)(f) σ1 σ1 σ1

Then, V
(
PDer(f), c, b

)
= V

(
PDer(pder(f)), c, b

)
= 0 and

V
(
PDer(f), a, c

)
= V

(
PDer(pder(f)), a, c

)
= 2j + µ′ ≥ 0 is an even

integer.

□

Now we can generalize the Budan–Fourier theorem to E-polynomials:

Theorem 4.5. Let f be an E-polynomial, I = (a, b] an interval, and N ≥ 0 the
number of zeros of f in I counted with multiplicities. Then V (PDer(f), a, b) − N
is a non-negative even integer.

Proof. Suppose c1 < · · · < cr are all the zeros in (a, b) of the functions in PDer(f).
Let c0 = a, cr+1 = b and µi = mult(ci, f) for i = 1, . . . , r + 1. Let di ∈ (ci, ci+1)
for each i = 0, . . . , r. By Lemma 4.4, for every i = 0, . . . , r, V (PDer(f), ci, di) =
0 and V (PDer(f), di, ci+1) − µi+1 = 2ji ≥ 0 for a non-negative integer ji. As
{x ∈ (ci, di] | f(x) = 0} = ∅ and µi+1 is the number of zeros of f in (di, ci+1]
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counted with multiplicities, for every i = 0, . . . , r, we conclude that

N =
r∑

i=0
µi+1 =

r∑
i=0

V (PDer(f), ci, di) + V (PDer(f), di, ci+1) − 2ji

= V (PDer(f), a, b) − 2j

for a non-negative integer j. □

For an E-polynomial f(x) = F (x, eh(x)) defined by polynomials F ∈ Z[X, Y ]
and h ∈ Z[X] with integer coefficients, Theorem 3.1 provides us with an explicit
bounded interval containing all the roots of f(x) and so, applying the previous
result to this interval, we can obtain an upper bound on the number of real zeros
of f .

Furthermore, in the general case, since every E-polynomial has finitely many
zeros, we may define the sign of an E-polynomial at +∞ as the sign it takes when
evaluated at a sufficiently large real number and, similarly, we may define its sign
at −∞. Using these definitions, Theorem 4.5 also holds for a = −∞ or b = +∞.

We point out that the signs of an E-polynomial f(x) = F (x, eh(x)) at −∞ or
+∞ can be easily determined from the signs of coefficients of the polynomials F
and h. Without loss of generality, assume F (X, Y ) =

∑m
j=0 aj(X)Y j with am ̸= 0

and a0 ̸= 0, and h(X) =
∑δ

i=0 hiX
i; then,

sg(f, +∞) =
{

sg(lc(am)) if hδ > 0,

sg(lc(a0)) if hδ < 0.

and

sg(f, −∞) =
{

(−1)deg(am) sg(lc(am)) if (−1)δhδ > 0,

(−1)deg(a0) sg(lc(a0)) if (−1)δhδ < 0.

Thus, Theorem 4.5 enables us to obtain an upper bound for the number of zeros
of an E-polynomial in the spirit of Descartes’ rule of signs.

Example 4.6. Let f(x) = (6x − 1)e2x − (8x + 1)ex − 1. The family of pseudo-
derivatives of f is PDer(f) = (pder(i)(f))0≤i≤4, where

pder(0)(f)(x) = (6x − 1)e2x − (8x + 1)ex − 1,

pder(1)(f)(x) = (12x + 4)ex − (8x + 9),

pder(2)(f)(x) = (12x + 16)ex − 8,

pder(3)(f)(x) = 12x + 28,

pder(4)(f)(x) = 12.

The lists of signs of PDer(f) at −∞ and +∞ are (−1, 1, −1, −1, 1) and (1, 1, 1, 1, 1),
respectively. Then, V (PDer(f), −∞, +∞) = 3, which is the actual number of real
zeros of f .
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Theorem 4.5 implies, in particular:
Corollary 4.7. The number of real zeros of a non-zero E-polynomial f (counting
multiplicities) is at most D = min{i ∈ Z≥0 | pder(i+1)(f) = 0}.

Since the length of the sequence of non-zero pseudo-derivatives of an E-polyno-
mial can be estimated in terms of the degrees of the polynomials defining it, we
deduce an explicit upper bound for the number of real zeros of an E-polynomial:
if f(x) = F (x, eh(x)), with F ̸= 0 and deg(F ) = d, following the proof of [2,
Lemma 28], we can obtain D ≤

∑d
k=1(k +1)δk. For δ ≥ 2, this bound is not sharp,

since upper bounds depending polynomially on the degrees are known (see [8], [1,
Corollary 17]). On the other hand, for δ = 1, the bound (d+1)(d+2)

2 − 1 we obtain
for the total number of real zeros of an E-polynomial improves both Khovanskii’s
upper bound for the number of non-degenerate roots and [1, Corollary 17].

5. On the number of zeros of a class of E-polynomials

In [12], the question about a sharp bound for the number of zeros of an
E-polynomial of the form f(x) = F (x, ex) with F (X, Y ) ∈ R[X, Y ] is posed and
the author conjectures that, if degX(F ) = n and degY (F ) = m, an upper bound
for the number of zeros is n + m. This section is devoted to the analysis of this
conjecture, both for E-polynomials defined from polynomials with real coefficients
and for the sub-class of those defined from polynomials with integer coefficients.

First recall that, with the previous notation, pdeg(f) = (m, n0) with n0 ≤ n
and, assuming n, m ∈ N, we have that pdeg(pder(f)) = (m′, n′

0) where, either
m′ = m and n′

0 ≤ n − 1 or m′ ≤ m − 1 and n′
0 ≤ n. Then, we can estimate the

length of the sequence PDer(f) = (pder(i)(f))0≤i≤D in terms of the degrees n and
m as follows: D + 1 ≤ (n + 1)(m + 1). By Corollary 4.7, we deduce:
Proposition 5.1. Let f(x) = F (x, ex), where F (X, Y ) ∈ R[X, Y ] is a non-zero
polynomial with degX(F ) = n and degY (F ) = m. Then, f has at most N :=
(n + 1)(m + 1) − 1 real zeros counting multiplicities.

We will now prove that the bound in the previous proposition can be attained,
thus providing a negative answer to the conjecture in [12], not only for arbitrary
E-polynomials but also for the subclass of E-polynomials defined from polynomials
with integer coefficients. Our result also shows that Khovanskii’s upper bound on
the number of non-degenerate roots for Pfaffian functions is sharp for the considered
family of E-polynomials.
Proposition 5.2. Let n, m ∈ N. There exists a non-zero polynomial F ∈ Z[X, Y ]
with degX(F ) = n and degY (F ) = m such that the E-polynomial f(x) = F (x, ex)
has N = (n + 1)(m + 1) − 1 different non-degenerate real zeros.
Proof. We start by proving the existence of a non-zero polynomial G ∈ R[X, Y ]
with degX(G) ≤ n and degY (G) ≤ m such that the associated E-polynomial g(x) =
G(x, ex) has N = (n + 1)(m + 1) − 1 different real zeros. From the upper bound in
Proposition 5.1 for the number of real zeros of g counting multiplicities, it follows
that degX(G) = n, degY (G) = m, and all the real zeros of g are non-degenerate.
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Then, we approximate the polynomial G ∈ R[X, Y ] by a polynomial Ĝ ∈ Q[X, Y ]
with degX(Ĝ) = n and degY (Ĝ) = m so that the E-polynomial defined by Ĝ also
has N different (non-degenerate) real zeros.

Let G be the polynomial in the variables A =
(
Akl

)
0≤k≤n, 0≤l≤m

, X, Y defined
by

G(A, X, Y ) =
∑

0≤k≤n, 0≤l≤m

AklX
kY l.

Choose N different real numbers x1 < · · · < xN , and consider P1 = (x1, ex1), . . .,
PN = (xN , exN ) in R2. The polynomial

G(X, Y ) =
∑

0≤k≤n, 0≤l≤m

aklX
kY l

is non-zero and vanishes at the points P1, . . . , PN if and only if the vector of its
coefficients a := (akl)0≤k≤n, 0≤l≤m is a non-trivial solution of the following system
of linear equations in the unknowns A:

G(A, x1, y1) = 0
...

G(A, xN , yN ) = 0.

It is clear that a non-trivial solution to this system of N equations exists since
the number of unknowns is (n + 1)(m + 1) = N + 1. Let g(x) = G(x, ex) be the
E-polynomial obtained from a given non-trivial solution a ∈ RN+1.

Now, in order to show that there exists a non-zero polynomial Ĝ with degX(Ĝ) =
n, degY (Ĝ) = m and rational coefficients that defines an E-polynomial with the
same number of real zeros as g, proceed in the following way.

For i = 1, . . . , N , consider mutually disjoint intervals Ii = [αi, βi] such that
αi < xi < βi and g′ has no zero in Ii; in particular, as g is a continuous function,
g(αi)g(βi) < 0. Let

I = [α1, βN ], ε = min
1≤i≤N

{|g(αi)| , |g(βi)|} > 0, and M = max {1, |α1| , |βN |} .

For every 0 ≤ k ≤ n, 0 ≤ l ≤ m, let bkl ∈ Q \ {0} be such that |bkl − akl| <
ε

2MnemM (n+1)(m+1) , and

Ĝ(X, Y ) :=
∑

0≤k≤n, 0≤l≤m

bklX
kY l ∈ Q[X, Y ].

For every x ∈ I,∣∣∣Ĝ(x, ex) − G(x, ex)
∣∣∣ ≤

∑
0≤k≤n, 0≤l≤m

|bkl − akl| |x|k elx

<
∑

0≤k≤n, 0≤l≤m

|bkl − akl| MnemM <
ε

2 .
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In particular, for every x ∈ {α1, . . . , αN , β1, . . . , βN }, we have that∣∣∣Ĝ(x, ex) − G(x, ex)
∣∣∣ <

ε

2 ≤ 1
2 |g(x)| = 1

2 |G(x, ex)| .

We deduce that sg(Ĝ(x, ex)) = sg(G(x, ex)) for every x ∈ {α1, . . . , αN , β1, . . . , βN }.
Then, Ĝ(αi, eαi)Ĝ(βi, eβi) < 0 for i = 1, . . . , N and, as a consequence, ĝ(x) =
Ĝ(x, ex) has a zero in each interval Ii, for i = 1, . . . , N .

By clearing denominators in the coefficients of Ĝ, we obtain a polynomial F
with integer coefficients satisfying the required conditions. □
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