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ABSTRACT: We study celestial amplitudes in string theory at one-loop. Celestial ampli-
tudes describe scattering processes of boost eigenstates and relate to amplitudes in the
more standard basis of momentum eigenstates through a Mellin transform. They are thus
sensitive to both the ultraviolet and the infrared, which raises the question of how to ap-
propriately take the field theory limit of string amplitudes in the celestial basis. We address
this problem in the context of four-dimensional genus-one scattering processes of gluons
in open string theory which reach the two-dimensional celestial sphere at null infinity. We
show that the Mellin transform commutes with the adequate limit in the worldsheet moduli
space and reproduces the celestial one-loop field theory amplitude expressed in the world-
line formalism. The dependence on o’ continues to be a simple overall factor in one-loop
celestial amplitudes albeit with a power that is shifted with respect to tree-level, thus mak-
ing manifest that the dimensionless parameter g%,/a’? organizes the loop expansion in the
celestial basis. The precise way in which the amplitudes scale with this parameter depends
on the number of non-compact dimensions in such a way that in 4 dimensions the scaling
with o/ does agree with that at tree-level.
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1 Introduction

A variety of old and new insights into low-energy aspects of gravity and gauge theories [1]
have reinvigorated the pursuit of a holographic formulation of quantum gravity in asymp-
totically flat spacetimes. Since the bulk Lorentz group acts as the global conformal group
on the celestial sphere, the natural observables in flat space holography are celestial am-
plitudes which recast the standard S-matrix in a basis of boost (rather than energy) eigen-
states [2-6]. They transform as correlation functions in an exotic conformal field theory
(CFT) that lives on the celestial sphere at null infinity. This celestial CFT is conjectured
to be holographically dual to quantum gravity in asymptotically flat spacetimes.

The approach towards establishing this celestial holography proposal so far has been
predominantly bottom-up by exploring the implications of infrared aspects of gravity and
gauge theories and by examining the structure of celestial amplitudes. This includes the
identification of the symmetries of celestial CF'T and their constraints on bulk scattering
amplitudes [7-22] and how basic CFT structures such as the operator product expansion
(OPE) arise [11, 23, 24]. This aspect of flat space holography does not require the detailed
knowledge of a microscopic description such as string theory. Yet key new insights are



to be expected from a string theory realization of celestial holography which remains an
important outstanding goal. This puts the current status of flat space holography in
contrast with the (much older and much better understood) AdS/CFT correspondence for
which we have a string theory embedding [25, 26] and this has led to a variety of crucial
insights into the nature of quantum gravity and the formulation of a detailed holographic
dictionary.

The realization of such a top-down construction for asymptotically flat spacetimes —
see [27-29] for interesting recent proposals in the context of twisted holography — would
allow us to ask new types of questions. One may, for example, wonder whether there exists
a celestial counterpart of the 1/N expansion of AdS/CFT. This question is closely tied to
the fundamental structure of celestial CFT since, e.g. non-analytic correlation functions
may appear in OPEs as an artifact of a perturbative truncation. A step towards advancing
this goal is to achieve a detailed understanding of celestial amplitudes in string theory.

A particularly appealing aspect of celestial amplitudes in string theory is their soft
UV behavior which imposes interesting constraints on their analytic structure in the boost
weight basis. Celestial amplitudes in field theory, as defined by the Mellin transform of mo-
mentum space amplitudes, are in general not well-defined in the UV. However, as explored
at tree-level in [30], the UV-softness of string theory [31, 32] renders the diverging energy
integrals finite. This soft UV behavior of quantum gravity implies stringent constraints on
the analytic structure of celestial amplitudes such that the exact four-particle scattering
amplitude is meromorphic in the complex boost weight plane with poles confined to one
side of the real axis [33]. The expected exponential decay of string amplitudes at fixed-
angle scattering arises at large real frequencies, but can have poles and branch cuts in the
complex frequency plane whose imprint on celestial amplitudes was studied in [34]. Other
interesting works on celestial string amplitudes include the computation of celestial OPEs
from the string worldsheet in [35] and in the context of ambitwistor strings in [14, 36-38].
Many open questions remain and the study of celestial amplitudes in string theory deserves
more attention.

The first explicit results on celestial string amplitudes at tree-level are from the beau-
tiful work [30] of Stieberger and Taylor. Their analysis of celestial 4-gluon and 4-graviton
amplitudes in type I open superstring and closed heterotic superstring theories at tree-level
revealed several interesting features. First, the UV-softness of string amplitudes renders
potentially divergent Mellin integrals of field theory amplitudes finite and the resulting
celestial amplitudes are well-defined. Second, the dependence on ' consists in a simple
overall factor with a power that corresponds to the net conformal boost weight of the ex-
ternal particles. Third, they obtained the low-energy field theory limit of celestial string
amplitudes at tree-level as a certain limit of the conformal cross ratio. Fourth, the ana-
logue of the high-energy “super-Planckian” limit for celestial amplitudes was argued to
correspond to the limit of large net boost weight and appears to pin the worldsheet of the
string to the two-dimensional celestial sphere.

In light of the UV-IR mixing of celestial amplitudes these are particularly fascinating
results. They also pose several new questions: Does the simple dependence of celestial
string amplitudes on o' persist at loop-level? If so, do the overall powers of o/ and the



(dimensionful) ten-dimensional Yang-Mills coupling constant combine into a natural (di-
mensionless) genus expansion parameter? Moreover, does the field theory limit of string
amplitudes commute with the Mellin transform? In this work we will answer these ques-
tions in the affirmative.

We will focus on 4-gluon scattering amplitudes in type I open string theory at 1-loop
and consider configurations such that the external momenta are essentially four-dimensional
while loop momenta are ten-dimensional. The celestial 4-gluon amplitude in Yang-Mills
theory at tree-level takes the form of an exotic two-dimensional correlation function which
depends on the net boost weights of the external particles and has distributional support
that enforces a reality condition on the conformal cross ratios. In string theory the celestial
amplitude at tree-level includes the Mellin transform of the Veneziano amplitude. Such
tree-level celestial string amplitudes were studied in [30].

We generalize their result beyond tree-level focusing on the planar (orientable) 1-loop
contribution to 4-gluon scattering. Compared to tree-level the integral over the moduli is
much more involved and so is the dependence on «'. It is thus highly non-trivial that o/-
dependence at 1-loop continues to show up as a simple overall factor. Moreover, compared
to tree-level the power of o’ given by the net boost weight of the external gluons is shifted
by three units - which is the precise power of o’ needed to combine the (dimensionful)
ten-dimensional Yang-Mills coupling constant go into a dimensionless parameter g3,/a’>.
It appears natural to identify this as the loop expansion parameter organizing different
genus contributions of celestial amplitudes.

Another puzzling question for celestial string amplitudes concerns how to appropriately
take the field theory limit and whether it commutes with the Mellin transform that mixes
the high and low energy regimes. At loop-level the natural field theory limit arises from a
limit on the moduli space regardless of the value of the conformal cross ratios of celestial
amplitudes. We compute this field theory limit for celestial 4-gluon amplitudes in string
theory at 1-loop following two routes. First, we review how the field theory limit of string
amplitudes of four gluons, corresponding to the appropriate sector of the moduli space
of the genus-1 integrated correlators, matches the expression for the 4-gluon amplitude in
Yang-Mills theory in the worldline formalism. Second, we perform the field theory limit
directly on the celestial 1-loop string amplitudes and compare it to the Mellin transform
of the Yang-Mills amplitude in the worldline representation. This demonstrates that the
Mellin transform and the appropriate field theory limit in the moduli space of the string
worldsheet CF'T commute.

The paper is organized as follows. In section 2 we collect relevant formulae and notation
and introduce celestial amplitudes. We review in section 3 the tree-level amplitude for four
gluons in type I open superstring theory in the momentum and boost weight bases and
discuss their forward scattering limit. In section 4 we compute the 1-loop celestial string
amplitude and show that, as for the tree-level amplitude, the dependence on o’ is an overall
factor albeit with a shifted power. In section 5 we discuss the field theory limit of celestial
string amplitudes at one-loop. We conclude in section 6 with some open questions.



2 Preliminaries

A generic 4-point scattering amplitude in momentum-space is a function of the Mandelstam

invariants s,t,u defined in terms of the external particle momenta p; as!

s=—(p1+p)? t=—(p2+p3)® u=—(p1+ps) (2.1)

Momentum conservation and pf = 0 implies s +t + u = 0 so that any massless 4-point
scattering amplitude A4 can be written as

As(p1,pa, p3,pa) = Als, t, {Ji}) 0P (p1 + p2 + p3 +pa) (2.2)

where J; are the helicities of each of the external particles. We can parametrize the mo-
menta for each external massless state p;‘ as

Py =mnjw;d" (%), (2.3)

where w; is the (positive) frequency of the 4% particle, Z labels a point on the d = D — 2
dimensional celestial sphere, 7; = &1 denotes incoming versus outgoing particles, and ¢"
is a null vector pointing towards the celestial sphere

qu('gj): (1+|'gj|272gj71_|gj|2) (24)

Here, i, =1,2,3,4, un=10,1,2,..., D — 1; see the appendix for conventions.

In this work we are interested in 4-gluon amplitudes in open superstring theory, their
field theory limits and their representations as celestial amplitudes on the 2-sphere at null
infinity. To that end we will consider momentum configurations pé‘ = (p?,p%,p?,p?,ﬁ),
while loop momenta /# are ten-dimensional.

The celestial amplitude, A4({A;, Z}), is obtained from the momentum space ampli-
tude, A4({p;}), by performing a Mellin transform with respect to the external frequencies,
namely

o 4
Au({Ai, 7)) = /0 [T (wideor) 6D @) + o+ + 1) A({wi, 53} (25)
=1

These celestial amplitudes transform as 2-dimensional correlation functions with conformal

boost weights A; = 1 4 i\; where \; € R. It will be convenient to define the net boost
weight 8 and denote the scattering angle 6 in the center-of-mass frame through

. 4
i S 0
p= ~3 E Aj, r=—g = csc? (2) . (2.6)
i=1

Using the parametrization (2.3), we can express Z; = (2, ;) in complex coordinates and,
after enforcing momentum conservation, write

212234 _ 212734
r=—" r=—_——": (2'7)
223241 723241

where z;; = z; — z;. These represent cross ratios in the (z, z) plane.

'We use the mostly-plus metric and the kinematic conventions of [39, 40].



Momentum conservation in the 4-point case allows for three of the four Mellin integrals
in (2.5) to be easily evaluated and implies that the resulting celestial amplitude is distri-
butional with support on 7 = 7. In order to explicitly evaluate the Mellin transform, it is
convenient to factorize the amplitude as A(s,t,{J;}) = R({z, zi, Ji})B(s,t), where B only
depends on Mandelstam variables and R is a rational function that carries the helicities
of the external particles, but whose precise expression is not relevant for the discussion
presented here. The celestial 4-point amplitude then takes the form [41]

A({An 2, 5)) = 2K({As, 20, 20) 5 (r — 1) 0(r — P)O(r — 1)B(r, 8),  (2.8)

with B being the Mellin transform of the form factor, namely

B(r, B) :/ dww P1B(rw, —w) , (2.9)
0
where A
K({Ag, 2, 23) = [[ 2> ozt (2.10)
i=1

has the transformation properties of a 4-point correlation function in a d = 2 CFT. Here

hi = %(Ai +Ji) hi= %(Ai —Ji), (2.11)
and h =% hy, h =1, hs.

Note that the integral in B only depends on the conformally invariant cross-ratio r and
the sum of all scaling dimensions though 5. The step function O(r — 1) simply enforces the
condition for physical scattering » > 1. Nevertheless, one can also consider the analytic
continuation of the expression to the r < 0 region of the kinematic space; for example, this
is considered in [30] and it will also be considered in the integrals appearing throughout
this article.

3 Celestial string amplitudes

In this section we review celestial string amplitudes at tree-level and their forward scattering
limit as studied in [30]. We end with some remarks about this limit which will be relevant
for the study of celestial string amplitudes at 1-loop.

3.1 Review of string amplitudes in momentum space

We will be concerned with superstring amplitudes up to 1-loop order, i.e.

-Astring = A(O) + A(l) + ... (31)

string string ©

where (0) indicates the tree-level contribution and (1) the 1-loop correction. The (color-
ordered) 4-gluon amplitude in type I string theory, including the tree-level and its 1-loop
correction, is given by

Astring(p17p27p37p4) = Ag?])\/[({p’u JZ}) (f(O) + f(l) + .. ) ) (32)



with f©, f@) . being contributions from tree level and different loops in the expansion.
f© is the Veneziano amplitude

I'(1—ds)I'(1—a't)

(0) _
I s:t) rl—a's—at) ’

(3.3)

which for Re(a/t) < 1, Re(a/s) < 0 and using the integral representation of the Euler beta
function can be expressed as

1 ’ /
FO(s,t) = —o/s/ drz= @711 — g)=". (3.4)
0
This representation naturally arises from the exponentiation of propagators on the disk

when Wick contracting the vertex operators.

The 1-loop contribution f(!) has a planar, orientable piece given by?

W, ,y_ 67k st [ dg 10-D
£ (s t) = =205 [ L (i 0,q)
1 3 —a’s —a't
_ V12934 V23914
. /0 gdw@(wﬂ i) (7,1113@[)24) (7111311)24) ' (3:5)

Here, g19 is the 10-dimensional Yang-Mills coupling constant and Fj is the factor that
arises in toroidal compactification to D < 10 with compactification radii R = («/)'/?/a.
The dependence on the functions v¥;; = (7 (v; — v}),q) — see (4.5) below for its explicit
expression in terms of Jacobi functions — follows from

T ()2 = <¢12¢34>_a,5 (770147%)23)_0‘% 7 (3.6)

1<i<j<d V13924 13124

where we are using the definition of the Mandelstam variables, the massless condition for
the external states, and momentum conservation s +¢ + u = 0. This comes from the
exponentiation of propagators on the annulus when Wick contracting the vertices.

The ellipsis in (3.2) denote further quantum corrections including those coming from
1-loop non-orientable diagram i.e. the Moebius strip diagram, which ensures UV finiteness
of open string amplitudes at one loop, as well as from non-planar insertion configurations.
We will comment on these contributions in the next subsection.

Notice from (3.2) that both string tree-level and 1-loop amplitudes are proportional to
the Yang-Mills field theory amplitudes at tree-level. In particular this is true even for the
non-planar contribution, and it is believed to hold at higher genus as well. Thus, all the
information of the particles’ helicities is encoded in the tree-level field theory amplitude,
while all the stringy dependence lies in the expressions inside the parentheses in (3.2) which
only depend on the Mandelstam invariants s;; = —(p; + pj)2.

2For a very recent development on the explicit evaluation of this expression, see [42].



3.2 Celestial string amplitudes at tree-level

At tree-level, the MHV amplitude is the only non-vanishing one; hence, we focus on that
type of amplitudes here. From the factorization in (3.2) we see that the tree-level 4-gluon
MHYV amplitude in type I string theory is

Agn]l?in (_7_a+7+) = Ag/(')])\J(_a_7+a+)f(0)(Sat) (37)
g

with the (color-ordered) 4-gluon Yang-Mills amplitude given by

3 —
(0) 9 WIW2  Zip o 212234

Ay (== +,+) = gio —— =gio" = . (3.8)
W3W4q 223234241 212734

In going from the first to the second equality above, we have enforced total momentum con-
servation using the parametrization (2.3). The corresponding celestial amplitude obtained
by a Mellin transform of each external particle is given by [30]

O, 8) = [T w1 O, ) do. (3.9)
0
Using (3.4) with s = rw and t = —w we find
f(o)(r,ﬁ) = —a'Pr I'(1-p5) /1 dx [rlogx — log(1l — gv)]’B_1 . (3.10)
0 T

Notice that in writing (3.4) we have used an integral representation for the Euler beta
function which converges only if Re(s) < 0, thus forcing us away from the physical scat-
tering region. In the rest of this article we will assume that an analytic continuation back
to Re(s) > 0 is possible and must be performed at the end.

Expression (3.10) concludes the computation of the tree-level celestial string amplitude.
Notice that all Mellin transforms have already been explicitly performed and the final
result for f(O)(r, 3) is indeed a function of the invariant cross-ratio r and the total scaling
dimension 3"}, A; through the S-dependence.

3.3 The limit of forward scattering

In [30], Stieberger and Taylor have argued that the tree-level celestial 4-gluon amplitude is
recovered in the r — oo limit. Using (2.6) one can see that, from the bulk point of view,
this corresponds to the forward limit of the 4-dimensional scattering process. In order to
prepare the ground for the comparison with the 1-loop calculation, let us review this point
in detail. We first expand f (0)(r, B) in powers of 1/r, obtaining

FO®r, B) = —=arPr(1 — B) / Hde (logz)?~1 + O(P~1), (3.11)
0o

which upon the change variables x = exp (—e¥) becomes

FOr, 8) = (=1)%ar°T(1 - B) /_OO dy e + o). (3.12)



Since § is purely imaginary, namely § = —% Zf Ai, we have

FO(r, B) = ams( i ) + 0@ (3.13)

where we have enforced the condition 8 = 0 from the delta function above. This shows that
the r — oo limit of the celestial correlator corresponding to the tree-level 4-gluon string
amplitude (3.13) studied in [30] exactly reproduces the celestial field theory amplitude [6].

We conclude this section by pointing out that the same answer could have been ob-
tained by taking the opposite limit in the cross-ratio, that is, in the » — 0 limit. In order
to see this, we could either integrate by parts the z-integral in (3.10) or, equivalently, we
could have written the Euler beta function (3.4) as

1 , ,
FO(rw, —w) = o/w/ 21— )l g (3.14)
0

After making the change x — 1 — x in the modular variable z we obtain

FO,8) = a1 - 8) [ lriog ~ 2) - log) ! (3.15)
from which we see that the field theory result (3.13) is now recovered by taking the r — 0
limit. This duality is simply the manifestation of the crossing-symmetric form of the
original (color-stripped) string amplitude under the change s <» ¢. This means that the
r — oo limit is not strictly necessary to reproduce the field theory approximation; this
can also be achieved by other limit of the modulus. Indeed, the field theory limit of string
amplitudes in celestial basis requires further study. In the case of 1-loop amplitudes, we
will see that due to the presence of the moduli space of the genus-one surfaces the limit
can be achieved for finite r.

4 Celestial string amplitudes at one-loop
We will now compute the celestial 4-gluon open string amplitude at 1-loop.

4.1 One-loop open string amplitudes

The (color-stripped) MHV amplitude with four external massless vector open string states
in the type I theory is

Altlng (= =, 1) = APy (=, = 4, 4) FO (s,1) (4.1)
where Agﬁ]) (=, —,+,+) is the same kinematical expression appearing at tree-level (3.8)

but now with the 1-loop stringy form-factor [43]?

16 3.2 14
FOt) = =00t [FE [Gla?) - O-a%)] + fip(s.). (42)

3See [40] equation (9.1.11) for the full expression with arbitrary polarizations and equation (10.4.10).



Here f](\,}l)g is the orientable, non-planar contribution, while the planar (orientable) contri-
bution which we will focus on is

16737 Ld
Pl = =0 [ S, (43)

with

/ Hdé? [T v (0, q)* P (4.4)

1<J

with 0 = 0; — 0; and

2q2” cos 26 + ¢*"

(0, q) = sin b H — ) (4.5)

For computational convenience, we have absorbed a factor of 7 in the argument of the
exponentiated propagators 1(6j;,q). Now, the integral on the domain D in (4.4) means
integrating 02 3 4 in the interval (0, ) keeping 6 = 0 fixed, so that 6;; = 6; and the order
0 < 0y <03 <0y <m. Together with a factor that can be written in terms of the Jacobi
function 91, each exponential of the propagator contributes with a factor —272log™! ¢ to
the measure of integration on the modulus.

Only the planar annulus and the Mobius diagrams, G(¢?) and —G(—¢?), respectively
contribute with the color factor Tr(Aa, AayAagAa, ), Whereas the 4-point non-planar annulus
diagram f ](VII)D contributes with a color factor Tr(Aa, Aa, ) Tr(AazAa, ). A remarkable feature of
the non-planar contribution is that it also factorizes out the contribution Ag(,)])\/f(—, —+,+).
This is crucial for the string 1-loop computation as it guarantees the correct kinematic
dependence of the amplitude. In the non-planar contribution, one deals with two insertions
at different boundaries of the annulus. This amounts to considering both propagators
between vertices in the same boundary, which are written in terms of the functions given
n (4.5), together with propagators between vertices at different boundaries, which involve
the modified function
<1 —2¢°" 1 cos 20 + ¢4 2

77ZJNP 9 q 1:[ (1 _ q2n)2

(4.6)

Analogous to the planar contribution, apart from a factor that can be written in terms of Ja-
cobi function 94, each exponential of the propagator contributes with a factor —2721log~! q.
For concreteness, hereafter we focus on the planar, orientable contribution. In the limit we
will be dealing with, the other pieces contribute in a similar way.

4.2 Celestial string amplitudes at one-loop

The Mellin transform of the amplitude (4.1) (with the momentum-conserving é-function
reinstated) is controlled by the integral

f(l) (r,8) = /00o dw wiﬁ*lf(l)(rw, —w). (4.7)



It turns out that the Mellin transform of the planar contribution

16 3,2 1 d
f}l)(rw, —w) = — —L I gwer/ %
0

o q

942, @/1(93,(]) —a'rw '¢<937Q)w(942,q> ol
/Hd9 9437 >¢(92,q)) (¢(932’q)¢(94,q)> (4.8)

can be evaluated exactly. Defining

_ Y (042, 9)Y (03, q) _ Y(042,9)Y(03, q)
V=t (e aieeg) = (i) (4.9)

and changing the order of integration we obtain

F) (1, 8) = —167° g3 (/)3T (2 — B) / Hdg / Hda v —w)’ (4.10)

where we used the standard integral representation of the I'-function. From this we observe
that, as for the tree-level amplitude [30], the entire dependence on o for the celestial 1-
loop amplitudes merely consists in an overall factor of powers of o/. This observation
will be crucial in the discussion of the field theory limit. Notice that, while the tree-level
celestial amplitude with (3.10) is proportional to a/?g%), the 1-loop result with (4.10) is
proportional to a/? ~3g1. Indeed, this is consistent with the fact that the 10-dimensional
Yang-Mills coupling constant gio has length dimension 3, so that g%,/a’® is dimensionless.
It seems natural to identify g%,/a/® as the parameter that organizes the loop expansion in
the celestial basis.

The (S-dependence for tree-level celestial string amplitude captured by fO in (3.10)
is given as a representation in terms of an integral over the string moduli for a 4-point
amplitude at tree-level, that is, the disk with four vertex operators at its boundary: the
only modulus being the single real variable  which is integrated over. Similarly for the
1-loop computation, f(}) here is also given in terms of an integral over the entire moduli
of the 4-point open string amplitude at 1-loop, i.e. the annulus and the M&bius strip with
four vertex operator insertions at their suitable boundaries.*

It is amusing to note that the argument of the I'-function and the exponent of the
integrand in (4.10) is shifted by one unit compared to (3.10). It would be interesting to
understand how the residues of the poles at tree-level get modified at 1-loop. This deserves
further study.

5 Field theory limit and the worldline formalism

In this section we study the field theory limit of celestial 1-loop open string amplitudes
using the worldline formalism.

“The planar amplitude (the annulus), represented by the functions V(¢?), has the vertex insertions at its
outer boundary only, while the non-orientable one (the M&bius strip), represented by the functions V(—q2)7
has only one boundary with the vertex operators inserted on it.

~10 -
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Figure 1. Point-particle approximation of the 1-loop string diagram.

5.1 Low energy limit in momentum space

We begin with a brief review of the field theory (¢’ — 0) limit of the 1-loop string amplitude
in momentum space. We will show that it naturally yields the 1-loop amplitude in field
theory when written in the language of the worldline formalism. Let us first rewrite

T (0057 = exp { 320y low (0,05 . (5.1)
1<) 1<J
It is worth mentioning that this factor appears in all string amplitudes at 1-loop due to
the exponential dependence on the Mandelstam invariants p; - p; in the vertex operators
for all possible external states.
The field theory limit is controlled by the region ¢ — 1 (from below). In order to study
this regime, it is convenient to make the change of variables

9 2
w = exp {10;} , (5.2)

and study the w — 0 limit instead. This is depicted in the figure 1. Up to subleading order

in the w ~ 0 expansion (including a purely g-dependent prefactor in 1), one obtains [40]

log w T
log ¥j; = —0ji(m — 93'2‘)% + log (bgw> + O(w). (5.3)

Using this in the exponent of (5.1) yields
log w m
Z 2a/p; - pjlog i = Z 2a/p; - p; [—eji(ﬂ - 9]’1’)% + log (> + O(w)} (5.4)
— — 27 —logw
1<) 1<J
The leading term in the small w expansion above vanishes due to momentum conservation
and the massless condition p? = 0, since Y, <j Pi - pj = 0; therefore

H¢2a Pipj _ exp{ _ —logw sz - p; ji(m —053) + O(’w)} . (5.5)

i<j i<j
The field theory limit of the 1-loop string amplitude is thus
dw 1

wlogw

/ d94/ d@g/ dfs exp{ long:pz p; bji(m 0]-2-)}, (5.6)

1<j

AW 32r° 910 AQ

string q;1
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which is of order gi,/a’ since A§9])V[ ~ g3, In order to focus on the w ~ 0 contribution only,
we have also introduced the cutoff € which is arbitrarily small but held away from zero.
Notice also that, since w < 1, the factor logw in the exponent blows up. However,
the field theory limit is achieved by taking o/ — 0 as in this limit all the massive string
states become infinitely heavy leaving only the massless part of the spectrum. Thus, we
need to take the joint limit w — 0, &’ — 0 but keeping the product o' logw finite. After
the change of variables
o logw

e (5.7)

T=—

we have

SO 3 2 4(0) > dr
Astring 1 167°g10 Ay as St/;;logs T2

T 04 03 4
X / d04/ d93/ d@g exp {T Z Di " Dy eji(ﬂ' — 9]1)} (5.8)
0 0 0

ij=1

where 67 = 0. Notice that the overall factor no longer depends on o/. Now, we send o — 0
while holding ¢ fixed (we will remove this regulator at the end). This effectively sets the
T-integration over the full range (0, 00) which is precisely what is needed in order to arrive
at the field theory amplitude.

To precisely match with the field theory result, let us first make the following changes

of variables
T T

94:TT1’ 93:f7—2’ 922%7'3- (5.9)
In the case of four massless external states we get
. 1 0 o dT
i}gloAétBing qil 167739%0A§’J)\4 st 0 ﬁ
T T1 T2 4
X/ dTl/ dTg/ dT3 exp Z 7T2Gz‘jpi " Py (510)
0 0 0 =1
where G;; = G(7, 7;) is given by
2
P
G(ri, 7)) = |7'i_7'j|_7( i) (5.11)

T

with 74 = 0, and we have used momentum conservation. Equation (5.10) is precisely the
expression describing the 4-point amplitude at 1-loop in D = 10, expressed in the worldline
formalism [44], where Gj; is, in fact, the worldline Green’s function. Notice that, while
we have done the computation in D = 10, the same happens for arbitrary dimension D.
To see that, one has to take into account that, in the ¢ ~ 1 limit, the compactification
factor appearing in (3.5) has the asymptotic form F(a,q) ~ (a/y/7)(—logw)'/? 4 ---, so
that the integrand in the worldline formalism acquires an extra factor of the Schwinger
parameter, namely Fj(a,q) ~ T5-D/2 which is in agreement with the formulae in [44].
This manifestly shows that the Yang-Mills expression is correctly reproduced if the limit
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o’ — 0, ¢ — 1 is taken properly. In the remainder of this section we will study how this
limit of the 1-loop amplitudes works in the celestial basis.

We will see that the precise way in which the one-loop celestial amplitude scales with
o (in D spacetime dimensions) is g%/~ P/2, so that for D = 4 the extra dependence on
o/ disappears matching with that of the tree level expressions found in [30]. Also, since
in D = 4 IR divergences appear already at 1-loop, one may ask whether this affects the
scaling with o'; that is to say, whether no anomalous dependence of o appears from IR
logarithms in the Mellin transform. One can show that there is no such dependence: this
follows from (3.5) where the piece with the integral over the Fj(a,q) factorizes out from
the Mellin transform integrals.

5.2 Field theory limit in celestial basis and worldline formalism

The Mellin transform of (5.10) (again with the momentum-conserving dé-function rein-
stated) yields the celestial 4-gluon amplitude in (super )Yang-Mills theory at 1-loop. It

will be convenient to define the functions Gw = (Tez, g@), which are independent of

T, in terms of which the exponent in (5.10) can be written as
4
Z 7T2Gij bi-pj = —TCt (512)
ij=1

with
C =r(Gia + G3q — G13 — Gag) + (G13 + Gy — G14 — Ga3) . (5.13)

From (5.10) we get

FP(s,t) ~ 16m3g2, st / / df, / dfs / by exp{-TCt},  (5.14)
—1 logsT

q

whose Mellin tranformed counterpart is

- 03
P r8) = 162 = 8)r /_ ) logm s [T [ oy [ vy -

(5.15)
We can now integrate in T', yielding
/OO AT _ (~gzloge)™™ (5.16)
—%loga T47’8 B 3— ﬁ . ‘

This is the 1-loop form factor in the celestial basis in the limit ¢ — 1 of the moduli space,
where the genus-1 surface becomes a circle. In the limit o — 0, the integral (5.16) diverges
as Re(8 — 3) < 0. This reproduces the expected field theory UV divergence.

The same result can be obtained by first computing the Mellin transform of the 1-loop
amplitude and then taking the field theory limit as we will show in the remainder of this
section. The fact that the Mellin transform and the field theory limit commute is a priori
not obvious as celestial amplitudes are sensitive to both the ultraviolet and the infrared.
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5.3 Field theory limit of celestial string amplitudes

We now perform directly the ¢ — 1 limit of the celestial string amplitude at 1-loop con-
trolled by (4.10) which we repeat here for convenience

N 1
L I R A Hd9 v W) (5.17)

It will again be useful to make the coordinate change logq = 27%/logw and expand the
functions V' and W defined in (4.9) around ¢ ~ 1 (w ~ 0), making use of (5.3), (5.7)
and (5.12), which yields

VoW IZiw (5.18)
Inserting this into (5.17) we find the ¢ — 1 limit
O = sty ore-9) [ B [ II<19 el RCED
g—1 w log w

with & ~ exp(272/log q). Since the dependence on o/ factors out we can now easily take
the field theory limit. First we express (5.19) in terms of the Schwinger parameter 7" given
n (5.7), namely

) =ty [,

04 03
’ T4 B / dbs / avs [ oy (<€) (520)
2= loge

This expression does not depend on o' other than in the limit of integration; therefore, we
can take the limit ¢ — 0, which exactly reproduces the field theory result (5.15)—(5.16).

In other words, the Mellin transform of the 1-loop Yang-Mills amplitude expressed in
the worldline formalism matches exactly the ¢ — 1 limit of the finite o’ expression for the
celestial 1-loop string amplitude. A remarkable aspect of this is that the limits agree for
all values of cross-ratio 7.

6 Conclusions

In this paper we studied celestial amplitudes in string theory beyond tree-level. We con-
sidered genus-1 scattering processes of massless vector bosons in open string theory and
examined different aspects of these observables in the celestial basis.

One of the remarkable features of celestial string amplitudes, which was observed at
tree-level by Stieberger and Taylor in [30], is their simple dependence on «’. In the case
of 4-gluon scattering at tree-level, the dependence of the celestial string amplitudes on
the string tension turns out to be an overall factor, (/)?. In section 4.2 we have shown
that a similar phenomenon persists at 1-loop where the dependence on the string tension
is again an overall factor albeit with a shifted power, (o’ )5_3. This simple behavior can
be regarded as a manifestation of the mixing of energy regimes: as expressed in [30], in
celestial amplitudes all the string excitations participate at the same footing; the peculiar
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dependence of o at tree-level and 1-loop manifestly shows that. Our result, moreover,
suggests that the quantity g7,/a’® is the natural dimensionless parameter that organizes
the genus expansion in the celestial basis. Note, that when compactifying down to D

dimensions, the corresponding quantity would be g%o/ 2-Df2,

The fact that celestial string amplitudes exhibit a factorized dependence on o' raises
the question as to how the field theory limit works. It was observed in [30] that even
after integrating over the energies of the external particles there exists a limit in which the
tree-level string amplitudes of four massless vector bosons approach the Yang-Mills result:
this is the large-r limit, namely the limit of forward scattering 6 ~ 0.

This statement is as interesting as it is intriguing for several reasons: firstly, this seems
to imply that the field theory limit is associated to particular kinematic configurations,
and while one can argue that the large-r limit is precisely the limit in which the process is
dominated by the exchange of massless particles, it is still puzzling that for some values of
the Mandelstam variables such a limit is not accessible. Secondly, in the forward scattering
limit other amplitudes — e.g. those involving gravitons — become singular, and this re-
quires a better understanding. Thirdly, it is not clear what such a limit would correspond
to in the case of higher-point amplitudes, where the number of cross ratios increases. Even
for the case of four gluons at tree-level we have shown in section (3.3) that the field the-
ory limit is also achieved for other values of the cross ratio r, which is a manifestation of
crossing symmetry.

Motivated by all these questions, we decided to investigate the field theory limit of
celestial string amplitudes at 1-loop. We have shown in section (5.2) that, if one takes
the appropriate limit in the moduli space of genus-one correlators, the celestial string
amplitude correctly reproduces the expression that is obtained by Mellin transforming
the 1-loop Yang-Mills amplitudes expressed in the worldline formalism. Remarkably, we
have found that this matching holds for all values of r. In addition, we have shown in
section (5.3) that, while the celestial amplitudes are sensitive to both the ultraviolet and
the infrared physics, the Mellin transform and the field theory limit of 1-loop amplitudes
actually commute.

Our results present a step towards advancing our understanding of celestial string am-
plitudes and the challenging goal of embedding celestial holography in string theory. Many
questions remain open. An immediate question is how the field theory limit works for
higher-point processes in the celestial basis, even at tree-level. Another question, with po-
tentially deep implications is: what is the precise connection between the two-dimensional
worldsheet CFT and the celestial CF'T that is conjectured to be the holographic dual of
quantum gravity in four-dimensional asymptotically flat spacetimes? The existence of such
a connection was suggested in [30] in the context of four-point amplitudes, but it remains
an open question how such a connection would work at higher points and for higher genus.
Even more puzzling is the question of what would become of such a relation in spacetime
dimensions larger than four. A related open problem is how the genus expansion of string
theory processes in the bulk is organized from the point of view of the celestial CF'T. We
leave these questions for future work.
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A Kinematic conventions

We follow the conventions of [39]. We use 7, = diag(—,+,...,+) and the Mandelstam
invariants

s=—(m +p2)27 t=—(p2 +p3)27 u=—(p1 +p3)2, (A1)

thus, using momentum conservation, for massless states we have s +t+u = 0.
Using the parametrization (2.3) for our case of interest, where the external particles
reach the two-dimensional celestial sphere, we have

2p; - pj = —minjwiws|zij|* -

Total momentum conservation is written as >_; p!' = 0, thus, we need to choose some 7;’s
positive and some negative. Here we choose n1 = no = —n3 = —ng = 1. With these
conventions we have that

§ = +w1wQ]z12|2 = +w3w4\z34\2
t= *WQ(U3|223|2 = 7w1w4|214\2 (AZ)

u = —wiws|z13]> = —waws|z24]? .

Solving the ), p;” = 0 system of equations, yields

_ %24%234 214234 224241 212234 212234
Wp =—— Wy, W2 = —— W4, W3=—_—"""Ws, =z - (A.3)
212213 212232 223213 232214 232214
Using these, we can write the dimensionless parameter r = —s/t in terms of the z; vari-
ables, i.e.
s Z12Z34
re=——-=_——. (A.4)
L Z32Z14

Thus, from (A.3), we see that r» = 7, which is consistent with the fact that, when written
in the center-of-mass frame, one has indeed r real, namely

! = — sin? <9) (A.5)

where 6 is the scattering angle in this frame.
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