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Abstract
Partially greedy bases in Banach spaces were introduced by Dilworth et al. as a strictly
weaker notion than the (almost) greedy bases. In this paper, we study two natural ways
to strengthen the definition of partial greediness. The first way produces what we call
the consecutive almost greedy property, which turns out to be equivalent to the almost
greedy property.Meanwhile, the second way reproduces the PG property for Schauder
bases but a strictly stronger property for general bases.
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1 Introduction

One main goal of approximation theory is to approximate a vector (signal) x using
finite linear combinations of basis vectors. To do so, an adaptive, nonlinear approxi-
mation algorithm, also called sparse approximations, is desirable, where elements in
an approximation are found by greedy steps; that is, largest terms are chosen for the
aforementioned linear combinations. This sort of approximation is called the thresh-
olding greedy algorithm (TGA) introduced by Konyagin and Temlyakov [14]. On the
application side, the adaptive nature of sparse approximations makes them powerful in
processing large data sets in the areas of signal processing and numerical computation.
On the theoretical side, the last two decades have witnessed a flurry of papers studying
sparse approximations from the functional analysis perspective.

We can classify bases of a space based on the effectiveness of approximations given
by the TGA. Amongst the most studied in the literature, and ordered by decreasing
strength in terms of the TGA’s effectiveness, we find greedy bases [14], almost greedy
bases [11], (strong) partially greedy bases [5, 11] and quasi-greedy bases [14]. Almost
greedy bases are those in which the TGA is better (up to some constant) than the best
approximation via projections on the basis vectors, whereas partially greedy ones are
those in which it is similarly better than the best approximation via partial sums. In
this paper, we strengthen the concept of partially greedy bases in two natural ways,
with the following aims. First, we study whether we can find naturally defined types of
greedy-like bases which lie strictly between strong partially greedy and almost greedy
bases—which might be worthy of further research in themselves. Second, we look for
characterizations of almost greedy bases in terms of formally weaker definitions, or
of (strong) partially greedy bases in terms of formally stronger ones. Our choice of
the partially greedy property is due to the fact that the approximations involve linear
projections, which are generally easier to handle than nonlinear ones. The first way
of modifying the definition (see Definition 2.7) surprisingly produces almost greedy
bases, while the second way (see Definition 2.11) reproduces the partially greedy
property in the case of Schauder bases but a strictly stronger property in general.

2 Main Definitions and Notation

2.1 Bases in Quasi-Banach Spaces

A quasi-Banach space (p-Banach space, resp.) X is a vector space that is complete
with respect to a quasi-norm (p-norm, resp.) ‖ · ‖. A quasi-norm ‖ · ‖ on X satisfies

(a) ‖x‖ ≥ 0,∀x ∈ X, and ‖x‖ = 0 if and only if x = 0,
(b) ‖ax‖ = |a|‖x‖,∀x ∈ X and a ∈ F,
(c) there exists k > 0 such that

‖x + y‖ ≤ k(‖x‖ + ‖y‖).

On the other hand, if ‖ · ‖ is a p-norm, then ‖ · ‖ satisfies (a), (b), and
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(d) there exists 0 < p ≤ 1 such that

‖x + y‖p ≤ ‖x‖p + ‖y‖p,∀x, y ∈ X.

By the celebrated Aoki-Rolewicz’s theorem, any quasi-Banach space is p-convex
for some 0 < p ≤ 1; that is, there exists C > 0 such that

∥
∥
∥
∥
∥

m
∑

n=1

xn

∥
∥
∥
∥
∥

≤ C

(
m

∑

n=1

‖xn‖p

)1/p

, n ∈ N, xn ∈ X.

As a result, any quasi-Banach space can be renormed to become a p-Banach space.We,
therefore, assume that our quasi-Banach spaceX has been renormed to be a p-Banach
space.

Throughout the paper, let X be a separable and infinite-dimensional quasi-Banach
(or p-Banach space) over the field F = R or C. Let X∗ be the dual space of X. A
collection B = (en)∞n=1 ⊂ X is said to be a (semi-normalized) basis of X if

(1) X = [en : n ∈ N], where [en : n ∈ N] denotes the span of (en)∞n=1;
(2) there is a unique semi-normalized sequence (e∗

n)
∞
n=1 ⊂ X

∗ such that e∗
j (ek) = δ j,k

for all j, k ∈ N;
(3) there exist c1, c2 > 0 such that

0 < c1 := inf
n

{‖en‖, ‖e∗
n‖} ≤ sup

n
{‖en‖, ‖e∗

n‖} =: c2 < ∞.

If B also satisfies

(4) X
∗ = [e∗

n : n ∈ N]w∗
,

then B is a Markushevich basis. Additionally, if the partial sum operators Sm(x) =
∑m

n=1 e
∗
n(x)en for m ∈ N are uniformly bounded, i.e., there exists C > 0 such that

(5) ‖Sm(x)‖ ≤ C‖x‖,∀x ∈ X,∀m ∈ N,

then we say B is a Schauder basis. Given a basis B, we associate each x ∈ X with
the formal series

∑

n∈N e∗
n(x)en . Since B and B∗ are both semi-normalized, we have

limn→∞ |e∗
n(x)| = 0.

We mention some notation that appear throughout the paper. Fix x ∈ X, finite
subsets A and B ⊂ N, and ε = (εn) ⊂ F

N, where |εn| = 1. Let

(a) ‖x‖∞ = maxn |e∗
n(x)| and supp(x) = {n : e∗

n(x) �= 0},
(b) PA(x) := ∑

n∈A e
∗
n(x)en and PAc (x) := x − PA(x),

(c) 1A := ∑

n∈A en and 1εA = ∑

n∈A εnen ,

(d) Ap = (2p − 1)−1/p for 0 < p ≤ 1 and Bp =
{

21/pAp if F = R,

41/pAp if F = C.

Throughout the paper, we will use the following result.

Proposition 2.1 [2, Corollaries 2.3 and 2.4] Let X be a p-Banach space for some
0 < p ≤ 1. Let y ∈ X and (xn)n∈J ⊂ X with J finite. Then
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(1) For any scalars (an)n∈J with 0 ≤ an ≤ 1,

∥
∥
∥
∥
∥
y +

∑

n∈J

anxn

∥
∥
∥
∥
∥

≤ Ap sup
A⊂J

∥
∥
∥
∥
∥
y +

∑

n∈J

xn

∥
∥
∥
∥
∥

.

(2) For any scalars (an)n∈J with |an| ≤ 1,

∥
∥
∥
∥
∥
y +

∑

n∈J

anxn

∥
∥
∥
∥
∥

≤ Ap sup
|εn |=1

∥
∥
∥
∥
∥
y +

∑

n∈J

εnxn

∥
∥
∥
∥
∥

.

(3) For any scalars (an)n∈J with |an| ≤ 1,

∥
∥
∥
∥
∥

∑

n∈J

anxn

∥
∥
∥
∥
∥

≤ Bp sup
A⊂J

∥
∥
∥
∥
∥

∑

n∈J

xn

∥
∥
∥
∥
∥

.

We write A < B to mean that a < b for all a ∈ A and b ∈ B1, while �i∈I Ai , for
some index set I and sets (Ai )i∈I , means that the Ai ’s are pairwise disjoint. Finally,
for a number a,

A|a = {n ∈ A : n ≥ a}.

Finally, for every m ∈ N0, let I(m) := {A ⊂ N : |A| = m and A is an interval},

I≤m =
⋃

0≤k≤m

I(k), and I =
⋃

m∈N0

I(m).

2.2 Thresholding Greedy Algorithm and Greedy-like Bases

In 1999, Konyagin and Temlyakov [14] introduced the TGA, which since then has
been extensively studied by many researchers. For each x ∈ X, the algorithm chooses
the largest coefficients (inmodulus) with respect to a basisB. In particular, a set A ⊂ N

is an m-greedy set of x if |A| = m and

min
n∈A

|e∗
n(x)| ≥ max

n /∈A
|e∗
n(x)|.

The corresponding greedy sum is

Gm(x) =
∑

n∈A

e∗
n(x)en .

Note that for a vector x having two or more coefficients of equal modulus, m-greedy
sets and greedy sums may not be unique. Let G(x,m) denote the set of all greedy sets

1 Note that A > ∅ and A < ∅ for any A ⊂ N.
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of x of size m, and let �m(x) be the only B ∈ G(x,m) such that

B\A < A\B,∀A ∈ G(x,m)\{B}.

The minimal condition to guarantee the convergence of the TGA is quasi-
greediness.

Definition 2.2 ( [14])A basis B in a quasi-Banach space X is quasi-greedy if there
exists C > 0 such that

‖Gm(x)‖ ≤ C‖x‖,∀x ∈ X,m ∈ N,∀Gm(x).

The least such C is denoted by Cq , called the quasi-greedy constant. Also when B is
quasi-greedy, let C� be the least constant such that

‖x − Gm(x)‖ ≤ C�‖x‖,∀x ∈ X,m ∈ N,∀Gm(x).

We call C� the suppression quasi-greedy constant.

The relation between this property and the convergence was given byWojtaszczkyk
in [15], where the author proved that a basis in a quasi-Banach space is quasi-greedy
if and only if

lim
n→∞ ‖x − Gn(x)‖ = 0, ∀x ∈ X.

From another point of view, the strongest property in terms of convergence of the
TGA is greediness ( [14]): a basis is greedy if there exists C > 0 such that

‖x − Gm(x)‖ ≤ C inf
z∈X:| supp(z)|≤m

‖x − z‖, ∀m ∈ N,∀x ∈ X,∀Gm(x).

Remark 2.3 Konyagin and Temlyakov proved in [14] that a basis in a Banach space is
greedy if and only if the basis is unconditional and democratic, and the characterization
was extended to quasi-Banach spaces in [2]. We recall that a basisB in a quasi-Banach
space X is K-unconditional with K > 0 if for all N ∈ N,

∥
∥
∥
∥
∥

N
∑

n=1

anen

∥
∥
∥
∥
∥

≤ K

∥
∥
∥
∥
∥

N
∑

n=1

bnen

∥
∥
∥
∥
∥

,

whenever |an| ≤ |bn| for all 1 ≤ n ≤ N . Also, a basis is C-democratic with C > 0 if

‖1A‖ ≤ C‖1B‖, ∀|A| ≤ |B| < ∞.

Our paper is concerned with almost greedy and partially greedy bases introduced
by Dilworth, Kalton, Kutzarova, and Temlyakov [11], and strong partially greedy
bases, introduced in [5].
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Definition 2.4 A basis B in a quasi-Banach space X is almost greedy if there exists
C ≥ 1 such that

‖x − Gm(x)‖ ≤ Cσ̃m(x),∀x ∈ X,∀m ∈ N,∀Gm(x). (2.1)

where σ̃m(x) = σ̃m[B](x) := inf{‖x − PA(x)‖ : |A| = m}. If C verifies (2.1), then B
is said to be C-almost greedy.

The main characterization of almost-greedy bases was given in [11] where the
authors proved that a basis in a Banach space is almost-greedy if and only if the basis
is quasi-greedy and democratic.

Remark 2.5 Several papers have studied characterizations of almost greedy bases in
terms of other greedy-like properties, see for example [1, Theorem 3.3], [6, Theorem
1.10], [9, Theorem 1.12], [4, Corollary 4.3], [10, Theorem 5.4], [12, Theorems 3.2
and 3.6], and [11, Theorem 3.3]. Also, the extension of the main characterization of
almost-greedy bases in terms of quasi-greediness and democracy was extended in [2]
to the context of quasi-Banach spaces.

Definition 2.6 A basis B in a quasi-Banach space X is

(1) partially greedy if there exists C > 0 such that

‖x − Gm(x)‖ ≤ C‖x − Sm(x)‖,∀x ∈ X,∀m ∈ N,∀Gm(x). (2.2)

(2) strong partially greedy if there exists C > 0 such that

‖x − Gm(x)‖ ≤ C min
0≤n≤m

‖x − Sn(x)‖,∀x ∈ X,∀m ∈ N,∀Gm(x). (2.3)

In [11], the authors characterized partially-greediness for Schauder bases in Banach
spaces as those bases verifying quasi-greediness and conservativeness, where the last
condition is exactly as democracy but taken A < B. Also, the same characteriza-
tion works for strong partially greedy bases for general Markushevich bases and the
extension for quasi-Banach spaces was proved in [7].

2.3 Main Results

The right sides of (2.2) and (2.3) measure the distance between x and the projection
of x onto the first consecutive vectors in B. Hence, it is natural to investigate a sim-
ilar condition without restricting the consecutive projection to these first terms. This
motivates us to introduce what we call consecutive almost greedy bases.

Definition 2.7 A basis B in a quasi-Banach space X is said to be consecutive almost
greedy (CAG) if there exists C ≥ 1 such that

‖x − Gm(x)‖ ≤ Cqσm(x),∀x ∈ X,∀m ∈ N,∀Gm(x),
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where

qσm(x) = qσm[B](x) = inf {‖x − PI (x)‖ : I ∈ I, |I | = m} . (2.4)

The least such C is denoted by Cca .

It is clear that σ̃m(x) ≤ qσm(x) ≤ ‖x − Sm(x)‖,∀x ∈ X,∀m ∈ N, so we know that

almost greedy ⇒ consecutive almost greedy ⇒ partially greedy.

Given a basis B = (en)n∈N and a bijection π on N, let Bπ = (eπ(n))n∈N be the
reordered basis corresponding to π . Since the property of being a greedy set is not
affected by reorderings, it is easy to see that B is C-almost greedy if and only if Bπ is
C-CAG for every bijection π .

Theorem 2.8 Let B be a basis in a p-Banach space X. The following statements are
equivalent:

(i) B is almost greedy.
(ii) There is C ≥ 1 such that

‖x − Gm(x)‖ ≤ Cqσk(x),∀x ∈ X,∀m ∈ N,∀Gm(x),∀0 ≤ k ≤ m.

(iii) B is CAG.

Moreover, if B is 1-CAG and p = 1, then B is 1-almost greedy.

Surprisingly, this first result shows that if Bπ is CAG for just one bijection, then we
already have an almost greedy basis (though not necessarily with the same constant.)
In Example 3.5, we further show that this result is unexpected because qσm(x) is not
bounded by σ̃m(x).

Next, we talk about almost greediness using 1-dimensional subspaces. In [8, Corol-
lary 1.8], the authors characterized greedy bases as those bases forwhich there isC > 0
such that

‖x − Gm(x)‖ ≤ C inf{d(x, [1A]) : A ⊂ N, |A| = m},∀x ∈ X,∀m ∈ N,∀Gm(x).

A similar characterization was also proven for almost greedy Schauder bases in [13,
Theorem 2.15]: a Schauder basis is almost greedy if and only if there is C > 0 such
that for all x ∈ X, we have

‖x − P�m (x)(x)‖ ≤ Cd(x, [1A])

for all A ⊂ N, |A| = m, either A > �m(x) or A < �m(x). In the next proposition,
we shall use approximations involving both intervals and 1-dimensional subspaces to
characterize almost greedy bases.

Proposition 2.9 LetB be a basis of a quasi-Banach spaceX. The following statements
are equivalent:
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(i) B is almost greedy.
(ii) There is C > 0 such that, for every x ∈ X, m ∈ N, and A ∈ G(x,m),

‖x − PA(x)‖ ≤ C inf{‖x − t1εB‖ : t ∈ R, |B| ≤ m, B � A, sign ε}.

(iii) There is C > 0 such that, for every x ∈ X and m ∈ N, there is A ∈ G(x,m) for
which

‖x − PA(x)‖ ≤ C inf{‖x − t1I‖ : t ∈ R, I ∈ I, I < A or A < I , |I ∩ supp(x)| ≤ m}.

Remark 2.10 Note the contrast between Theorem 2.8 and Proposition 2.9: in the for-
mer, we limit the length of the intervals, whereas in the latter, we only limit the
cardinality of their intersection with the support of x . One may wonder whether there
is a characterization of almost greedy bases that strengthens Proposition 2.9 by limit-
ing the lengths of the intervals to the cardinality of the relevant greedy sets. Example
4.2 shows that there is no such characterization.

Finally, we study bases that satisfy a stronger condition than (2.3).

Definition 2.11 A basis is said to be super-strong partially greedy if there existsC > 0
such that

‖x − Gm(x)‖ ≤ Cp

pσm(x), (2.5)

where

p

pσn(x) = p

pσn[B](x) = inf
an∈F

{∥
∥
∥
∥
∥
x −

∑

n∈A

anen

∥
∥
∥
∥
∥

: A ⊂ {1, . . . ,m}
}

.

For Schauder bases, (2.5) is equivalent to both (2.2) and (2.3). Indeed, fromdefinitions,

(2.5) �⇒ (2.3) �⇒ (2.2).

Hence, we need only to verify that (2.2) �⇒ (2.5), i.e., there exists D such that

‖x − Sm(x)‖ ≤ Dp

pσm(x),∀x ∈ X,∀m ∈ N. (2.6)

Pick x ∈ X, m ∈ N, A ⊂ {1, . . . ,m}, and (an)n∈A ⊂ F. Since our basis is Schauder,
we have

‖x − Sm(x)‖ ≤ (1 + K)

∥
∥
∥
∥
∥
x −

∑

n∈A

anen

∥
∥
∥
∥
∥

,

whereK is the basis constant. Taking the infinum over all (an)n∈F and over all subsets
A ⊂ {1, . . . ,m}, we have (2.6).
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However, the equivalence does not hold in general if we drop the Schauder con-
dition, which we state as the following theorem. The theorem involves conditional
almost greedy bases, which are well-known to exist ( [3, Example 10.2.9].)

Theorem 2.12 Let B be a conditional almost greedy basis of a Banach spaceX. There
is a bijection π on N and x ∈ X such that

sup
m∈N,Gm (x)

‖x − Gm(x)‖
p

pσm[Bπ ](x)
= ∞.

Therefore, Bπ is strong partially greedy but is not super-strong partially greedy.

3 Consecutive Almost Greedy Bases

In this section, we show that a basis is consecutive almost greedy if and only if it is
almost greedy. For that, we will use an stronger property than democracy.

Definition 3.1 ( [14]) A basis in a quasi-Banach space is super-democractic if there is
C > 0 such that

‖1εA‖ ≤ C‖1δB‖, (3.1)

for all finite sets A, B ⊂ N with |A| ≤ |B| and all δ, ε. Let �s be the smallest
constant for which the above inequality holds. Also, when ε ≡ δ ≡ 1, we say that
B is �-democratic. If additionally, we require that A � B, then the basis is said
to be disjoint super-democratic. The corresponding disjoint democratic and disjoint
super-democratic constants are �d and �sd , respectively.

The next theorem shows the main characterization of almost greedy bases in quasi-
Banach spaces.

Theorem 3.2 Let B be a basis for a quasi-Banach space X. The following statements
are equivalent:

(i) B is almost greedy.
(ii) B is quasi-greedy and democratic.
(iii) B is quasi-greedy and super-democratic.
(iv) B is quasi-greedy and disjoint super-democratic.

Remark 3.3 The equivalences are proved in [11, Theorem 3.3] and [2, Theorem 6.3],
except for the implication disjoint super-democratic �⇒ super-democratic, but this is
clear since

‖1εA‖ ≤ �sd‖1D‖ ≤ �2
sd‖1δB‖,

for all sets A, B, D ⊂ N with |A| = |D| ≤ |B|, D > A ∪ B, and signs εδ.
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The next lemmawas used in [12] without a proof and was proved for Banach spaces
in [1, Lemma 2.2] and for quasi-Banach spaces in [2, Lemma 6.2] under a different
formulation. For completeness, we include the proof.

Lemma 3.4 Let B be a C-almost greedy basis of a p-Banach space X. Then

‖x − Gm(x)‖ ≤ C min
0≤k≤m

σ̃k(x),∀x ∈ X,∀m ∈ N,∀Gm(x).

Proof Choose 0 ≤ k ≤ m. Let A ⊂ N with |A| = k. We show that ‖x − Gm(x)‖ ≤
C‖x − PA(x)‖ for an arbitrary Gm(x). Choose BN ⊂ N such that BN > N , BN � A,
and |BN | = m − k. By C-almost greediness and p-convexity, we have

‖x − Gm(x)‖p ≤ Cp‖x − PA(x) − PBN (x)‖p ≤ Cp‖x − PA(x)‖p + Cp‖PBN (x)‖p.

Let αN = maxn>N |e∗
n(x)|, which approaches 0 as N → ∞. Then

‖PBN (x)‖ ≤ m
1
p αNc2 → 0 as N → ∞.

Therefore, ‖x − Gm(x)‖ ≤ C‖x − PA(x)‖, as desired. ��
Proof of Theorem 2.8 That (i)�⇒ (ii) follows at once by Lemma 3.4, whereas (ii)�⇒
(iii) is immediate. To prove (iii) �⇒ (i), we use one of the equivalences of Theorem
3.2.

First, we prove that B is quasi-greedy: pick x ∈ X and m ∈ N, and let In :=
{n + 1, . . . , n +m} for all n ∈ N. Since B∗ is weak∗ null and B is bounded, we have

‖x − Gm(x)‖ ≤ Cca‖x − PIn (x)‖ −−−→
n→∞ Cca‖x‖.

Hence, B is C�-suppression quasi-greedy with C� ≤ Cca .
Next, we prove that B is democratic: choose finite sets A, B ⊂ N with |A| ≤ |B|.

Let I1, I2 ∈ I such that A ⊂ I1 and |I2| = |B|. We have

‖1A‖ = ‖(1I1 + 1I2) − (1I1\A + 1I2)‖ ≤ Cca‖(1I1 + 1I2) − 1I1‖ = Cca‖1I2‖.

On the other hand,

‖1I2‖ = ‖(1I2 + 1B) − 1B‖ ≤ Cca‖(1I2 + 1B) − 1I2‖ = Cca‖1B‖.

We have that ‖1A‖ ≤ C2
ca‖1B‖ and so, B is democratic.

Finally, ifX is a Banach space, we show that a 1-CAG basis is 1-almost greedy. Fix
x ∈ X with ‖x‖∞ ≤ 1, and k, j /∈ supp(x), k �= j , and signs εk, ε j . For all ε > 0, we
have

‖x + εkek‖ = ‖x + εkek + (1 + ε)ε j e j − (1 + ε)ε j e j‖ ≤ ‖x + (1 + ε)ε j e j‖.
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Since ε is arbitrary, it follows that

‖x + εkek‖ ≤ ‖x + ε j e j‖. (3.2)

An inductive argument using (3.2) combined with [1, Theorem 1.5] gives that B is
1-almost greedy. ��
Example 3.5 We use the canonical basis of �1 to show that

sup
x∈X,m∈N

qσm(x)

σ̃m(x)
= ∞.

which makes Theorem 2.8 quite surprising. We show that for any C > 1, there are
x ∈ X and m ∈ N satisfying C σ̃m(x) < qσm(x). Indeed, fix C > 1 and choose m ∈ N

and a real scalar a such that a(m − 1) > C . Consider the following vector:

x =

⎛

⎜
⎜
⎝
a,

1

m2 , . . . ,
1

m2
︸ ︷︷ ︸

m times

, . . . , a,
1

m2 , . . . ,
1

m2
︸ ︷︷ ︸

m times

, 0, 0, . . .

⎞

⎟
⎟
⎠

.

There are m blocks of a,
1

m2 , . . . ,
1

m2
︸ ︷︷ ︸

m times

. Removing all the coefficients of magnitude a,

we have

σ̃m(x) ≤ m2 · 1

m2 = 1.

In contrast, by the definition of qσm(x), we cannot remove more than one coefficient
of magnitude a; hence,

qσm(x) ≥ (m − 1)a > C .

Therefore, qσm(x) > C σ̃m(x).

4 Characterizations of Almost Greedy Bases Using Intervals and
1-Dimensional Subspaces

In 2017, Berná and Blasco [8] characterized greedy bases, that is, bases where the
TGA produces the best possible approximation (see [14]), using 1-dimensional sub-
spaces. Later, Dilworth and Khurana [13] obtained an analog for almost greedy bases.
Recently, the last two authors of the present paper [9] allowed the coefficients of a
nonzero vector in these 1-dimensional subspaces to be different and examine whether
these characterizations still hold. Below we prove Proposition 2.9 which characterizes
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almost greedy bases using both intervals and 1-dimensional subspaces. Furthermore,
we show that it is not possible to strengthen the result in a natural way.

Proof of Proposition 2.9 (i) �⇒ (ii): Let B be a Ca-almost greedy basis. By Theorem
3.2, B is Cq -quasi-greedy, C�-suppression quasi-greedy, and �sd -disjoint super-
democratic for some Cq ,C�,�sd > 0. Assume B �= ∅ and PA(x) �= x . Let
m1 := |B| and a := minn∈A |en(x)|. We consider two cases: if |t | ≤ 2a, pick
A1 ∈ G(x − t1εB,m1). Since m1 ≤ m = |A| and

A ⊂ {n ∈ N : |e∗
n(x − t1εB)| ≥ a},

it follows that

b = min
n∈A1

|e∗
n(x − t1εB)| ≥ a ≥ |t |

2
.

Now pick D > A1 ∪ B with |D| = m1. Note that

b‖1D‖ = ‖b1D + PA1(x − t1εB) − PA1(x − t1εB)‖
≤ Ca‖PA1(x − t1εB)‖ ≤ CaCq‖x − t1εB‖.

Hence,

‖t1εB‖ ≤ 2b�sd‖1D‖ ≤ 2�sdCaCq‖x − t1εB‖.

On the other hand, if |t | > 2a,

|e∗
n(x − t1εB)| ≥ |t | − |e∗

n(x)| ≥ |t | − a >
|t |
2

,∀n ∈ B.

Thus, there is A2 ∈ G(x − t1εB,m1) with

min
n∈A2

|en(x − t1εB)| ≥ |t |
2

.

Hence, the same argument as above gives

‖t1ε,B‖ ≤ 2�sdCaCq‖x − t1εB‖.

Therefore,

‖x − PA(x)‖p ≤ Cp
� ‖x‖p ≤ Cp

� ‖x − t1εB‖p + Cp
� ‖t1εB‖p

≤ Cp
� ‖x − t1εB‖p + (2C�CqCa�sd)

p‖x − t1εB‖p,

from which we obtain (ii) with C = C�(1 + 2pCp
qC

p
a 1

p
sd)

1
p .

(ii) �⇒ (iii) is immediate.
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(iii) �⇒ (i): By Theorem 3.2, it is enough to prove that B is quasi-greedy and
democratic. To prove the former, fix x ∈ X\{0}, m ∈ N and A ∈ G(x,m). By a
standard small perturbation argument and density, given ε > 0, we can find y ∈ X

with ‖x − y‖ < ε‖x‖ such that G(y,m) = {A}. Hence, taking I to be the empty
interval, we get

‖x − PA(x)‖p ≤ ‖x − y‖p + ‖PA(x) − PA(y)‖p + ‖y − PA(y)‖p

≤ ‖x − y‖p + ‖PA(x) − PA(y)‖p + Cp‖y − x‖p + Cp‖x‖p

≤ ε p(1 + ‖PA‖p + Cp) + Cp‖x‖p.

Since ε is arbitrary and A is finite, this shows that B is C-suppression-quasi-greedy.
To prove that B is democratic, choose finite sets A, B ⊂ N with 0 < |A| ≤ |B|.

Pick I1 ∈ I so that I1 > A ∪ B and |I1| = |B|, and let I2 ∈ I be the smallest interval
containing A. For every ε > 0, projecting on I2 gives

‖1A‖ = ‖1A + (1 + ε)1I1 − (1 + ε)1I1‖ ≤ C(1 + ε)‖1I1‖.

Similarly, projecting on I1 gives

‖1I1‖ = ‖1I1 + (1 + ε)1B − (1 + ε)1B‖ ≤ C(1 + ε)‖1B‖.

Thus, B is C2-democratic. ��
Wegive an example showing thatwe cannot replace the condition |I∩supp(x)| ≤ m

by |I | ≤ m in item (iii) of Proposition 2.9. In fact, even if

‖x − PA(x)‖ ≤ C‖x − y‖ (4.1)

for all x ∈ X, m ∈ N, A ∈ G(x,m), and all y ∈ X with supp(y) ⊂ I for some
I ∈ I(m) such that I � A, the basis may not even be partially democratic.

Definition 4.1 A basis B of a quasi-Banach space is C-partially democratic for some
C > 0 if for every finite set A ⊂ N, there exists a finite set D ⊂ N such that A ⊂ D
and for every B ⊂ N\D with |A| = |B|, we have

‖1A‖ ≤ C‖1B‖.

Example 4.2 Choose 1 ≤ p < q < ∞. The space X = �p × �q with the norm
‖(z, y)‖ = max(‖z‖p, ‖y‖q) has an 1-unconditional basis for which (4.1) holds but
is not partially democratic.

Proof Let B1 = (zn)n∈N and B2 = (yn)n∈N be the canonical unit vector bases of �p
and �q , respectively. Choose a sequence (sk)k∈N ⊂ N so that for each m ∈ N,

sm > (m + 1)q/p and sm+1 ≥ 1 + 2sm,
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and let B = (en)n∈N be an ordering of the basis {(zi , 0), (0, y j )}i, j∈N with the fol-
lowing property: for each n ∈ N, there is i ∈ N such that en = (zi , 0) if and only if
n = sk for some k ∈ N.

Since both B1 and B2 are 1-unconditional, B is 1-unconditional. Moreover, B is
not partially democratic because it has one subsequence equivalent to B1 and one
equivalent to B2. We show that (4.1) holds for B. Pick x,m, A, I , y as in (4.1). First
note that by 1-unconditionality, we have

‖x − y‖ ≥ ‖x − PI (x)‖.

Hence, we only need to find C > 0 such that

‖x − PA(x)‖ ≤ C‖x − PI (x)‖, (4.2)

andwhich is independent of the vectors and sets involved. To that end, assume PA(x) �=
x , write x = (z, y), and set

A1 := A ∩ {sk}k∈N and A2 := A\A1;
B1 := I ∩ {sk}k∈N and B2 := I\B1;
a := min

n∈A
|e∗
n(x)|.

Now define finite sets A′
1, A

′
2, B

′
1, B

′
2 so that

(PA′
1
(z), 0) = PA1(x);

(PB′
1
(z), 0) = PB1(x);

(0, PA′
2
(y)) = PA2(y);

(0, PB′
2
(y)) = PB2(y).

We proceed by case analysis.
Case 1 If ‖PI (x)‖ ≤ ‖x‖/2, then

‖x − PI (x)‖ ≥ ‖x‖/2 ≥ ‖x − PA(x)‖/2.

Case 2 If ‖PB′
2
(y)‖q > ‖x‖/2 and |B ′

2| ≤ 2|A′
2|, then

‖x − PI (x)‖ ≥ ‖y − PB′
2
(y)‖q ≥ ‖PA′

2
(y)‖q ≥ a|A′

2|
1
q ≥ 2− 1

q a|B ′
2|

1
q

≥ 2− 1
q ‖PB′

2
(y)‖q > 2− 1

q −1‖x‖ ≥ 2− 1
q −1‖x − PA(x)‖.

Case 3 If ‖PB′
2
(y)‖q > ‖x‖/2 and |B ′

2| ≤ 2|A′
1|, then

‖x − PI (x)‖ ≥ ‖z − PB′
1
(z)‖p ≥ ‖PA′

1
(z)‖p ≥ a|A′

1|
1
p ≥ 2− 1

p a|B ′
2|

1
p

123



Extensions and New Characterizations of Some Greedy-Type... Page 15 of 18 84

≥ 2− 1
p a|B ′

2|
1
q ≥ 2− 1

p ‖PB′
2
(y)‖q > 2− 1

p −1‖x‖ ≥ 2− 1
p −1‖x − PA(x)‖.

Case 4 If ‖PB′
1
(z)‖p > ‖x‖/2 and |B ′

1| ≤ |A′
1|, then

‖x − PI (x)‖ ≥ ‖z − PB′
1
(z)‖p ≥ ‖PA′

1
(z)‖p ≥ a|A′

1|
1
p ≥ a|B ′

1|
1
p

≥ ‖PB′
1
(z)‖p > ‖x‖/2 ≥ ‖x − PA(x)‖/2.

Case 5 If ‖PB′
1
(z)‖p > ‖x‖/2, |B ′

1| > |A′
1|, and |B ′

1| ≥ 2, let k0 := max{k ∈ N :
sk ∈ B1}. We have

|A′
2| ≥ |B ′

2| = |I \ B1| ≥ sk0 − sk0−1 − 1 ≥ sk0−1 ≥ s|B1|−1 ≥ |B1|
q
p .

Hence,

‖x − PI (x)‖ ≥ ‖y − PB′
2
(y)‖q ≥ ‖PA′

2
(y)‖q ≥ a|A′

2|
1
q ≥ a|B1|

1
p ≥ ‖PB′

1
(z)‖p

≥ ‖x‖/2 ≥ ‖x − PA(x)‖/2.

Case 6 If ‖PB′
1
(z)‖p > ‖x‖/2 and |B ′

1| = 1, then

‖x − PA(x)‖ ≤ ‖x‖ ≤ 2‖PB′
1
(z)‖p ≤ 2a ≤ 2‖x − PI (x)‖,

where the last inequality follows from the fact that for each n ∈ A, |e∗
n(x − PI (x))| =

|e∗
n(x)| ≥ a.

Given that

‖PI (x)‖ = max{‖PB′
2
(y)‖q , ‖PB′

1
(z)‖p},

we have covered all cases, so the proof is complete. ��

5 A Strong Partially Greedy Basis that is not Super-Strong Partially
Greedy

Proof of Theorem 2.12 Since B = (en)n≥1 is not greedy, one can find y1 ∈ X,m1 ∈ N,
A1 ∈ G(y1,m1), and z1 ∈ X with | supp(z1)| ≤ m1 such that

‖y1 − PA1(y1)‖ > 2‖y1 − z1‖.

By scaling, we may assume that ‖y1‖ ≤ 2−1. Moreover, by standard small perturba-
tions and density arguments, we may assume further that there is l1 > m1 such that
supp(y1) = {1, . . . , l1} and that | supp(z1)| = m1.
Note that for each m ∈ N, Bm := (en)n>m is a conditional almost greedy basis of
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Xm := [Bm]. In particular, taking m = l1, we can find y2 ∈ Xl1 with ‖y2‖ ≤ 2−2,
m2 ∈ N, A2 ∈ G(y2,m2), and z2 ∈ Xl1 with | supp(z2)| = m2 such that

‖y2 − PA2(y2)‖ > 22‖y2 − z2‖.

As before, we may also assume that there is l2 > m2 such that supp(y2) = {l1 +
1, . . . , l1 + l2}. Moreover, by scaling, we can choose y2 so that

max
n∈supp(y2)

|e∗
n(y2)| < min

n∈supp(y1)
|e∗
n(y1)| and ‖y2‖ < 2−2‖y1 − z1‖.

In thismanner, inductively we construct sequences (yk)k∈N, (zk)k∈N, (mk)k∈N, (lk)k∈N
and (Ak)k∈N such that, for all k ∈ N,

1 ≤ mk < lk;
Ak ∈ G(yk,mk);
‖yk‖ ≤ 2−k and ‖yk+1‖ < 2−(k+1) min

1≤ j≤k
‖y j − z j‖; (5.1)

‖yk − PAk (yk)‖ > 2k‖yk − zk‖;
max

n∈supp(yk+1)
|e∗
n(yk+1)| < min

n∈supp(yk)
|e∗
n(yk)|; (5.2)

supp(yk) =
⎧

⎨

⎩

∑

1≤ j≤k−1

l j + 1, . . . ,
∑

1≤ j≤k

l j

⎫

⎬

⎭
. (5.3)

Define

x =
∑

k∈N
yk,

and, for each i ∈ N, set

ui =
∑

1≤k≤i

yk, si =
∑

1≤k≤i

lk, Bi = Ai ∪ {k ∈ N : 1 ≤ k ≤ si−1},

where s0 = 0. Note that for each i ∈ N,

supp(ui ) = {1, . . . , si };
Bi+1 = supp(ui ) ∪ Ai+1 ⊂ supp(ui+1).

Moreover, it follows from (5.2) and (5.3) that Bi+1 ∈ G(ui+1, si +mi+1) = G(x, si +
mi+1) for each i ∈ N. Note that

‖ui+1 − PBi+1(ui+1)‖ = ‖yi+1 − PAi+1(yi+1)‖ > 2i+1‖yi+1 − zi+1‖. (5.4)
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Now we define the bijection π : for each j ∈ N, let π j be a bijection on {s j−1 +
1, . . . , s j } such that

{π j (k) : s j−1 + 1 ≤ k ≤ s j−1 + m j } = supp(z j ).

and let π(k) := π j (k) if s j−1 + 1 ≤ k ≤ s j . It follows from this choice that, for each
i ∈ N,

supp[Bπ ](Ssi (x) + zi+1) = supp[Bπ ](Ssi (ui+1) + zi+1)

= {1, . . . , si + mi+1}. (5.5)

Since greedy sets are preserved by reorderings, we have that Bi+1 ∈ G(ui+1, si +
mi+1) = G(x, si + mi+1) with respect to Bπ as well.
Note also that

Ssi [Bπ ](y) = Ssi [B](y),∀y ∈ X,∀i ∈ N.

Thus, applying (5.1) and (5.4) to Bπ , we obtain

‖x − PBi+1(x)‖ = ‖x − PBi+1(ui+1)‖ ≥ ‖ui+1 − PBi+1(ui+1)‖ − ‖x − ui+1‖
≥ 2i+1‖yi+1 − zi+1‖ −

∑

n≥i+2

2−n‖yi+1 − zi+1‖ ≥ 2i‖yi+1 − zi+1‖.

On the other hand,

‖x − Ssi (x) − zi+1‖ = ‖x − Ssi (ui+1) − zi+1‖
≤ ‖ui+1 − Ssi (ui+1) − zi+1‖ + ‖x − ui+1‖
≤ ‖yi+1 − zi+1‖ +

∑

n≥i+2

2−n‖yi+1 − zi+1‖

< 2‖yi+1 − zi+1‖.

Combining the above inequalities for i ≥ 2, we obtain

‖x − PBi+1(x)‖ > 2i−1‖x − Ssi (x) − zi+1‖ ≥ 2i−1
p

pσsi+mi [Bπ ](x),

and the proof is complete. ��
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