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Abstract We prove that a parabolic subgroup P contained in another parabolic subgroup P′ of
an Artin group A is a parabolic subgroup of P′ . This answers a question of Godelle which is not
obvious despite appearances. In order to achieve our result we construct a set-retraction A → P of
the inclusion map from a parabolic subgroup P into A . This retraction was implicitly constructed in
a previous paper by Charney and the second author.

AMS Subject Classification 20F36

1 Introduction

If a, b are two letters and m is an integer greater or equal to 2, then we denote by Prod(a, b,m) the
alternating word aba · · · of length m. We take a finite simplicial graph Γ and we denote by V(Γ) its
set of vertices and by E(Γ) its set of edges. We endow E(Γ) with a labeling m : E(Γ)→ N≥2 and we
take an abstract set Σ = {σx | x ∈ V(Γ)} in one-to-one correspondence with V(Γ). Then the Artin
group A = A[Γ] of Γ is defined by the presentation

A = 〈Σ | Prod(σx, σy,m(e)) = Prod(σy, σx,m(e)) for e = {x, y} ∈ E(Γ)〉 .

Let X be a subset of V(Γ). We denote by ΓX the full subgraph of Γ spanned by X and we endow
E(ΓX) with the labeling induced by that of E(Γ). We set ΣX = {σx | x ∈ X} and we denote by AX

the subgroup of A generated by ΣX . We know by van der Lek [16] that AX is naturally isomorphic to
A[ΓX], hence we will not differentiate AX from A[ΓX]. The subgroup AX is called a standard parabolic
subgroup of A and a subgroup conjugate to AX is called a parabolic subgroup of A.

An important question in the study of Artin groups is to determine whether the intersection of two
parabolic subgroups is a parabolic subgroup. This question is solved for right angled Artin groups by
Duncan–Kazachkov–Remeslennikov [9], for Artin groups of spherical type by Cumplido–Gebhardt–
González-Meneses–Wiest [6], for Artin groups of large type by Cumplido–Martin–Vaskou [7], and for
some two dimensional Artin groups by the first author [1]. It is also partially solved when the Artin
group is of FC type by Morris-Wright [18] (see also Möller–Paris–Varghese [17]).

In this paper we prove that a parabolic subgroup P of A contained in another parabolic subgroup P′

is a parabolic subgroup of P′ . We do this for all Artin groups. Results proved for all Artin groups are
quite uncommon in the literature. In general, they involve only certain families of Artin groups, so our
paper is in some sense a rarity. This result is a preliminary to the above question, and it was a question
posed by Godelle [13, Conjecture 2]. Additionally, it is a central step towards solving the conjugacy
stability problem for Artin groups (see [5]). The question seems obvious but is not. It is also related to
the study of normalizers and centralizers of parabolic subgroups. In more precise terms we prove the
following.

http://www.ams.org/mathscinet/search/mscdoc.html?code=20F36
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Theorem 1.1 Let Γ be a finite simplicial graph, let m : E(Γ)→ N≥2 be a labeling, and let A = A[Γ]
be the Artin group of Γ. Let X,Y ⊂ V(Γ) and α ∈ A such that αAYα

−1 ⊂ AX . Then there exist
Y ′ ⊂ X and γ ∈ AX such that αAYα

−1 = γAY′γ
−1 .

Theorem 1.1 was proved in Rolfsen [21] and in Fenn–Rolfsen–Zhu [10] for braid groups, in Paris [19]
and in Godelle [11] for Artin groups of spherical type, in Godelle [12] for Artin groups of FC type,
in Godelle [13] for two dimensional Artin groups and in Haettel [15] for some Euclidean type Artin
groups. Our proof is independent from these works and it is valid for all Artin groups.

Let X ⊂ V(Γ). In order to achieve our goal we construct a set-retraction πX : A→ AX to the inclusion
map AX ↪→ A (see Proposition 2.3). This map is defined directly on the words that represent the
elements of A, but it is not a homomorphism, although its restriction to the so-called colored subgroup
is a homomorphism. The construction of this map is interesting by itself and it can be considered as an
important result of the paper. However, we underline that this construction is implicit in the proof of
Theorem 1.2 of Charney–Paris [4] and our contribution consists in making it explicit.

Acknowledgments The first author is supported by CONICET. The second author is supported by the
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2 Proofs

We keep the notations from Section 1. So, Γ is a finite simplicial graph whose set of edges is endowed
with a labeling m : E(Γ)→ N≥2 and A = A[Γ] is the Artin group of Γ.

Let S = {sx | x ∈ V(Γ)} be an abstract set in one-to-one correspondence with V(Γ). Then the Coxeter
group W = W[Γ] of Γ is defined by the presentation

W = 〈S | Prod(sx, sy,m(e)) = Prod(sy, sx,m(e)) for e = {x, y} ∈ E(Γ) ,

s2
x = 1 for x ∈ V(Γ)〉 .

Let X be a subset of V(Γ). We set SX = {sx | x ∈ X} and we denote by WX the subgroup of W
generated by SX . We know by Bourbaki [2] that WX is naturally isomorphic to W[ΓX], hence, as
for Artin groups, we will not differentiate WX from W[ΓX]. The subgroup WX is called a standard
parabolic subgroup of W and a subgroup conjugate to WX is called a parabolic subgroup of W .

We denote by θ : A→ W the natural epimorphism which sends σx to sx for all x ∈ V(Γ). The kernel
of θ is denoted by CA = CA[Γ] and it is called the colored Artin group of Γ. The epimorphism θ

has a natural set-section ι : W → A defined as follows. For w ∈ W the word length of w with respect
to S is denoted by `S(w), and an expression w = sx1sx2 · · · sxp is called reduced if p = `S(w). Let
w ∈ W . We choose a reduced expression w = sx1sx2 · · · sxp and we set ι(w) = σx1σx2 · · ·σxp . By
Tits [23] this definition does not depend on the choice of the reduced expression. Notice that ι is not
a homomorphism, but, if u, v ∈ W are such that `S(uv) = `S(u) + `S(v), then ι(uv) = ι(u) ι(v). We
clearly have θ ◦ ι = id.
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For X ⊂ V(Γ) we set CAX = CA ∩ AX . Since the inclusion map from ΓX to Γ induces isomorphisms
W[ΓX] → WX and A[ΓX] → AX , the isomomorphism A[ΓX] → AX restricts to an isomorphism
CA[ΓX]→ CAX . So, as for WX and AX , we will not differentiate CAX from CA[ΓX].

The following lemma arises from the exercises of Chapter 4 of Bourbaki [2] (see also Davis [8, Section
4.3]) and it is widely used in the study of Coxeter groups.

Lemma 2.1 (Bourbaki [2]) Let X,Y ⊂ V(Γ) and let w ∈ W .

(1) There exists a unique element of minimal length in the double-coset WX w WY .

(2) Let w0 be the element of minimal length in WX w WY . For each v ∈ WX w WY there exist
u1 ∈ WX and u2 ∈ WY such that v = u1w0u2 and `S(v) = `S(u1) + `S(w0) + `S(u2).

(3) Let w0 be the element of minimal length in WX w WY . For each u1 ∈ WX we have `S(u1w0) =

`S(u1) + `S(w0), and for each u2 ∈ WY we have `S(w0u2) = `S(w0) + `S(u2).

Let X,Y ⊂ V(Γ) and w0 ∈ W . We say that w0 is (X,Y)-minimal if it is of minimal length in the
double-coset WX w0 WY .

The first ingredient in the proof of Theorem 1.1 is the following.

Lemma 2.2 Let X,Y ⊂ V(Γ) and w ∈ W such that wWYw−1 ⊂ WX . Then there exist Y ′ ⊂ X and
α ∈ AX such that ι(w) AY ι(w)−1 = αAY′α

−1 . In particular, ι(w) AY ι(w)−1 ⊂ AX .

Proof Let w0 be the element of minimal length in the double-coset WX w WY . By Lemma 2.1 there
exist u1 ∈ WX and u2 ∈ WY such that w = u1w0u2 and `S(w) = `S(u1) + `S(w0) + `S(u2). Since
wWYw−1 ⊂ WX , u1 ∈ WX and u2 ∈ WY , we have w0WYw−1

0 ⊂ WX .

Let y ∈ Y , and let ψ(y) = w0syw−1
0 ∈ WX . We have that w0sy = ψ(y) w0 . Furthermore, by Lemma

2.1 (3), we have `S(w0) + 1 = `S(w0sy) = `S(ψ(y) w0) = `S(ψ(y)) + `S(w0), and hence `S(ψ(y)) = 1.
So, there exists f (y) ∈ X such that w0syw−1

0 = ψ(y) = sf (y) . Note that the above defined map f : Y → X
is injective since conjugation by w0 is an automorphism. We set Y ′ = f (Y) ⊂ X .

Let y ∈ Y . We have w0sy = sf (y)w0 and `S(w0sy) = `S(sf (y)w0) = `S(w0) + 1, hence

ι(w0)σy = ι(w0) ι(sy) = ι(w0sy) = ι(sf (y)w0) = ι(sf (y)) ι(w0) = σf (y) ι(w0) .

This implies that ι(w0) ΣY ι(w0)−1 = ΣY′ , thus ι(w0) AY ι(w0)−1 = AY′ .

We set α = ι(u1) ∈ AX . Then, since ι(u2) ∈ AY ,

ι(w) AY ι(w)−1 = ι(u1) ι(w0) ι(u2) AY ι(u2)−1ι(w0)−1ι(u1)−1 =

ι(u1) ι(w0) AY ι(w0)−1ι(u1)−1 = ι(u1) AY′ ι(u1)−1 = αAY′α
−1 .

We now turn to construct a set-retraction of the inclusion map from AX into A, that is, a map πX : A→ AX

which satisfies πX(α) = α for all α ∈ AX . This map will be used to prove Lemma 2.4 which is the
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second and last ingredient in the proof of Theorem 1.1. Note that the main ideas of the proof of
Proposition 2.3 come from the proof of Theorem 1.2 of Charney–Paris [4].

Recall that (Σ t Σ−1)∗ denotes the free monoid freely generated by Σ t Σ−1 , that is, the set of words
over the alphabet ΣtΣ−1 . Let X ⊂ V(Γ). Let α̂ = σε1

z1 σ
ε2
z2 · · ·σ

εp
zp ∈ (ΣtΣ−1)∗ . We set u0 = 1 ∈ W

and, for i ∈ {1, . . . , p}, we set ui = sz1sz2 · · · szi ∈ W . We write each ui in the form ui = viwi

where vi ∈ WX and wi is (X, ∅)-minimal. Let i ∈ {1, . . . , p}. We set ti = wi−1sziw
−1
i−1 if εi = 1 and

ti = wisziw
−1
i if εi = −1. If ti 6∈ SX , then we set τi = 1. Suppose that ti ∈ SX , and let xi ∈ X such

that ti = sxi . Then we set τi = σεi
xi

. Finally, we set

π̂X(α̂) = τ1τ2 · · · τp ∈ (ΣX t Σ−1
X )∗ .

While the definition of π̂X may seem ad hoc at first, it will become clear in the proof of the following
proposition.

Proposition 2.3 Let X ⊂ V(Γ).

(1) Let α̂, β̂ ∈ (Σ t Σ−1)∗ . If α̂ and β̂ represent the same element of A, then π̂X(α̂) and π̂X(β̂)
represent the same element of AX . In other words, the map π̂X : (Σ t Σ−1)∗ → (ΣX t Σ−1

X )∗

induces a set-map πX : A→ AX .

(2) We have πX(α) = α for all α ∈ AX .

(3) The restriction of πX to CA is a homomorphism πX : CA→ CAX .

Proof The Salvetti complex of Γ is a CW-complex Sal(Γ) whose 2-skeleton coincides with the 2-
complex associated with the standard presentation of A (see Godelle–Paris [14], Paris [20], Salvetti
[22] or Charney–Davis [3]). In particular, Sal(Γ) has a unique vertex o0 , and it has one edge āx for
each x ∈ V(Γ). We also have an isomorphism A→ π1(Sal(Γ)) which sends σx to the homotopy class
of āx for all x ∈ V(Γ). Let p : Sal(Γ) → Sal(Γ) be the regular covering associated with θ : A → W .
The set of vertices of Sal(Γ) is a set {o(u) | u ∈ W} in one-to-one correspondence with W and the
set of edges is a set {ax(u) | x ∈ V(Γ) , u ∈ W} in one-to-one correspondence with V(Γ) × W . An
edge ax(u) connects o(u) with o(usx), and it is assumed to be oriented from o(u) to o(usx). We have
p(o(u)) = o0 for all u ∈ W and p(ax(u)) = āx for all (x, u) ∈ V(Γ) ×W . We have an action of W on
Sal(Γ) and Sal(Γ)/W = Sal(Γ). This action is defined on the vertices and edges as follows:

v o(u) = o(vu) , v ax(u) = ax(vu) .

Let X ⊂ V(Γ). We have an embedding ν̄X : Sal(ΓX)→ Sal(Γ) which sends āx to āx for all x ∈ X and
which induces the natural embedding of AX into A. We also have an embedding νX : Sal(ΓX)→ Sal(Γ)
which sends o(u) to o(u) for all u ∈ WX , which sends ax(u) to ax(u) for all (x, u) ∈ X×WX , and which
induces the natural embedding of CAX into CA. These two embeddings are linked with the following
commutative diagram:

Sal(ΓX)
νX //

p
��

Sal(Γ)

p
��

Sal(ΓX)
ν̄X // Sal(Γ)
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We know by Godelle–Paris [14, Theorem 2.2] that the embedding νX : Sal(ΓX) → Sal(Γ) admits a
retraction ρX : Sal(Γ)→ Sal(ΓX). This retraction is cellular in the sense that it sends the k-skeleton of
Sal(Γ) to the k-skeleton of Sal(ΓX) for all k ≥ 0. The following explicit description of ρX on the 0
and 1-skeletons of Sal(Γ) is proved in Charney–Paris [4, Lemma 2.6]. Let u ∈ W and z ∈ V(Γ). We
write u in the form u = vw where v ∈ WX and w is (X, ∅)-minimal.

• ρX(o(u)) = o(v).

• If wszw−1 6∈ SX , then ρX(az(u)) = o(v).

• Suppose that wszw−1 ∈ SX . Let x ∈ X such that wszw−1 = sx . Then ρX(az(u)) = ax(v).

In what follows we compose paths from left to right. Let α̂ = σε1
z1 σ

ε2
z2 · · ·σ

εp
zp ∈ (Σ t Σ−1)∗ . Let

γ̄(α̂) = āε1
z1

āε2
z2
· · · āεp

zp .

We see that, if α is the element of A represented by α̂ , then α , regarded as an element of π1(Sal(Γ)) = A,
is represented by the loop γ̄(α̂). Let γ(α̂) be the lift of γ̄(α̂) in Sal(Γ) starting at o(1). We set
u0 = 1 ∈ W and, for i ∈ {1, . . . , p}, we set ui = sz1sz2 · · · szi ∈ W . For i ∈ {1, . . . , p} we set
ai = azi(ui−1) if εi = 1, and ai = azi(ui) if εi = −1. Then

γ(α̂) = aε1
1 aε2

2 · · · a
εp
p .

Let γX(α̂) = ρX(γ(α̂)). We write each ui in the form ui = viwi where vi ∈ WX and wi is (X, ∅)-
minimal. Let i ∈ {1, . . . , p}. We set ti = wi−1sziw

−1
i−1 if εi = 1, and ti = wisziw

−1
i if εi = −1. If

ti 6∈ SX , then, as shown in Charney–Paris [4, Lemma 2.6], vi = vi−1 . In that case we denote by bi

the constant path at o(vi−1) = o(vi). Suppose that ti ∈ SX . Let xi ∈ X such that ti = sxi . We set
bi = axi(vi−1) if εi = 1, and bi = axi(vi)−1 if εi = −1. It follows from the description of the map ρX

on the 0 and 1-skeletons given above that

γX(α̂) = b1b2 · · · bp .

Let γ̄X(α̂) = p(γX(α̂)). Let i ∈ {1, . . . , p}. If ti 6∈ SX , then we denote by b̄i the constant loop in
Sal(ΓX) based at o0 . Suppose ti ∈ SX . Let xi ∈ X such that ti = sxi as before. We set b̄i = āxi if
εi = 1, and b̄i = ā−1

xi
if εi = −1. Then

γ̄X(α̂) = b̄1b̄2 · · · b̄p .

Let α′ ∈ AX = π1(Sal(ΓX)) be the element represented by the loop γ̄X(α̂). Then we easily see that α′

is exactly the element of AX represented by the word π̂X(α̂) ∈ (ΣX t Σ−1
X )∗ .

Proof of Part (1). Let α̂, β̂ ∈ (Σ t Σ−1)∗ be two words that represent the same element of A. Then
γ̄(α̂) and γ̄(β̂) represent the same element of A = π1(Sal(Γ)), hence γ̄(α̂) and γ̄(β̂) are homotopic
loops. Since p : Sal(Γ) → Sal(Γ) is a covering map, γ(α̂) and γ(β̂) are homotopic relative to the
extremities. Since ρX is continuous, it follows that γX(α̂) and γX(β̂) are also homotopic relative to
the extremities. Again, the map p : Sal(ΓX) → Sal(ΓX) is continuous, hence γ̄X(α̂) and γ̄X(β̂) are
homotopic loops, and therefore they represent the same element of AX = π1(Sal(ΓX)). We conclude
that π̂X(α̂) and π̂X(β̂) represent the same element of AX .

Proof of Part (2). Let α ∈ AX . We choose a word α̂ = σε1
x1σ

ε2
x2 · · ·σ

εp
xp ∈ (ΣX tΣ−1

X )∗ which represents
α . Following the above definition, we set u0 = 1 and, for i ∈ {1, . . . , p}, we set ui = sx1sx2 · · · sxi .
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We write each ui in the form ui = viwi where vi ∈ WX and wi is (X, ∅)-minimal. Note that ui ∈ WX ,
hence vi = ui and wi = 1. Let i ∈ {1, . . . , p}. We set ti = wi−1sxiw

−1
i−1 if εi = 1, and ti = wisxiw

−1
i if

εi = −1. In both cases we have ti = sxi , and so τi = σεi
xi

. So,

π̂X(α̂) = τ1τ2 · · · τp = σε1
x1
σε2

x2
· · ·σεp

xp = α̂ ,

hence πX(α) = α .

Proof of Part (3). Observe that the restriction of πX to CA coincides with the homomorphism
ρX,∗ : CA = π1(Sal(Γ)) → π1(Sal(ΓX)) = CAX induced by the map ρX : Sal(Γ) → Sal(ΓX). To see
this, note that ρX does to edge paths in Sal(Γ) what π̂X does to elements in (Σ t Σ−1)∗ (where the ε
appearing in the definition of π̂X reflect the orientation of the edges in Sal(Γ)). Hence, the restriction
of πX to CA is a homomorphism πX : CA→ CAX .

Now, thanks to Proposition 2.3 we can prove the second ingredient of the proof of Theorem 1.1.

Lemma 2.4 Let X ⊂ V(Γ), α ∈ AX and β ∈ CA. If βαβ−1 ∈ AX , then βαβ−1 = πX(β)απX(β)−1 .

Proof We assume that βαβ−1 ∈ AX . We choose a word σε1
z1 σ

ε2
z2 · · ·σ

εp
zp ∈ (ΣtΣ−1)∗ which represents

β and a word σµ1
x1 σ

µ2
x2 · · ·σ

µq
xq ∈ (ΣX t Σ−1

X )∗ which represents α . We start with the definition of
πX(βαβ−1) which uses the representative word σε1

z1 · · ·σ
εp
zp σ

µ1
x1 · · ·σ

µq
xq σ
−εp
zp · · ·σ

−ε1
z1 . We set u0,1 = 1

and, for i ∈ {1, . . . , p}, we set ui,1 = sz1sz2 · · · szi . We write each ui,1 in the form ui,1 = vi,1wi,1 where
vi,1 ∈ WX and wi,1 is (X, ∅)-minimal. Let i ∈ {1, . . . , p}. We set ti,1 = wi−1,1sziw

−1
i−1,1 if εi = 1,

and ti,1 = wi,1sziw
−1
i,1 if εi = −1. We set τi,1 = 1 if ti,1 6∈ SX , and τi,1 = σεi

xi,1
if ti,1 ∈ SX , where

xi,1 is the element of X such that ti,1 = sxi,1 . We set u0,2 = θ(β) and, for i ∈ {1, . . . , q}, we set
ui,2 = θ(β) sx1sx2 · · · sxi . We write each ui,2 in the form ui,2 = vi,2wi,2 , where vi,2 ∈ WX and wi,2 is
(X, ∅)-minimal. Let i ∈ {1, . . . , q}. We set ti,2 = wi−1,2sxiw

−1
i−1,2 if µi = 1, and ti,2 = wi,2sxiw

−1
i,2 if

µi = −1. We set τi,2 = 1 if ti,2 6∈ SX , and τi,2 = σµi
xi,2 if ti,2 ∈ SX , where xi,2 is the element of X such that

ti,2 = sxi,2 . We set up+1,3 = θ(β) θ(α) and, for i ∈ {1, . . . , p}, we set ui,3 = θ(β) θ(α) szpszp−1 · · · szi .
We write each ui,3 in the form ui,3 = vi,3wi,3 , where vi,3 ∈ WX and wi,3 is (X, ∅)-minimal. Let
i ∈ {1, . . . , p}. We set ti,3 = wi+1,3sziw

−1
i+1,3 if εi = −1, and ti,3 = wi,3sziw

−1
i,3 if εi = 1. We set

τi,3 = 1 if ti,3 6∈ SX , and τi,3 = σ−εi
xi,3

if ti,3 ∈ SX , where xi,3 is the element of X such that ti,3 = sxi,3 .
Then, by definition,

πX(βαβ−1) = τ1,1τ2,1 · · · τp,1τ1,2τ2,2 · · · τq,2τp,3 · · · τ2,3τ1,3 .

We also have πX(βαβ−1) = βαβ−1 , since βαβ−1 ∈ AX .

We have τ1,1τ2,1 · · · τp,1 = πX(β) by definition. Let i ∈ {0, 1, . . . , q}. We have θ(β) = 1 since
β ∈ CA, hence ui,2 = sx1sx2 · · · sxi ∈ WX . It follows that vi,2 = ui,2 and wi,2 = 1. Let i ∈ {1, . . . , q}.
Then ti,2 = sxi ∈ SX and τi,2 = σµi

xi . So,

τ1,2τ2,2 · · · τq,2 = σµ1
x1
σµ2

x2
· · ·σµq

xq = α .

Let i ∈ {0, 1, . . . , p}. We have 1 = θ(β) = sz1 · · · sziszi+1 · · · szp , hence szp · · · szi+1 = sz1 · · · szi = ui,1 ,
and therefore

ui,3 = θ(β) θ(α) szp · · · szi = θ(α) sz1 · · · szi−1 = θ(α) ui−1,1 = θ(α) vi−1,1wi−1,1 .
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Since θ(α) ∈ WX , it follows that vi,3 = θ(α) vi−1,1 and wi,3 = wi−1,1 . Let i ∈ {1, . . . , p}. If εi = 1,
then

ti,3 = wi,3sziw
−1
i,3 = wi−1,1sziw

−1
i−1,1 = ti,1 .

Similarly, if εi = −1, then

ti,3 = wi+1,3sziw
−1
i+1,3 = wi,1sziw

−1
i,1 = ti,1 .

In both cases it follows that τi,3 = τ−1
i,1 . So,

τp,3 · · · τ2,3τ1,3 = τ−1
p,1 · · · τ

−1
2,1 τ

−1
1,1 = πX(β)−1 .

Finally,
βαβ−1 = πX(βαβ−1) = πX(β)απX(β)−1 .

Proof of Theorem 1.1 Let X,Y ⊂ V(Γ) and α ∈ A such that αAYα
−1 ⊂ AX . Let w = θ(α). We have

wWYw−1 ⊂ WX , hence, by Lemma 2.2, there exist Y ′ ⊂ X and β2 ∈ AX such that ι(w) AY ι(w)−1 =

β2AY′β
−1
2 . Let β1 = α ι(w)−1 . Then

αAYα
−1 = α ι(w)−1 ι(w) AY ι(w)−1 ι(w)α−1 = β1β2AY′β

−1
2 β−1

1 .

We have β1 ∈ CA, since θ(β1) = ww−1 = 1, β2AY′β
−1
2 ⊂ AX and β1(β2AY′β

−1
2 )β−1

1 ⊂ AX , hence,
by Lemma 2.4,

αAYα
−1 = β1(β2AY′β

−1
2 )β−1

1 = πX(β1) (β2AY′β
−1
2 )πX(β1)−1 .

So, if γ = πX(β1)β2 , then γ ∈ AX and αAYα
−1 = γAY′γ

−1 .
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mblufstein@dm.uba.ar, lparis@u-bourgogne.fr

mailto:mblufstein@dm.uba.ar
mailto:lparis@u-bourgogne.fr

	1 Introduction
	2 Proofs
	Bibliography

