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The robust model predictive control (MPC) of systems with stable and integrating
modes is addressed. The approach proposed here extends the method presented in
Odloak in 2004 that can only be applied to open-loop stable systems. Here, the robust
controller is developed assuming that there is model uncertainty in both stable and
integrating parts of the system. The method considers a modified cost function that
turns the infinite output horizon MPC globally convergent for any finite input horizon.
The controller is based on a modified version of the state-space model utilized by Car-
rapiço and Odloak in 2005 to develop a nominally stable MPC for systems with stable
and integrating modes. The approach considers the inclusion of feasible cost contract-
ing constraints in the control optimization problem, taking into account the annulment
of the integrating modes to assure a bounded infinite horizon cost. A simulation exam-
ple is included to illustrate the performance and robustness of the proposed approach
and to demonstrate that the controller can be implemented in real applications. � 2007
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Introduction

The lack of guaranteed stability is still one of the weak-
nesses of the available linear model predictive control (MPC)
commercial packages.1 A robust controller is able to provide
closed-loop stability at different process operating conditions.
As most of the chemical processes are nonlinear, different
operating conditions mean that different linear models should
be used to represent the process. As the MPC controller is
usually based on a single nominal linear model of the pro-

cess, it can be expected that stability becomes an issue when

the system operating point has to be changed significantly.

For open-loop stable systems, this subject has been exten-

sively treated in the control literature,2–6 and the existing sol-

utions to the robust MPC problem for stable systems seem

already in an acceptable stage for practical implementation.

For the integrating case, Zheng7 shows that the output steady

state error can be used as a cost function that can be made

bounded and decreasing in the presence of model uncer-

tainty. Lee and Cooley8 present a min-max approach for sys-

tems with bounded uncertainty in the input matrix. Ralhan

and Badgwell9 use the cost function proposed by Zheng7 and

the cost contraction constraint approach proposed by Badg-

well,10 to construct a stable MPC for the integrating system.

Correspondence concerning this article should be addressed to D. Odloak at
odloak@usp.br.
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In all these approaches, it is assumed that the controller
works as a regulator, or that the desired reference values for
the system inputs and states are at the origin. On the basis of
a modified cost function, which includes a set of suitable
slack variables, Cano and Odloak11 proposed a robust MPC
for pure integrating systems with single poles. The controller
was shown to be robust in the output tracking case and to be
offset-free in the presence of unknown disturbances. How-
ever, the method could not be directly applied to the system
in which there are also stable poles.

One of the usual forms to obtain nominal stability in MPC is
to adopt an infinite prediction horizon. However, to produce an
offset-free tracking operation, an integrating disturbance model
should be added to the system model or the model should be
written in the incremental form in the input. This formulation
adds integrating modes to the system output. These modes must
be zeroed at the end of the control horizon to keep the infinite ho-
rizon cost-bounded. When the system to be controlled has al-
ready integrating modes, an additional set of constraints must be
added to the control problem to cancel the effect of these modes
on the system output. For the uncertain system, these constraints
may conflict with the input constraints and the optimization
problem that produces the MPC may become infeasible. The
consequence is that global convergence of the cost function may
not be achieved. More recently, the class of robust MPC control-
lers, which is based on a terminal set constraint and a terminal
set controller, has showed some fruitful results12,13 in the direc-
tion of enlarging the convergence region of the controller, by
considering a time varying terminal constraint set. However,
global convergence has still not been achieved, particularly for
the integrating system. Kim et al.14 have shown that the global
convergence of the terminal controller can be obtained for the
nominal system. They define a nonquadratic Lyapunov function
that allows the saturation of the input of the terminal controller
and consequently making it global.

In this article, the methods proposed by Carrapiço and
Odloak15 and Odloak6 will be combined to produce a globally
robust MPC for systems with integrating and stable modes with
uncertainty in the model parameters. In the next section, we
present the state-space model considered in this work. Then,
the nominal infinite horizon MPC problem is reviewed for the
system with stable and integrating modes. Next, the robust con-
troller developed by Odloak6 to stable systems is extended to
integrating systems, and the convergence and stability of the
proposed approach are studied. Finally, we present some simu-
lation results and conclude the article.

A New State Space Model for Systems with
Integrating Modes

Rodrigues and Odloak16 presented a state-space model that
is based on an analytical expression for the step response of
systems with nonintegrating modes. The model was used to
develop a robust min-max MPC with infinite prediction hori-
zon for open-loop stable systems. On the basis of the discrete
version of the same state-space model, Odloak6 proposed the
extension of the robust regulators of Badgwell10 and Lee and
Yu5 to the general MPC problem of output tracking of stable
systems in which the steady state is unknown. Rodrigues and
Odloak17 introduced the state-space model corresponding to
the analytical step response of systems with integrating and

stable modes. On the basis of that model, Carrapiço and
Odloak15 proposed a globally stable MPC for the nominal
system with stable and integrating nonrepeated poles.
Recently, González et al.18 extended the method of Carrapiço
and Odloak15 to the case in which there are uncertainties in
the model parameters related to the stable modes of the sys-
tem. However, the approach could not be extended to the
general case, where uncertainty also appears in the model pa-
rameters related to the integrating modes. In this section, we
develop a new version of this state-space model, which is
also based on the analytical step response of systems with
integrating modes. As we will show later, this new model
allows the extension of the method of Carrapiço and
Odloak15 to produce a robust controller for uncertain systems
with stable and integrating modes.

Consider initially a SISO system that can be represented
by the following transfer function model:

yðzÞ
uðzÞ ¼

b0 þ b1zþ � � � þ bnbz
nb

ðz� 1Þðz� r1Þ . . . ðz� rnaÞ
(1)

where r1, . . ., rna are distinct stable poles. If at time 0, the
system is at the origin and a step move Du(0) is introduced
in the input, then the output response at sampling time k can
be represented as follows:

sðkÞ ¼ ðd0 þ dd1r
k
1 þ � � � þ ddnar

k
na þ kDt diÞDuð0Þ (2)

where d0, ddi¼1, . . . , na and di are obtained from the partial
fraction expansion of (1) and Dt is the sampling period.

Suppose now that the system starts from the same steady
state and the following sequence of control moves is intro-
duced into the system: Du(0), Du(1), . . . , Du(k � 1). Then,
based on Eq. 2, the corresponding system output, at time
step k, can be written as follows:

yðkÞ ¼ d0 þ
Xna
l¼1

ddl r
k
l þ kDt di

" #
Duð0Þ

þ d0 þ
Xna
l¼1

ddl r
k�1
l þ ðk � 1ÞDt di

" #
Duð1Þ þ � � �

þ d0 þ
Xna
l¼1

ddl rl þ Dt di
" #

Duðk � 1Þ

The earlier equation can be rearranged and expressed in the
following form:

yðkÞ ¼ d0Duð0Þ þ ðk � 1ÞDtdiDuð0Þ þ d0Duð1Þ

þ ðk � 2ÞDtdiDuð1Þ þ � � � þ d0Duðk � 2Þ þ DtdiDuðk � 2Þ

þ Dt diðDuð0Þ þ Duð1Þ þ � � � þ Duðk � 2ÞÞ

þ d0Duðk � 1Þ þ DtdiDuðk � 1Þ

þ
Xna
l¼1

ddl r
ðk�1Þ
l Duð0Þ þ ddl r

ðk�2Þ
l Duð1Þ þ � � �

h�

þddl rlDuðk � 2Þ
i
rl þ ddl rlDuðk � 1Þ

�
ð3Þ
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Now define the following variables

x1ðk � 1Þ ¼ d0Duð0Þ þ ðk � 1ÞDtdiDuð0Þ þ d0Duð1Þ

þ ðk � 2ÞDtdiDuð1Þ þ � � � þ d0Duðk � 2Þ þ DtdiDuðk � 2Þ

xlþ1ðk � 1Þ ¼ ddl r
ðk�1Þ
l Duð0Þ þ ddl r

ðk�2Þ
l Duð1Þ þ � � �

þ ddl rlDuðk � 2Þ l ¼ 1; . . . ; na

xnaþ2ðk � 1Þ ¼ Duð0Þ þ Duð1Þ þ � � � þ Duðk � 2Þ ð4Þ

Then, substituting the variables defined in (4) into (3), the
following equation is obtained.

yðkÞ ¼ x1ðk � 1Þ þ diDt xnaþ2ðk � 1Þ þ
Xna
l¼1

xlþ1ðk � 1Þ

þ d0 þ Dt di
� �

Duðk � 1Þ þ
Xna
l¼1

rlxlþ1ðk � 1Þð

þ ddl rlDuðk � 1Þ
�

ð5Þ

It is easy to see that the variables defined in (4) can be
updated recursively as follows:

x1ðkÞ ¼ x1ðk � 1Þ þ diDt xnaþ2ðk � 1Þ þ ðd0 þ Dt diÞDuðk � 1Þ

xlþ1ðkÞ ¼ rlxlþ1ðk � 1Þ þ ddl rlDuðk � 1Þ; l ¼ 1; . . . ; na

xnaþ2ðkÞ ¼ xnaþ2ðk � 1Þ þ Duðk � 1Þ ð6Þ

and the system output can be represented in terms of the
new state variables as follows:

yðkÞ ¼ x1ðkÞ þ
Xna
l¼1

xlþ1ðkÞ

In a multivariable system with ny outputs and nu inputs, if
for each pair (yi � uj) we have a transfer function as in (1),
then the state-space model corresponding to (6) takes the fol-
lowing form:

xðk þ 1Þ ¼ AxðkÞ þ BDuðkÞ (7)

yðkÞ ¼ C xðkÞ

where

x ¼
xs

xd

xi

2
64

3
75; xs 2 &ny; xd 2 &nd; xi 2 &nu; y 2 &ny;

nd ¼ ny nu na

A¼
Iny 0 DtDi

0 F 0

0 0 Inu

2
64

3
75 2 &nx�nx; B¼

D0 þDtDi

DdFN

Inu

2
64

3
75 2 &nx�nu;

C¼ ½Iny � 0ny�nu�

� ¼
1 1 � � � 1
zfflfflfflfflffl}|fflfflfflfflffl{nu:na

0 0 � � � 0
zfflfflfflfflffl}|fflfflfflfflffl{nu:na

0 0 � � � 0 . . . 0 0 � � � 0

..

. ..
.
� � � ..

. ..
. ..
.
� � � ..

.

0 0 � � � 0 1 1 � � � 1

2
66664

3
77775; nx ¼ nyþ nd þ nu

F ¼ diag er1;1;1Dt � � � er1;1;naDt � � � er1;nu;1Dt � � � er1;nu;naDt � � � erny;1;1Dt � � �
�

erny;1;naDt � � � erny;nu;1Dt � � � erny;nu;naDt
�

F 2 &nd�nd

Dd ¼ diag
�
dd1;1;1 � � � dd1;1;na � � � dd1;nu;1 � � � dd1;nu;na � � � ddny;1;1 � � �
ddny;1;n1 � � � ddny;nu;1 � � � ddny;nu;na

�
; Dd 2 &nd�nd

rl,i,j is the lth stable pole of the pair (yi � uj) and dl,i,j is the
corresponding step response coefficient as defined in (1).

N ¼

J1

J2

..

.

Jny

2
66664

3
77775; N 2 &nd�nu; Ji ¼

1 0 0 � � � 0

1 0 0 � � � 0

..

. ..
. ..

.
� � � ..

.

1 0 0 � � � 0

0 1 0 � � � 0

0 1 0 � � � 0

..

. ..
. ..

.
� � � ..

.

0 1 0 � � � 0

..

.

0 0 0 � � � 1

0 0 0 � � � 1

..

. ..
. ..

.
� � � ..

.

0 0 0 � � � 1

2
6666666666666666666666666664

3
7777777777777777777777777775

;

Ji 2 &nu:na�nu

In this model formulation, xs corresponds to the integrating
states related to the incremental form of the inputs, xd repre-
sents the stable states, and xi stands for the integrating states
of the system. A model which is similar to the one defined
earlier was utilized by Carrapiço and Odloak,15 except for
the component xi of the state vector, which in the model pre-
sented earlier is not related to any of the model parameters
that characterize the system. This means that, xi is not
affected by model uncertainty. This property of the model
defined in (7) will show to be useful in the development of
an infinite horizon MPC that is robust to uncertainty in any
of the model parameters.

It is easy to show that the model defined in (7), will be
controllable and observable as long as matrices D0 and Di

are such that, rank(D0) ¼ ny and rank(Di) ¼ nu. However, in
most practical systems, Di is not a full rank matrix and we
need some other criteria to assure controllability and observ-
ability of the model defined in (7). For this purpose, it can
be shown that, if rank of Di is equal to the number of inputs
related to integrating modes, then the model defined in (7)
will be controllable and observable. Let ni be the number of
integrated inputs. If ni < nu, then, in model (7), state xi can
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be reduced and written with ni components, which will be
controllable and observable. If state xi is written with nu
components, then only ni of these components will be con-
trollable and observable. However, the remaining (nu � ni)
components will be fixed at the origin and consequently will
not affect the controllability or the observability of model (7).

Nominal Infinite Horizon MPC

The infinite horizon MPC that is considered here is based
on the following cost function:

V1;k ¼
X1
j¼0

eðk þ jÞTQ eðk þ jÞ

þ
Xm�1

j¼0

Duðk þ j=kÞTRDuðk þ j=kÞ ð8Þ

where Q [ &ny�ny is positive definite and R [ &nu�nu is
positive semidefinite, e(k þ j) ¼ y(k þ j) � yr is the error of
the predicted output at sampling time k þ j including the
effect of future control moves, yr is the output reference, and
m is the control horizon. It is assumed that Du(k þ j/k) ¼ 0
for j � m. For the model defined in (7), it is easy to show
that, because of the presence of the integrating modes, the
cost defined in (8) will be unbounded unless the integrating
states are zeroed at the end of the control horizon. This
means that, for the state-space model defined in (7), we need
to include in the control problem, the following constraints:

xsðk þ mÞ � yr ¼ 0 (9)

xiðk þ mÞ ¼ 0 (10)

Using the definitions of the state components, Eqs. 9 and 10
can be expressed as Eqs. 11 and 12, respectively:

esðkÞ þ D0
m � Di

2m

� �
Duk ¼ 0 (11)

xiðkÞ þ �IDuk ¼ 0 (12)

where

esðkÞ ¼ xsðkÞ � yr

D0
m ¼ ½D0 � � � D0� 2 &ny�m:nu; I ¼ Inu � � � Inu

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{m" #

Di
2m ¼ ½0 DtDi � � � ðm� 1ÞDtDi� 2 &nu�m:nu

Duk ¼ Duðk=kÞT � � � Duðk þ m� 1=kÞT
h iT

2 &m:nu

If Eqs. 11 and 12 are substituted in (8), the control cost can
be expressed as follows:

V1;k ¼
Xm�1

j¼0

eðk þ jÞT Qeðk þ jÞ þ xdðk þ mÞT Qxdðk þ mÞ

þ
Xm�1

j¼0

Duðk þ j=kÞT R Duðk þ j=kÞ

where Q is the solution to the equation:

Q� FT QF ¼ FT�TQ�F

Now, a MPC that is nominally stable for systems with stable
and integrating modes can be obtained from the solution to
the following optimization problem:

min
Duk

V1;k (13)

subject to:
(11), (12), and

Duðkþ j=kÞ 2U; j¼ 0;1; . . . ;m�1 (14)

U¼
(
Duðkþ j=kÞ

�����
�Dumax �Duðkþ j=kÞ�Dumax

umin �Duðk�1Þþ
Pj
i¼0

Duðkþ i=kÞ< umax

)

when problem (13) is feasible, we can follow the same steps
as Carrapiço and Odloak15 to prove that the control law
resulting from the solution to this problem drives the output
of the undisturbed closed-loop system to the reference value.
Local asymptotic convergence of the system output to the
reference value is obtained only for those values of (xe, yr)
lying in the set in which the problem defined in (13) is feasi-
ble. The infeasibility of the earlier problem may result from
a conflict between constraints (11) or (12) and (14).

In order to obtain a stable MPC with global convergence
for systems where the number of integrating poles is not
larger than the number of outputs, we consider the control
cost proposed by Cano and Odloak,11 which is defined as
follows:

V2;k ¼
X1
j¼1

�
eðk þ jÞ þ dsk þ jDtdik

�T
Q
�
eðk þ jÞ þ dsk þ jDtdik

�

þ
Xm�1

j¼0

Duðk þ j=kÞT RDuðk þ j=kÞ þ ds
T

k S1d
s
k þ di

T

k S2d
i
k

where dsk [ &ny and dik [ &ny are slack variables that need to
be computed as additional variables of the control problem.
S1 and S2 are positive definite weight matrices. The afore-
mentioned cost can also be made bounded by zeroing the
integrating modes at the end of the control horizon, which
results in the following constraints:

esðkÞ þ D0
m � Di

2m

� �
Duk þ dsk ¼ 0 (15)

xiðkÞ þ IDuk þ dik ¼ 0 (16)

Considering the two constraints defined earlier, the control
cost becomes

V2;k ¼
Xm�1

j¼1

�
eðk þ jÞ þ dsk þ jDtdik

�T
Q
�
eðk þ jÞ þ dsk þ jDtdik

�

þ xdðk þ mÞT Qxdðk þ mÞ þ
Xm�1

j¼0

Duðk þ j=kÞT RDuðk þ j=kÞ

þ ds
T

k S1d
s
k þ di

T

k S2d
i
k
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and a globally feasible infinite horizon MPC would be ob-
tained by solving the following optimization problem:

min
Duk ;dsk ;d

i
k

V2;k (17)

subject to:
(14), (15), and (16)
However, the control law resulting from the solution to the

problem defined in (17) does not necessarily produce an as-
ymptotic converging closed loop for the integrating system.
In order to obtain a converging system, we split the problem
defined in (17) into two subproblems as follows:

Problem 1a.

min
Dua;k ;dik

Va;k ¼ di
T

k S2d
i
k (18)

subject to:

Duaðk þ j=kÞ 2 U; j ¼ 0; 1; . . . ;m� 1

xiðkÞ þ IDua;k þ dik ¼ 0 (19)

where

Dua;k ¼ ½Duaðk=kÞT � � � Duaðk þ m� 1=kÞT �T

Let the optimal solution to the problem defined in (18) be
designated

�
Du*

a,k, d
i*
k

�
and consider the total input increment

corresponding to this optimal solution

u�aðk þ m� 1=kÞ � uðk � 1Þ ¼
Xm�1

j¼0

Du�aðk þ j=kÞ

This optimal input increment is passed to a second problem,
which is solved within the same time step:

Problem 1b.

min
Dub;k;ds

k

Vb;k ¼
Xm�1

j¼0

ðeðk þ jÞ þ dskÞ
TQðeðk þ jÞ þ dskÞ

þ xdðk þ mÞT Qxdðk þ mÞ þ
Xm�1

j¼0

Dubðk þ j=kÞTRDubðk þ j=kÞ

þ ds
T

k S1d
s
k

subject to.

Dub;kðk þ j=kÞ 2 U; j ¼ 0; 1; . . . ;m� 1

esðkÞ þ ½D0
m � Di

2m�Dub;k þ dsk ¼ 0

Xm�1

j¼0

Dub;kðk þ j=kÞ ¼ u�aðk þ m� 1=kÞ � uðk � 1ÞÞ

where Dub,k ¼ [Dub(k/k)T . . . Dub(k þ m � 1/k)T]T

The convergence of the closed-loop system with the con-
troller defined through Problems 1a and 1b is assured by the
following theorem:

Theorem 1. For systems with stable and integrating modes
that remain controllable at the steady state corresponding to
the desired output reference, Problems 1a and 1b are always
feasible. Also, if weight S1 is sufficiently large, then the control
sequence obtained from the solution to Problems 1a and 1b at
successive time steps drives the output of the closed-loop sys-
tem asymptotically to the reference value.

Proof: We can show that at time step k þ 1

Dua;kþ1 ¼ ½Dubðk þ 1=kÞ�T � � �Dubðk þ m� 1=kÞ�T 0�T

and dikþ1 ¼ di�k

is a feasible solution to Problem 1a and for this feasible solu-
tion, we have Va,kþ1 ¼ V*

a,k ¼ (di
*

k)
T S2d

i*
k. Then, if the input

increment is not constrained, dikþ1 can be made equal to zero
by considering the following control sequence: Dua,kþ1 ¼
[Dub(k þ 1/k)*T . . . Dub(k þ m � 1/k)*T � di

*

k]
T

If the input is constrained, then it is easy to show that dik
can be reduced to zero in a number of time steps not larger
than maxjðjdi

�

j;kjÞ=Duj;max, where index j designates the
components of di*k and Dumax.

After convergence of Va,k to zero, solving Problem 1a
becomes equivalent to solving Eq. 12. Consequently, the so-
lution obtained by solving Problems 1a and 1b sequentially
becomes equivalent to solving the following problem:

min
Duk ;dsk

V3;k ¼
Xm�1

j¼0

ðeðk þ jÞ þ dskÞ
TQðeðk þ jÞ þ dskÞ

þ xdðk þ mÞT Qxdðk þ mÞ

þ
Xm�1

j¼0

Duðk þ j=kÞTRDuðk þ j=kÞ þ ds
T

k S1d
s
k ð20Þ

(12), (14), and (15)
It is easy to show that the cost defined in (20) is decreas-

ing and converges to a minimum. However, the inclusion of
the slack dsk in the control problem may allow the term in
V3,k related to the error on the output to converge to zero,
while the slack has not converged to zero. This situation cor-
responds to the convergence of the closed-loop system to a
steady state with offset in the output. This may happen when
the stable modes are no longer controllable (e.g. the input
becomes saturated) or parameter S1 is not properly selected.
Here, we show how to select S1 in order to prevent output
offset. For this purpose, suppose that when k ? k (large
enough) the state tends to the steady state defined by xs(k),
xd(k), and xi(k). Note that at this steady state, we have Du�k ¼
0 and, consequently, from (12) and (15), we have respec-
tively xi(k) ¼ 0 and es(k) ¼ xs(k) � yr ¼ �ds�k. Also, the sta-
ble part of the state tends to zero at this steady state or xd (k)
¼ 0. Thus, at this steady state, the cost is given by V3,�k ¼ ds

T

�k

S1d
s
�k. Now, lets us try to find a control sequence that corre-

sponds to a value of the cost that is smaller than V3,�k. For
this purpose, assume that m ¼ 2, which is the minimum con-
trol horizon to produce an offset-free controller and assume
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also that we do not have any active input constraint. Then,
the solution to problem (20) at k produces Du�k that has to
satisfy constraints (12) and (15). From the constraint defined
in (12) we have xi(k) þ I D�u�k ¼ 0 and, since xi(k) is null,
this condition is reduced to ID�u�k ¼ 0, and consequently (12)
becomes equivalent to

Duðk=kÞ ¼ �Duðk þ 1=kÞ (21)

Also, for this control sequence the constraint defined in
(15) can be written as follows:

�ds
k
þ d

s

k þ ðD0
m � Di

2mÞDuk ¼ 0 (22)

Now, let us find a control sequence that satisfies (21) and
makes ds�k ¼ 0. Observe that Eq. 22 with the condition
defined in (21) becomes,

Dt DiDuðk=kÞ ¼ ds
k

Consequently, assuming that Di is not singular, a possible

control sequence is given by Duk ¼
ðDtDiÞ�1

�ðDtDiÞ�1

" #
ds
k
. For

this control sequence, the value of the cost is

V
3;k ¼ ds

T

k

�
ðDtDiÞ�1

�T �
ð�DtDiÞ�1

�Th i
ðGT ~QGþ ~RÞ ðDtDiÞ�1

ð�DtDiÞ�1

" #
ds
k

where

G ¼
D0 þ DtDi þ�DdFN 0

D0 þ 2DtDi þ�DdF2N D0 þ DtDi þ�DdFN

" #
;

~Q ¼ diagðQ;QÞ ~R ¼ diagðR;RÞ

Consequently, V3,�k will be smaller than V3,�k if

S1 > ðDtDiÞ�1
� �T

ð�DtDiÞ�1
� �T

	 

ðGT ~QGþ ~RÞ

ðDtDiÞ�1

ð�DtDiÞ�1

" #
ð23Þ

Analogously, for other values of m, a similar procedure can
be used to define a sufficiently large value of S1, such that
the convergence of the output of the closed-loop system to
the reference is guaranteed. &

The Robust Infinite Horizon MPC for
Integrating Systems

In this section we extend the controller presented in the
latter section to the case where the system model is not
exactly known. With the model structure presented in (7),
model uncertainty is related to uncertainty in matrices F, D0,
Dd, and Di. There are several practical ways to represent
model uncertainty in MPC. One of the simple ways to repre-

sent model uncertainty is to consider the multiplant system,10

where we have a discrete set O of plants, and the real plant
is unknown, but it is assumed to be one of the members of
this set. With this representation of model uncertainty, we
can define the set of possible plants as O ¼ {y1,. . .,yL},
where each yn corresponds to a particular plant: yn ¼ (Fn,
D0

n, D
d
n, D

i
n), n ¼ 1, . . ., L.

Also, let us assume that the true plant, which lies within
the set O is designated as yT and there is a most likely plant
that also lies in O and is designated as yN.

Badgwell10 developed a robust linear quadratic regulator for
stable systems with the multiplant uncertainty. Odloak6

extended the method of Badgwell10 to the output tracking of
stable systems, considering the same kind of model uncer-
tainty. These strategies can be classified as cost-contracting
strategies, since they force the cost corresponding to each of
the models lying in O to decrease at successive time steps. In
this section we combine the approach presented in the latter
section with the approach proposed by Odloak,6 to develop a
robust MPC for systems with stable and integrating poles. The
globally stable nominal controller produced by the sequential
solution to Problems 1a and 1b can be extended to the multi-
plant system. The resulting robust controller is obtained from
the solution to the following sequential problems:

Problem 2a.

min
Dua;k ;dik

Va;k ¼ di
T

k S2d
i
k

subject to

Duaðk þ j=kÞ 2 U j ¼ 0; 1; . . . ;m� 1

xiðkÞ þ �IDua;k þ dik ¼ 0

Observe that this problem is the same as Problem 1a and
produces the control sequence

Du�a;k ¼ ½Du�aðk=kÞ
T � � � Du�aðk þ m� 1=kÞT �T

that is passed to the second problem.

Problem 2b.

min
Dub;k ;dskðy1Þ;...;dskðyLÞ

Vb;kðDub;k; dskðyNÞ; yNÞ ¼
X1
j¼0

ðeðk þ jÞ

þ dskðyNÞÞ
TQðeðk þ jÞ þ dskðyNÞÞ

þ
Xm�1

j¼0

Dubðk þ j=kÞTRDubðk þ j=kÞ þ dskðyNÞ
TS1d

s
kðyNÞ

subject to

Dubðk þ j=kÞ 2 U j ¼ 0; 1; . . . ;m� 1

esðkÞ þ dskðynÞ þ
�
D0

mðynÞ � Di
2mðynÞ

�
Dub;k ¼ 0 n ¼ 1; . . . ; L

Xm�1

j¼0

Dub;kðk þ j=kÞ ¼ u�aðk þ m� 1=kÞ � uðk � 1Þ (24)
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Vb;kðDub;k; dskðynÞ; ynÞ � Vb;kðD~ub;k; ~d
s

kðynÞ; ynÞ n ¼ 1; . . . ; L

(25)

where

D~ub;k ¼ ½Du�bðk=k � 1ÞT � � � Du�bðk þ m� 2=k � 1ÞT 0�T

and ~dskðyn¼1;...;LÞ is such that

esðkÞ þ ~d
s

kðynÞ þ ðD0
mðynÞ � Di

2mðynÞÞD~ub;k ¼ 0;

n ¼ 1; . . . ; L

Remarks
1. The state is assumed to be measured, and corresponds to

the actual plant yT.
2. If dik = 0 problem P2b may not be feasible. This can be

easily seen for instance if Du*
a,k ¼ [Dumax

T ��� Dumax
T ]T.

Then, because of constraint (24), the only possible solu-
tion to Problem 2b would be Dub,k ¼ [Dumax

T ��� Dumax
T ]T

and this control sequence may not satisfy constraint (25).
Another conflicting situation may occur when a disturb-
ance in state xi enters the system. In such a case, the
pseudovariable Dũb,k may not be a feasible solution to
Problem P2b, and then the feasibility of this problem can-
not be assured. Then, to implement the controller defined
by Problems 2a and 2b, we follow the algorithm below
that makes Problem 2b feasible after a finite number of
steps.
� At time step k, solve Problem 2a that produces the

control sequence Du*a,k.
� Try to solve Problem 2b, if it results infeasible because

of a conflict between constraints (24) and (25), adopt
Du*b,k ¼ Du*a,k and inject the first control move in the
real system.

3. Problem 2a is exactly the same as Problem 1a in the nom-

inal case, because state xi that is related to the integrating

modes does not depend on the model parameters, and

consequently is not affected by model uncertainty. Thus,

zeroing the integrating modes at the end of the control ho-

rizon leads to only one constraint represented in Eq. 19

even though there is uncertainty in the parameters associ-

ated with the integrating modes. This is a very convenient

property of the state-space model defined in (7), as it

allows the extension of the robust controller to model

uncertainty in the integrating coefficients Di. In the model

formulation utilized by Carrapiço and Odloak,15 the con-

sideration of uncertainty in Di would lead to L constraints

(19) for the multiplant uncertainty case. These constraints

could not be simultaneously satisfied at the steady state,

and robustness could only be guaranteed when uncertainty

was restricted to the other model parameters.18

The global stability of the controller resulting from the se-
quential solution to Problems 2a and 2b is guaranteed by the
following theorem:

Theorem 2: Consider a system with stable and integrating
modes whose true model is unknown but lies within the set
O. Assume that in the control objective Vb,k, weights Q, R,
and S1 are such that (23) is true for all models lying within

O. Assume also that the system is controllable at the desired
reference. Then, the control law obtained from the sequential
solution to Problems 2a and 2b, taking into account Remark
2, is stable and drives the true system to the reference value.

Proof: As we have seen in Theorem 1, Problem 2a con-
verges in a finite number of time steps. Then, for a finite k
we will have di�k ¼ 0 and consequently, Problem 2a together
with constraint (24) can be substituted by the constraint

xiðkÞ þ �IDuk ¼ 0

Consequently, after convergence of Problem 2a, the se-
quential solution of Problems 2a and 2b becomes equivalent
to solving the following problem:

min
Duk ;dskðy1Þ;...;dskðyLÞ

V4;kðDuk; dskðyNÞ; yNÞ ¼
X1
j¼0

ðeðk þ jÞ

þ dskðyNÞÞ
TQðeðk þ jÞ þ dskðyNÞÞ

þ
Xm�1

j¼0

Duðk þ j=kÞTRDuðk þ j=kÞ þ dskðyNÞ
TS1d

s
kðyNÞ ð26Þ

subject to
(12), (14)

V4;kðDuk; dskðynÞ; ynÞ � V4;kðD~uk; ~d
s

kðynÞ; ynÞ; n ¼ 1; . . . ; L

(27)

esðkÞ þ dskðynÞ þ ðD0
mðynÞ � Di

2mðynÞÞDuk ¼ 0; n ¼ 1; . . . ; L

(28)

Consider now that at time step k, the problem defined in (26)
is solved for the undisturbed system and the optimal solution
is represented by Du*

k, d
s*

k (y1), . . ., ds
*

k (yn). Then, for the true
plant, the corresponding cost is

V4;kðDu�k ; d
s�

k ðyTÞ; yTÞ ¼
X1
j¼1

ðeðk þ jÞ þ ds
�

k ðyTÞÞ
TQðeðk þ jÞ

þ ds
�

k ðyTÞÞ þ
Xm�1

j¼0

Du�ðk þ j=kÞT RDu�ðk þ j=kÞ

þ ds
�

k ðyTÞ
TS1d

s�

k ðyTÞ

Assume that we inject the first control action Du*(k) into the
true system and we move to time kþ1. At this time step,
consider the solution:

�
D~ukþ1; ~d

s
kþ1ðy1Þ; . . . ; ~dskþ1ðynÞ

�
where

D~ukþ1 ¼ ½Du�ðk þ 1=kÞT � � � Du�ðk þ m� 1=kÞT 0�T

and ~dskþ1ðyn¼1; . . . ; LÞ is such that

esðk þ 1Þ þ ~d
s

kþ1ðynÞ þ ðD0
mðynÞ � Di

2mðynÞÞD~ukþ1 ¼ 0;

n ¼ 1; . . . ; L

It is easy to show that this is a feasible solution to the prob-
lem defined in (26) at k þ 1 and, in addition, we have
~dskþ1ðyTÞ ¼ ds

�

k ðyTÞ. Thus, the value of the cost for the true
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plant with this feasible solution is given by

V4;kþ1ðD~ukþ1; ~d
s

kþ1ðyTÞÞ ¼ V4;kðDu�k ; ds
�

k ðyTÞÞ � ðeðkÞ
þ ds

�

k ðyTÞÞ
TQðeðkÞ þ ds

�

k ðyTÞÞ � Du�ðk=kÞT RDu�ðk=kÞ

Then

V4;kþ1ðD~ukþ1; ~d
s

kþ1ðyTÞ; yTÞ � V4;kðDu�k ; ds
�

k ðyTÞ; yTÞ

and from (27) it is clear that

V4;kþ1ðDu�kþ1; d
s�

kþ1ðyTÞ; yTÞ � V4;kþ1ðD~ukþ1; ~d
s

kþ1ðyTÞ; yTÞ

V4;kþ1ðDu�kþ1; d
s�

kþ1ðyTÞ; yTÞ � V4;kðDu�k ; ds
�

k ðyTÞ; yTÞ

Also, if Q, R, and S1 are selected such that condition (23) is
satisfied for all the plants in O, then, in the earlier relation,
equality will be true only if e(k) ¼ 0 and Du(k/k) ¼ 0. This
shows that the sequence of optimal cost for the true plant is
decreasing and converges to zero although V4,k(y)y=yT is not
necessarily decreasing.

We can also prove robust stability of the controller defined
by Problems 2a and 2b. To simplify the proof, assume that m
¼ 2 and suppose that at time k, Problem 2a has already con-
verged and these two problems have become equivalent to
Problem (26), whose optimal solution that was obtained at
step k � 1 is represented by Du*

k�1 ¼ [Du*(k � 1/k � 1)T

Du*
k�1(k/k � 1)T]T and ds

*

k�1. Then, at time k, Dũk ¼ [Du*(k/
k � 1)T 0]T and ~dsk ¼ ds

�

k�1 is a feasible solution to Problem
(26). For this feasible solution, let us calculate the corre-
sponding value of the cost function of Problem (26):

~V4;kðD~uk; ~d
s

k; yTÞ ¼
X1

j¼0

ðeðk þ jÞ þ ds
�

k�1ðyTÞÞ
T Qðeðk þ jÞ

þ ds
�

k�1ðyTÞÞ þ xdðk þ 2ÞT �QðyTÞxdðk þ 2Þ þ Du�ðk=k � 1ÞT

� RDu�ðk=k � 1Þ þ ds
�

k�1ðyTÞ
TS1d

s�

k�1ðyTÞ ð29Þ

From (12) we have

Du�ðk=k � 1Þ ¼ �xiðkÞ ¼ Cu�xðkÞ where Cu ¼ ½0 0 � Iny�

and �xðkÞ ¼
esðkÞ
xdðkÞ
xiðkÞ

2
4

3
5

Also, from (28) we have

ds
�

k�1ðyTÞ ¼ �esðkÞ � D0ðyTÞxiðkÞ ¼ CdðyTÞ�xðkÞ
where CdðyTÞ ¼ ½�Iny 0 � D0ðyTÞ�

Now, using the state model defined in (7), we can write the
following equations:

eðkÞ ¼ C�xðkÞ where C ¼ ½Iny � 0�

eðk þ 1Þ ¼ C1ðyTÞ�xðkÞ where C1ðyTÞ ¼ ½Iny �FðyTÞ
�ðD0ðyTÞ þ�DdðyTÞFðyTÞNÞ�

xdðk þ 2Þ ¼ CdðyTÞ�xðkÞ where CdðyTÞ ¼ ½0 FðyTÞ2

� DdðyTÞFðyTÞ2N�

Then, the cost represented in (29) can be written as follows:

~V4;kðD~uk; ~d
s

k; yTÞ ¼ �xðkÞTHðyTÞ�xðkÞ

where

HðyTÞ ¼ ðCþ CdðyTÞÞTQðCþ CdðyTÞÞ
þ ðC1ðyTÞ þ CdðyTÞÞTQðC1ðyTÞ þ CdðyTÞÞ
þ CdðyTÞT �QðyTÞCdðyTÞ þ CT

uR Cu þ CdðyTÞS1CdðyTÞ

By a similar procedure as mentioned earlier, at time k þ n
for any n > 1, based on the optimal solution at time k þ n
� 1, we can find a feasible solution to Problem (26), and the
cost for the true plant corresponding to this feasible solution
can be written as follows:

~V4;kþnðD~ukþn; ~d
s

kþn; yTÞ ¼ �xðk þ nÞTHðyTÞ�xðk þ nÞ

By the cost contraction condition (27), it is clear that

~V4;kþnðD~ukþn; ~d
s

kþn; yTÞ � ~V4;kðD~uk; ~d
s

k; yTÞ

Now, let us define

a ¼ ½lmaxðHðyTÞ=lminðHðyTÞ�1=2

Consequently, if k�x (k)k � r, where r is positive arbitrary,
then k�x(k þ n)k � ar, which proves stability of the proposed
control law. &

In the controller described earlier, at any time step k, Prob-
lem 2a is solved first and then we solve Problem 2b, and the
two problems interact. However, because Problem 2a does
not consider the dynamic behavior of the system, one might
speculate that the performance of the closed-loop system
may not be satisfactory. An alternative controller that may
remedy this problem is based on the following problem:

min
Duk ;d

s
k
ð0nÞ;dik
n¼1;...;L

V5;k ¼
X1
j¼1

ðeðk þ jÞ þ dskðyNÞ þ jDtdikÞ
T Qðeðk þ jÞ

þ dskðyNÞ þ jDtdikÞ þ
Xm�1

j¼0

Duðk þ j=kÞT RDuðk þ j=kÞ

þ dskðyNÞ
TS1dskðyNÞ þ di

T

k S2dik ð30Þ

subject to

esðkÞ þ dskðynÞ þ ðD0
mðynÞ � Di

2mðynÞÞDuk ¼ 0 n ¼ 1; . . . ; L

xiðkÞ þ dik þ �IDuk ¼ 0

Duðk þ j=kÞ 2 U; j ¼ 0; 1; . . . ;m� 1

V5;kðDuk; dskðynÞ; d
i
kðynÞ; ynÞ � V5;kðD~uk; ~d

s

kðynÞ; ~d
i

kðynÞ; ynÞ
n ¼ 1; . . . ; L
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where
~dik and ~dsk are such that

�d
i
k ¼ �xiðkÞ � �I D~uk

D~uk ¼ ½Du�ðk=k � 1ÞT � � � Du�ðk þ m� 2=k � 1ÞT 0�T

�d
s
kðynÞ ¼ ��esðynÞ þ ðDi

2mðynÞ � D0
mðynÞÞD~uk n ¼ 1; . . . ; L

Although we cannot guarantee the convergence of V5,k to
zero, it is clear that if S2 is increased, the problem defined in
(30) tends to become equivalent to Problem 2a and dik con-
verges to zero. Also, after the convergence of dik to zero,

Problem (30) becomes equivalent to the problem defined in
(26). Thus, if S2 is selected large enough, we can expect that
the controller resulting from the solution to Problem (30)

Table 1. Parameters of the Multiplant System

Mo 1 Mo 2 Mo 3 Mo 4 Mo 5

K1,1 �0.38 �0.38 �0.019 �0.019 �0.19
K1,2 �4.68 �4.68 �0.17 �0.17 �1.7
K2,1 �2.10 �0.08 �2.10 �0.08 �0.76
K2,2 0.47 0.0235 0.47 0.0235 0.235
t1,2 7.73 37.67 13.04 37.67 19.50
t2,1 9.14 17.61 146.56 146.56 31.75

Figure 1. Outputs of the ethylene oxide system in closed
loop for output tracking with the robust MPC:
Controller I (—) and Controller II (– – –).

Figure 2. Inputs of the ethylene oxide system in closed
loop for output tracking with the robust MPC:
Controller I (—) and Controller II (– – –).

Figure 3. Control costs of Controllers I (—) and II (– – –)
for output tracking.
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will perform as the globally convergent robust MPC defined
in Problems 2a and 2b.

Simulation Results

The system adopted as an example to test the performance
of the robust controller presented here is part of the ethylene
oxide reactor system presented by Rodrigues and Odloak.17

This is a typical example of the chemical process industry
that exhibits stable and integrating poles. The simulated sys-
tem is represented by the following transfer function:

y1ðsÞ
y2ðsÞ

	 

¼

K11

s

K12

t12sþ 1

K21

t21sþ 1

K22

s

2
664

3
775 u1ðsÞ

u2ðsÞ

	 

:

It is assumed that we have uncertainty on the gains and time
constants of the system. The robust controller is designed for
the case where set O contains five different plants. Table 1
presents the parameters corresponding to each of these plants.
In the simulations presented here, the nominal plant is repre-
sented by model 5 and the true plant is represented by model 1.

In all the cases considered here, the tuning parameters of
the controller are the following: m ¼ 3, Dt ¼ 1, umax ¼
[0.75 0.75], umin ¼ [�0.75 �0.75], Dumax ¼ [0.05 0.05], Q
¼ diag(1 1), R ¼ diag(7.5 7.5), S1 ¼ diag(1 1) � 102, and S2

¼ diag(1 1) � 104. Let us designate Controller I, the control-
ler defined by the sequential solution to Problems 2a and 2b,
and we designate Controller II, the controller defined by the
solution to the problem defined in (30). The system starts
from the origin and at time step 10 min, the desired output
values are changed to yr ¼ [1�1]T.

We can see in Figures 1 and 2 that the system inputs and
outputs are almost coincident for the two controllers. This is
easy to justify since the system starts from steady state, in
which we have xi(0) ¼ 0, and consequently, during all the
simulation time, constraint (12) remains feasible with dik ¼ 0.
Thus, the conditions for the asymptotic convergence of the
robust controller defined by Problems 2a and 2b and the con-
troller defined in Problem (30) are satisfied since the begin-
ning of the simulation period. This is shown in Figure 3
where we see that Vb,k and V5,k for the true plant converges
asymptotically to zero. Also, as dik ¼ 0 for the output track-
ing case, the objective function of Problem 2a remains equal

Figure 4. Outputs of the ethylene oxide system in
closed loop for the regulator case with Con-
troller I (—) and Controller II (– – –).

Figure 5. Inputs of the ethylene oxide system in closed
loop for the regulator case with Controller I
(—) and Controller II (– – –).
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to zero throughout the simulation time, and Vb,k tends to be
equal to V5,k as shown in Figure 3.

The same controllers were also tested for the regulator
case by simulating the closed-loop system for an unmeasured

disturbance in the input. This disturbance corresponds to Du
¼ [0.4 �0.4]. The desired output values were kept at (yr1,
yr2) ¼ [0 0] during all the simulation time. Figures 4 and 5
show the outputs and inputs of the system, respectively, for
this case. It is clear that with both controllers, the outputs
tend to the desired values while the inputs converge to new
steady state values that are not equal to zero. This is so
because the inputs need to compensate the effect of the dis-
turbance that is introduced in the input. However, although
the input and output responses with the two controllers are
quite similar, cost functions V5,k and Vb,k behave differently
from each other. Figure 6 shows that for Controller I, cost
Vb,k is not strictly decreasing until the components of the
slack vector dik that is represented in Figure 7 are zeroed.
This can only be made after eight time steps. For this simu-
lated example, the cost of Controller II is strictly decreasing,
although the components of dik tend to zero in a much slower
pace than in Controller I.

Conclusion

In this article we have discussed methods to consider
model uncertainty in the infinite horizon MPC controller that
is stable for systems containing stable and integrating modes.
Robust stability is achieved by assembling cost-contracting
constraints as well as the constraints that are necessary to
cancel the effect of the integrating modes on the output pre-
diction at time instants beyond the control horizon. On the
other hand, the control formulation allows dealing with prob-
lems that cannot be reduced to the regulator problem due to
unknown disturbances or model nonlinearity, and can be
directly implemented in real applications. A representative
example shows the capability of the controllers to handle
uncertainties in all the parameters of the linear model consid-
ered in controller.
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