Degradaición ultrasónica del 4-clorofenol

Luis Kieffer1,3, María Victoria Bernasconi4, Patricio de la Sierra2, Julio Luna5 y Marcelo Kröhling6

1 Fundación VINTEC-Guemes 3450 - 3000 Santa Fe
2 INTEC (CONICET UNL) - Guemes 3450 - 3000 Santa Fe
3 Fac. Ing. Cs. Hídricas - Paraje El Pozo - 3000 Santa Fe
4 Centro Científico Tecnológico (CONICET UNL) Güemes 3450 - 3000 Santa Fe
lkieffer@santafe-conicet.gov.ar

RESUMEN

Se estudió la capacidad de la técnica del ultrasonido para degradar el 4-clorofenol. Se realizaron experiencias a distintos pH y a diferentes concentraciones, para comprobar el efecto de estos parámetros sobre la velocidad de reacción. Se observó que las condiciones óptimas de pH en este trabajo eran aquellas por debajo del pKa del compuesto, y que la velocidad de reacción aumenta cuando la concentración inicial disminuye.

ABSTRACT

Ultrasonic degradation of 4-Chlorophenol.

The capacity of ultrasound to degrade 4-chlorophenol was studied. Experiences at various pH and concentrations were carried out to prove the effect of this parameter under the reaction rate. It was observed that the optimum conditions of pH in this work were those lower that its pKa, and the reaction rate was higher when the initial concentration was lower.

INTRODUCCION

Durante los últimos 20 años, ha crecido vertiginosamente el interés en el cuidado del medio ambiente, especialmente en la reducción y eliminación de contaminantes de agua y suelo. Debido a esto se están investigando nuevas tecnologías que presenten ventajas sobre las tradicionales, en cuanto a rapidez, seguridad y costo. Entre ellos encontramos los Procesos Avanzados de Oxidación (AOPs) que se caracterizan por la producción de radicales como oxidante primario. Estas técnicas incluyen el uso de peróxido de hidrógeno con luz ultravioleta (H₂O₂/UV), ozono y radiación ultravioleta (UV/O₂), reactivo de Fenton, fotocatalización, ozonólisis e irradiación ultrasonica (sonólisis o sonoquímica). El objetivo de estos métodos es la mineralización total de los contaminantes. La sonólisis en particular, presenta ventajas frente a otros AOPs (Hua and Hoffmann, 1997), entre las que se destacan el escaso o nulo residuo y la posibilidad de trabajar con muestras opacas o por el agua es una buena posibilidad para el tratamiento de sustancias tóxicas en medios naturales. Esta técnica emplea ultrasónico, vibraciones mecánicas que tienen una frecuencia por encima del nivel audible, en un rango entre los 20 KHz y los 10 Mhz.

Las aplicaciones químicas del ultrasonido comenzaron en 1927, con el trabajo de Richards y Loomis (1927), donde señalaron la aceleración de reacciones convencionales y de procesos redox por aplicación del ultrasonido. Si la intensidad del ultrasonido es la adecuada, llegará un punto en que las fuerzas intermoleculares no son suficientes como para mantener la estructura del líquido intacta. En consecuencia, se rompe, formándose una cavidad que se denomina burbuja de cavitación, mientras que el proceso de formación se denomina cavitation (del latín cavus = cavidad). (Mason and Lorimer, 1988 y Colussi, Weavers et al., 1998).

Una burbuja irradiada de forma continua con ultrasonido, absorbe energía de los ciclos alternados de compresión y expansión. Esto hace que crezcan y se contraigan. Con cada ciclo, la cavidad experimenta una mayor expansión que encogimiento. Con el pasar de los ciclos, la cavidad va creciendo lentamente y llega eventualmente a un "tamaño crítico" que es el punto de mayor eficiencia para absorber energía. El tamaño crítico de la cavidad depende de la frecuencia del ultrasonido. Por ejemplo, para 20 KHz es de aproximadamente 170 μm (Suslick, 1989). En este punto la cavidad crece rápidamente durante un ciclo simple de sonido. Una vez que experimenta este crecimiento rápido, ya no puede absorber tanta energía de las ondas de sonido en forma efectiva. Sin esta entrada de energía, la cavidad ya no puede sostenerse y se produce la implosión. Este colapso establece un ambiente inusual para las reacciones químicas en fase acuosa, induciendo la formación de especies tales como H·, H₂·, y H₂O₂ (Drijvers et al., 1996). Una de las teorías para explicar su formación, la de "hot spots" (puntos calientes), indica que el colapso de las burbujas es adiabático y causa presiones elevadas (de hasta 500 atm) y temperaturas de hasta 5500°C (Lorimer et al., 1991). Si bien la temperatura de estos puntos es extraordinariamente alta, la región en sí, es tan pequeña, que el calor se disipa rápidamente.

Al aplicar ultrasonido a un sistema compuesto orgánico - agua, ocurre la cavitación, que da lugar a tres procesos diferentes para la destrucción del contaminante orgánico (Koronarcou et al., 1991). El mecanismo principal es la oxidación por radicales oxihidruros. Las condiciones severas de la cavitación, permiten la ruptura del vapor de agua dentro de las burbujas en dos radicales (oxihidruros e hidrógeno). Estas especies reaccionan con moléculas presentes dentro de las burbujas o muy cercanas a la superficie de las mismas.

Agua supercítica es una fase del agua que existe por encima de su temperatura y presión crítica (647 K y 221 atm). Este estado único tiene propiedades (densidad, viscosidad, fuerza iónica) diferentes a las que posee bajo condiciones ambientales. Dado que la solubilidad de las especies orgánicas se ve aumentada en agua en condiciones supercíticas, aumentando la proximidad con la especie oxidante, las oxidaciones son aceleradas. Durante el proceso de sonólisis, se alcanzan estas condiciones en una esfera de muy pequeño espesor, alrededor de la burbuja. Este modo de destrucción es secundario, debido a su escasa dimensión (alrededor del 0,0015 % de los volúmenes correspondientes al agua - Hoffman et al. 1996). El tercer mecanismo es la rotura pirolítica de los contaminantes orgánicos. La pirólisis se define como la destrucción térmica de un compuesto, en ausencia de oxígeno. Las altas temperaturas dentro de las burbujas, se encuentran por encima de las necesarias para destruir gran cantidad de compuestos orgánicos. Este mecanismo, requiere sin embargo que el compuesto se encuentre en forma de vapor dentro de la burbuja. Es de esperar entonces, que la pirólisis prevalezca en aquellos compuestos con alta presión
de vapor.
Se han realizado numerosas experiencias de sonoquímica sobre distintos compuestos orgánicos, entre ellos podemos mencionar las pruebas sobre ácidos grasos volátiles (Nagatal et al., 1996 y Yoo et al., 1997), mezclas de metanol y agua (Böttner et al., 1991), colorantes textiles (Stock et al., 2000), compuestos clorados (Cheung et al., 1991; Wu et al., 1992; Bhainagar and Cheung, 1994; Cheung and Kurup, 1994; Drijver et al., 1996; Hua and Hoffmann, 1996; Young et al., 1997 y Czy et al., 1999), plaguicidas (Kotronarou et al., 1992), compuestos aromáticos (De Visscher et al., 1996 y Vinodgopal et al., 2001) y entre estos los fenoles (Kotronarou et al., 1991; Okouchi et al., 1992; Petitier et al., 1994; Kuerl et al., 1997 y Weavers et al., 2000).
Los monohlorofenoles son usados en la industria como antissepticos y como reactivos iniciales en la manufactura de clorofenoles y cloroformoles policlorados, y son liberados en los desechos de estas industrias y como intermediarios en la degradación de herbicidas clorados. Se encuentran en el agua como resultado de su cloración. Por ello representan una clase muy importante de contaminantes del agua con moderada toxicidad para mamíferos y organismos acuáticos. En particular el 4-clorofenol (de moderada solubilidad en agua 2.7 g/100 ml a 20 °C, con una presión de vapor de 13 Pa a esa temperatura), puede ser absorbido por inhalación del aerosol y a través de la piel. Si entra en contacto, la sustancia irrita los ojos, la piel y el tracto respiratorio causando tos, vértigo, dolor de cabeza, dificultad respiratoria y dolor de garganta. También puede causar efectos en el sistema nervioso central y en la vejiga. Ante una exposición prolongada o repetida, la sustancia puede afectar hígado, pulmones, riñón, sangre y corazón.
Los objetivos del trabajo son estudiar la degradación del 4-clorofenol en solución acuosa y el efecto que tienen el pH de la solución y la concentración inicial en la segunda con buffer pH 10,1 ± 0,1 (HACH); en la tercera con HCl 0,3636 ± 0,0020 N (HACH) y en la última con NaOH 0,3636 ± 0,0020 N (HACH).
Para analizar el efecto de la concentración de reactivos se utilizaron soluciones de 4-clorofenol de 50, 20, 10 y 5 ppm.
Previamente a estos estudios se determinó la potencia entregada por el equipo para lo cual se irradiaron 200 g de agua, midiendo el aumento de temperatura y utilizando la fórmula, P = cp . m . ΔT / Δt, donde P: potencia entregada; cp: calor específico del agua (4,184 J/g°C); m: masa de líquido sometido a sonicción; ΔT: diferencia de temperatura en el líquido después y antes de la experiencia (°F-°F) y t: tiempo de sonicción.
La irradiación ultrasónica de las soluciones fue realizada con un equipo ultrasonico MSE operado a una frecuencia de 20 KHz. La reacción fue llevada a cabo en un vaso abierto con camisa de refrigeración, por donde se hizo circular agua; la temperatura de la reacción fue de 27,4 ± 4,1 °C. La bocina de sonicción (19,2 mm de diámetro) fue sumergida 2 cm. El volumen de reacción fue de 250 ml.
Para determinar el avance del proceso, se extrajeron muestras de 5 ml cada 60 min., reponiéndose este volumen con solución inicial. Estas muestras fueron analizadas por HPLC y espectrofotometría con fines comparativos.
Para el análisis por HPLC, se usó un cromatógrafo líquido Hewlett Packard serie 1050, con un detector de UV de longitud de onda variable. Se trabajó en una longitud de onda de 256 nm. La fase móvil fue una mezcla acetonitrilo / agua / ácido acético (50 / 49 / 1). La columna que se usó fue una Waters X-terra RP18 (4,6 mm x 250 mm x 5 μm) y el flujo de trabajo fue de 0,7 mL/min. Todas las muestras analizadas fueron previamente filtradas, para remover las posibles partículas metálicas que pueden provenir de la bocina del equipo, a través de filtros Minisart hidrofilicos, de 0,20 μm de poro.
Para el análisis por espectrofotometría se trabajó con una modificación de la técnica 5530 D del Standard Methods (Cleres et al., 1999), consistente en llevar las muestras a pH 10 para determinar la concentración de fenoles totales y efectuar las mediciones a una longitud de onda de 460 nm (Fiagram et al., 2000).
Se comprobaron estos resultados con los obtenidos por el método original, observándose una correlación exacta. Para evaluar el rango de linealidad se construyó una curva de calibrado y se determinaron las concentraciones de las muestras.

MATERIAL Y MÉTODOS

Para estudiar el efecto del pH se prepararon soluciones de 4-clorofenol (50 ppm) a partir de la sustancia grado reactivo (Aldrich); el pH de esta solución resultó ser 6. El agua utilizada fue desionizada grado HPLC.
Se hicieron 4 experiencias distintas; en la primera, el pH fue ajustado con buffer pH 2,00 ± 0,02 (Merck),
Figura 1

Degradación del 4-cloroefenol (concentración inicial: 50 mg/l). pHy: pH natural de la solución, pita: pH llevado a 2 con HCl. pTi: pH llevado a 10 con NaOH. pttb: pH llevado a 2 con buffer. pttb: pH llevado a 10 con buffer.

Figuras 2 a, b, c

Influencia del pH. a) sin regulación de pH; b) solución regulada a pH = 2, con HCl; c) solución regulada a pH = 10, con NaOH.
RESULTADOS

1.- Determinación de la potencia
Las experiencias para determinar la potencia entregada por la bocina de sonicación al reactor (utilizando 200 g de agua e intervalos de tiempo de 300 segundos), se muestran en el Cuadro 1. Aplicando la prueba no paramétrica de rechazo de datos de Dixon (Sachs, 1982), se encontró que ni el mayor (13.38) ni el menor (7.25) de los valores puede ser deseado. De esta forma, la potencia promedio determinada fue de 9.05 ± 1.43W.

2.- Influencia del pH sobre la reacción
Se presenta (Fig. 1) la evolución de la degradación ultrasónica de 250 ml de solución acuosa de 4-clorofenol a partir de una concentración inicial de 50 mg/l. Por otra parte, se muestra la variación de pH que acompañó a dicha degradación (Fig. 2). Dado que todas las experiencias se realizaron por triplicado, cada punto de las gráficas es un promedio de tres determinaciones.
Suponiendo una cinética de primer orden, se realizó la regresión para determinar las constantes de velocidad, para lo cual se graficó el logaritmo natural de la concentración, en función del tiempo (Fig. 3). Las pendientes de las rectas resultantes equivalen a las constantes de velocidad.

3.- Influencia de la concentración sobre la velocidad de reacción
Al irradiar las soluciones de 4-clorofenol de concentraciones menores (20, 10 y 5 mg/l), sin ajuste de pH, se observó una tendencia similar a la encontrada para la concentración de 50 mg/l (Fig. 4), que responden también a una cinética de primer orden. La comparación de las experiencias a diferentes concentraciones (Fig. 5), permite observar una relación inversa entre la constante de reacción y la concentración (mayor pendiente a menor concentración).
Figura 4

Degradación del 4-cloro fenol, efecto de la concentración inicial.

Figura 5

Líneas de regresión lineal para la degradación de soluciones de 4-cloro fenol de distintas concentraciones, sin ajuste de pH.
Figura 6
Esquema de la degradación del 4-clorofenol en solución ácida (6.a) y básica (6.b) (Figura modificada de Ku, Chen and Lee, 1997).
DISCUSION Y CONCLUSIONES

Al hacer un análisis de regresión se observa que en todos los casos la degradación del 4'-clorofenol siguió una cinética de pseudoper primer orden del tipo

\[C_t = C_o e^{-kt} \]

donde \(C_t \) es la concentración de 4'-clorofenol en el tiempo \(t \); \(C_o \) es la concentración inicial de 4'-clorofenol; \(t \) es el tiempo de reacción transcurrida y \(k \) es la constante cinética de la reacción.

Los valores de \(k \) obtenidos a los distintos pH, luego de descartar los valores que no ingresaban en un intervalo de 95% de confianza, son los mostrados en el Cuadro 2. Comparando las experiencias de igual concentración se observa, en los gráficos y en el cuadro, que la velocidad de desaparición es mayor en las soluciones sin adición de buffer y entre estas en aquella en que no se modificó el pH natural.

Este resultado se explica en primer lugar considerando que en las soluciones buffereadas existían otras especies susceptibles al ataque radicales, por lo que en realidad había menos radicales generados actuando sobre el compuesto.

El 4'-clorofenol en soluciones con pH superior a su \(pK_a \) (9,20) se distribuye entre dos especies, una disociada (iónica) y otra no disociada (molecular). Esto explicaría el efecto del pH sobre la velocidad de reacción, ya que la forma ionizada, al no poder vaporizarse, no sería capaz de ingresar al interior de la burbuja de cavidad por lo que no se produciría el efecto de pirólisis, reduciéndose la degradación sólo a lo producido por el ataque de los radicales (Fig. 6).

Para las experiencias a distintas concentraciones sin ajuste del pH, los \(k \) obtenidos, luego de descartar los valores que no ingresaban en un intervalo de 95% de confianza, son los mostrados en el Cuadro 3. Estos muestran que el valor de la constante de reacción depende de la concentración inicial de 4-clorofenol, observándose una disminución exponencial de la velocidad de reacción con el aumento de la concentración:

\[k_c = 0,001172231 + 0,029822054 \exp(-C/2,588437297) \]
\[r^2 = 0,9945 \]

donde \(k_c \) (min') es la constante de reacción a la concentración C (mg/l). Esta disminución ya había sido indicada por Serpone et al. (1994). Se presentan ambos conjuntos de valores, a los fines de su comparación (Fig. 7). Dado que Serpone et al. (1994) trabajaron con un equipo de sonicación de 50 W de potencia nominal, la comparación de resultados indicaría que a bajas concentraciones de 4-clorofenol (menores o iguales a 5 mg/l) las velocidades de degradación no dependen de la potencia, mientras que a mayores concentraciones existe una relación directa entre ambas (mayor potencia, mayor velocidad de degradación).

Cuadro 1

<table>
<thead>
<tr>
<th>Experiencia</th>
<th>(T_i) (°C)</th>
<th>(T_f) (°C)</th>
<th>P (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17,7</td>
<td>22,5</td>
<td>13,38</td>
</tr>
<tr>
<td>2</td>
<td>18,5</td>
<td>21,5</td>
<td>8,37</td>
</tr>
<tr>
<td>3</td>
<td>21,3</td>
<td>24,3</td>
<td>8,37</td>
</tr>
<tr>
<td>4</td>
<td>21,4</td>
<td>24,2</td>
<td>7,81</td>
</tr>
<tr>
<td>5</td>
<td>21,1</td>
<td>23,7</td>
<td>7,25</td>
</tr>
<tr>
<td>6</td>
<td>16,5</td>
<td>20,2</td>
<td>10,32</td>
</tr>
<tr>
<td>7</td>
<td>16,7</td>
<td>19,9</td>
<td>8,93</td>
</tr>
<tr>
<td>8</td>
<td>17,4</td>
<td>20,2</td>
<td>7,81</td>
</tr>
<tr>
<td>9</td>
<td>18,0</td>
<td>21,3</td>
<td>9,20</td>
</tr>
</tbody>
</table>
Figura 7

Valores de la constante cinética (como 1/k observada) en función de la concentración inicial de 4-clorofenol, obtenidos en el presente trabajo y por Serpone et al., 1994.

Cuadro 2

Influencia del pH en la degradación sonoquímica del 4-clorofenol: valores de la constante cinética.

<table>
<thead>
<tr>
<th>pHini</th>
<th>pHAb</th>
<th>pHtbb</th>
<th>pHa</th>
<th>pHb</th>
</tr>
</thead>
<tbody>
<tr>
<td>k (min⁻¹)</td>
<td>0,00098854</td>
<td>0,00059686</td>
<td>0,00020052</td>
<td>0,00074778</td>
</tr>
</tbody>
</table>

Cuadro 3

Influencia de la concentración inicial de 4-clorofenol en la velocidad de degradación: valores de la constante cinética.

<table>
<thead>
<tr>
<th>Concentración (ppm)</th>
<th>50 ppm</th>
<th>20 ppm</th>
<th>10 ppm</th>
<th>5 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>k (min⁻¹)</td>
<td>0,00098854</td>
<td>0,00138016</td>
<td>0,00178616</td>
<td>0,00549482</td>
</tr>
</tbody>
</table>
AGRADECIMIENTOS

REFERENCIAS

Yoo, Y. E.; N. Takenaka; H. Bandow; Y. Nagata and Y.