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We consider a massless Dirac field in 1+1 dimensions, and compute the Tomita-Takesaki modular
conjugation corresponding to the vacuum state and a generic multicomponent spacetime region. We
do it by analytic continuation from the modular flow, which was computed recently. We use our
result to discuss the validity of Haag duality in this model.

I. INTRODUCTION

In the last years, a lot has been learned about quan-
tum field theory (QFT) by studying its entanglement
properties. One famous example is the irreversibility of
the renormalization group flow which was proved in var-
ious dimensions using the strong subadditity property
of entanglement entropy [1–4]. There have also been
many applications to holography (see [5] for a review)
and, more recently, to the black hole information prob-
lem [6–8].

Usually, entanglement is characterized in terms of the
reduced density matrix. However, this object is not well-
defined in QFT because the local algebras of operators
do not admit a trace. The usual way to circumvent this
problem is to put the QFT on a lattice in order to obtain
a discrete set of degrees of freedom which allows for the
definition of a trace. Then, after the computations are
done, one sends the lattice spacing to zero to restore the
relativistic symmetry, retains the information that sur-
vives the limit (and that is independent of the details
of the regularization scheme used) and interprets it as a
property of the QFT. This has proven to be a very suc-
cessful approach and most of the prominent results in the
area were derived with this idea behind.

It is interesting, though, that there are objects in-
timately related to entanglement which are well-defined
in QFT. Two of these objects appear in the context of
Tomita-Takesaki theory (see section II) and are known as
the modular operator (∆) and the modular conjugation
(J); they essentially play the role of the modulus and
phase in the polar decomposition of an operator called
the Tomita operator. The study of these objects is very
relevant since they carry information about entanglement
and they are directly accessible in the QFT.

The modular operator ∆ is related to the reduced
density matrix, or equivalently to its logarithm, the mod-
ular Hamiltonian. Among many applications in QFT, the
knowledge of modular Hamiltonians was crucial for the
formulation of a well-defined version of the Bekenstein
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bound [9] and for the proof of several energy inequalities
[10–13]. Modular Hamiltonians also found applications
in the context of holography, for instance in the deriva-
tion of the linearized Einstein equations in the bulk from
entanglement properties of the boundary CFT [14–17].
These objects have been computed for several regions and
states. The first results of modular Hamiltonians were
local [18–24] but examples of non-local modular Hamil-
tonians were eventually derived [24–31].

The modular conjugation J can be used to under-
stand the structure of the local algebras of the QFT.
A general feature of QFT is that operators localized in
spacelike separated regions commute1. In other words,
given a region U , any operator localized in a spacelike
separated region will commute with everything in U . In
principle there may be other operators, not localized in
a spacelike separated region, which also commute with
everything in U . If there are not, one says that Haag
duality holds. Haag duality is known to hold in some
cases [18, 32–35] and to fail in others [36–38]; the general
conditions under which it holds or fails are an open ques-
tion. The modular conjugation is useful in this context
because it can be used to determine the commutant of
a local algebra, i.e., the set of all operators commuting
with everything in a given region.

In contrast with the modular operator, the modular
conjugation has not been studied so extensively and it
is only known in very few cases. When the global state
is the vacuum and the region is the Rindler wedge, the
modular conjugation is essentially the CPT operator for
any QFT [18]. Using this result and conformal trans-
formations one can obtain the modular conjugation for
any CFT when the region is a causal diamond and the
global state is the vacuum (this was done for massless
scalar fields in [39]). All the mentioned results up to this
point involve regions with only one component. In this
paper we obtain a new modular conjugation, namely that
corresponding to the free massless Dirac field in 1+ 1 di-
mensions in the vacuum state for generic multicomponent
regions.

1 Of course, this statement has to be modified if there are fermionic
operators; we will come to this point below.

mailto:dblanco@df.uba.ar
mailto:guillem@df.uba.ar


2

The paper is organized as follows. In section II we
introduce the modular operator ∆ and the modular con-
jugation J and discuss their properties. In section III we
describe the relevant aspects of the model we will con-
sider, the massless Dirac field in 1+1 dimensions. In sec-
tion IV we review the computation of the modular conju-
gation of the Rindler wedge and the causal diamond; we
particularize this computation to the massless fermion in
1 + 1, with emphasis on the subtleties that arise when
one considers fermions instead of bosons. In section V,
we compute J for a generic multicomponent region, and
use our result to discuss the validity of Haag duality in
this model. Finally, we conclude with a discussion in
section VI.

II. MODULAR OPERATOR AND MODULAR
CONJUGATION

LetH be a Hilbert space, and let B(H) be the algebra
of all bounded operators on H. Given any self-adjoint
set S ⊆ B(H) (by self-adjoint we mean closed under the
operation of taking adjoints), the commutant S ′, namely
the set of all operators in B(H) which commute with
all operators in S, is a self-adjoint algebra containing
the identity. Algebras arising in this way are called von
Neumann algebras. Note that, if S ⊆ T , then T ′ ⊆ S ′, and
that S ⊆ S ′′. From these two properties it follows that, if
S ⊆ T ′, then S ′′ ⊆ T ′, that is, any von Neumann algebra
containing S also contains S ′′. Hence, the bicommutant
S ′′ is the smallest von Neumann algebra containing S.
In particular, if S is itself a von Neumann algebra then
S ′′ = S, that is, every von Neumann algebra is equal to
its bicommutant.

Let A ⊆ B(H) be a von Neumann algebra. A vector
∣Ω⟩ ∈ H is said to be cyclic for A if the subspace A∣Ω⟩ is
dense in H, meaning that any vector in the Hilbert space
can be approximated arbitrarily well by an element of
this subspace; ∣Ω⟩ is said to be separating for A if the
condition a ∈ A, a∣Ω⟩ = 0 implies a = 0, or, in other words,
if the map a↦ a∣Ω⟩ from the algebra to the Hilbert space
is one to one. Note that, if ∣Ω⟩ is cyclic for A, then it is
separating for A′: indeed, the condition a′ ∈ A′, a′∣Ω⟩ = 0
implies a′A∣Ω⟩ = 0 and hence, by continuity, a′ = 0 if
A∣Ω⟩ is dense. In fact, one can show (see e.g. [40]) that
the converse is also true: if ∣Ω⟩ is separating for A′, then
it is cyclic for A. Therefore, cyclic for an algebra is the
same as separating for its commutant.

We are interested in von Neumann algebras admitting
a cyclic and separating vector. The study of such alge-
bras is called Tomita-Takesaki theory (see [36, 40, 41] for
physics-oriented reviews and [42, 43] for more detailed
treatments). Suppose that ∣Ω⟩ is cyclic and separating
for A, and consider the operator S defined on A∣Ω⟩ by

Sa∣Ω⟩ = a†∣Ω⟩. (II.1)

This is called the Tomita operator associated with A and

∣Ω⟩. Note that the separating property ensures that this
definition makes sense; the cyclic property implies that
S is densely defined. Clearly, S is an antilinear operator
satisfying S2 = 1 (hence invertible) and S∣Ω⟩ = ∣Ω⟩; it also
satisfies S†∣Ω⟩ = ∣Ω⟩ (recall that the adjoint of an antilin-
ear operator is defined by ⟨ψ∣O†∣ϕ⟩ = ⟨ϕ∣O∣ψ⟩), because
⟨aΩ∣S†Ω⟩ = ⟨Ω∣SaΩ⟩ = ⟨Ω∣a†Ω⟩ = ⟨aΩ∣Ω⟩. As it turns out,
S is unbounded but closable2; its domain is slightly ex-
tended beyond A∣Ω⟩ by taking the closure. This makes
S an invertible, densely defined closed operator, which in
turn guarantees that it admits a unique polar decompo-
sition,

S = J∆1/2 (II.2)

with ∆ positive and J antiunitary (note that ∆ = S†S).
These operators are called respectively the modular oper-
ator and the modular conjugation associated with A and
∣Ω⟩.

Let us discuss the properties of the modular objects.
Since S2 = 1, we have J∆1/2J =∆−1/2, which after some
algebra implies J† = J and hence J2 = 1. On the other
hand, since S∣Ω⟩ = S†∣Ω⟩ = ∣Ω⟩ we have ∆∣Ω⟩ = J ∣Ω⟩ = ∣Ω⟩.
Another property, which is highly non-trivial, is

∆isA∆−is = A (s ∈ R) JAJ = A′. (II.3)

Thus, the modular operator defines a one-parameter
group of automorphisms ofA, which is called themodular
flow , and the modular conjugation defines an antilinear
isomorphism between A and its commutant. This is re-
garded as the main result of Tomita-Takesaki theory.

The modular flow can also be characterized by the
so-called modular condition. Let α ∶ R×A→ A be a one-
parameter group of automorphisms of A, that to each
s ∈ R assigns the automorphism αs. One says that α
satisfies the modular condition with respect to ∣Ω⟩ if, for
every a, b ∈ A, there is a complex function G(z) on the
strip Im z ∈ [−1,0], analytic on the interior of the strip
and continuous on its boundary, such that, for s ∈ R,

G(s) = ⟨Ω∣aαs(b)∣Ω⟩ G(s−i) = ⟨Ω∣bα−s(a)∣Ω⟩. (II.4)

As it turns out, there is a unique one-parameter group
of automorphisms satisfying the modular condition, and
this is the modular flow αs(a) = ∆isa∆−is. An interme-
diate result which is used to show this, and which we will
use extensively in the following, is that, for a ∈ A, the
map z ↦ ∆iza∣Ω⟩ is analytic on the interior of the strip
Im z ∈ [−1/2,0] and continuous on its boundary.

In order to gain familiarity with the modular ob-
jects, let us see what they look like in a simple finite-

2 An operator O on H is said to be closed if its graph is a closed
subspace of H ⊕H; it is said to be closable if the closure of its
graph is the graph of some operator, which is then called the
closure of O.
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dimensional example. Suppose that H = H1 ⊗H2, with
H1 and H2 of the same dimension n, and consider the al-
gebra A = B(H1)⊗12, which is a von Neumann algebra.
For any state vector ∣Ω⟩ ∈H, there are orthonormal bases
{∣i⟩1} ⊂H1 and {∣i⟩2} ⊂H2 and a probability distribution
p1, . . . , pn such that

∣Ω⟩ =
n

∑
i=1

√
pi∣i i⟩. (II.5)

This is the Schmidt decomposition of ∣Ω⟩. Note that ∣i⟩1
and ∣i⟩2 are eigenvectors of the reduced density matrices
ρ1 and ρ2 respectively, both with the same eigenvalue pi.
A necessary and sufficient condition for ∣Ω⟩ to be cyclic
and separating forA is that all these probabilities be non-
vanishing or, in other words, that both reduced density
matrices be invertible. Suppose that this is the case.
Setting a = (∣i⟩⟨j∣)1 ⊗ 12 in the definition of the Tomita

operator, Eq. (II.1), one finds that S∣i j⟩ =
√
pi/pj ∣j i⟩

and therefore

∆ = ρ1 ⊗ ρ−12 J ∣i j⟩ = ∣j i⟩. (II.6)

It is a simple matter to check that ∆ and J satisfy all
the properties discussed above. As we see, knowing ∆ is
the same as knowing the reduced density matrices. Of
course, these do not contain all the information about the
global state ∣Ω⟩; the remaining information is contained
in J .

In QFT, every open spacetime region U has natu-
rally associated a von Neumann algebra, namely the al-
gebra AU generated by the bounded operators localized
in U (i.e., the bicommutant of that set of operators). In
the algebraic approach to QFT, this assignment of al-
gebras to regions is viewed as the essential feature of a
QFT. Note that it satisfies the following properties: (i)
if U ⊆ V, then AU ⊆ AV , and (ii) if U and V are spacelike
separated, then AU ⊆ A′V (assuming that the algebras
contain no fermionic operators; otherwise this property
has to be suitably modified, as we will discuss below).
A famous result in QFT known as the Reeh-Schlieder
theorem establishes that the vacuum ∣Ω⟩ is cyclic for AU
provided only that U is non-empty (it can otherwise be
arbitrarily small). If the causal complement U ′, i.e., the
largest open region spacelike separated from U , is also
non-empty, then ∣Ω⟩ is also cyclic for AU ′ , hence separat-
ing for A′U ′ and in particular for AU ⊆ A′U ′ . Thus, the
Reeh-Schlieder theorem implies that the vacuum is cyclic
and separating for AU provided that both U and U ′ are
non-empty. In the case where U is the Rindler wedge, the
modular objects are known for any QFT. This is another
famous result, called the Bisognano-Wichmann theorem.
The modular operator in this case is related to a boost
generator, and the modular conjugation is essentially the
CPT operator. From the modular operator one learns
that uniformly accelerated observers see the vacuum as a
thermal state (the Unruh effect); from the modular con-
jugation one learns that, if U is the Rindler wedge, then

A′U = AU ′ . This property (that there is nothing else in
the commutant than what can be found in the causal
complement) is known as Haag duality , and the precise
conditions under which it holds are an open question.
Given the amount of information one extracts from the
modular objects in the case of the Rindler wedge, it is
natural to ask what these objects look like for more gen-
eral regions. The modular operator is known in a few
cases, the modular conjugation has been less explored.
Contributing to fill this gap is the purpose of this paper.

III. MASSLESS FERMION IN 1+1

We focus on a very simple QFT, namely that of a
massless Dirac field in (1 + 1)-dimensional Minkowski
spacetime. In 1 + 1 dimensions, the Dirac field is a two-
component spinor, Ψ = (Ψ+,Ψ−). The massless equation
of motion then implies that each component (chirality)
is a function of a single null coordinate, Ψ±(x+, x−) =
ψ±(x±). These functions are subject to the canonical an-
ticommutation relations,

{ψ±(x), ψ†
±(y)} = δ(x − y), (III.1)

the remaining anticommutators being zero. Due to the
delta function above, ψ± is not really a function but
a distribution, which has to be smeared with a test
function f to give a well-defined operator, ψ±(f) =´∞
−∞

dxψ±(x)f(x). Note that this operator is bounded
because, by (III.1),

[ψ±(f)]†ψ±(f) = ∥f∥2 − ψ±(f)[ψ±(f)]† ≤ ∥f∥2, (III.2)

where ∥f∥2 =
´∞
−∞

dx ∣f(x)∣2, which is finite for any test
function. The local algebra associated with an open
spacetime region U is generated by the smearings of ψ+,
ψ− and their adjoints with all test functions supported in
the corresponding null projections of U ,

AU = {ψ+(f+), ψ†
+(f+), ψ−(f−), ψ†

−(f−),
supp(f±) ⊆ π±(U)}′′, (III.3)

where π±(x+, x−) = x± is the projection onto the x± axis.
Note that two regions U and V with the same projections
onto the null axes have the same algebra: if π±(U) =
π±(V), then AU = AV . An example of two such regions is
given in figure 1. This will be important when we discuss
Haag duality below. The vacuum state ∣Ω⟩ is Gaussian
with

⟨Ω∣ψ±(x)ψ†
±(y)∣Ω⟩ = ⟨Ω∣ψ†

±(x)ψ±(y)∣Ω⟩ =
1

2πi

1

x − y − iϵ ,
(III.4)

where ϵ > 0 is to be sent to zero after smearing; the re-
maining two-point functions all vanish. Note that the
right-hand side above can be extended continuously in
y to an analytic function in the upper half-plane (pos-
itive imaginary part), so the same is true for ψ±(y)∣Ω⟩
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x+x−

Figure 1: Two spacetime regions with the same null
projections and hence the same algebra.

and ψ†
±(y)∣Ω⟩3. This property will be important in what

follows.

Let us discuss the symmetries of this model, i.e., the
transformations ψ± → ψ′± which preserve the canonical
anticommutation relations (III.1). Any such transforma-
tion defines an automorphism α of the algebra A spanned
by the identity and all products of smeared fields by
the equation α(ψ±(f)) = ψ′±(f). We are interested in
transformations which also preserve the two-point func-
tions (III.4), whose corresponding automorphisms sat-
isfy ⟨Ω∣α(a)∣Ω⟩ = ⟨Ω∣a∣Ω⟩ for all a ∈ A. These trans-
formations are implemented by unitary operators which
leave the vacuum invariant. Indeed, the above property
of α enables us to define an operator U by the equation
Ua∣Ω⟩ = α(a)∣Ω⟩; one can easily check that this operator
is unitary, leaves ∣Ω⟩ invariant and satisfies UaU † = α(a)
for all a ∈ A. A transformation preserving (III.1) and
(III.4) (and thus implemented by a unitary operator
which leaves the vacuum invariant) is

ψ′±(x) =
1

c±x + d±
ψ±((a±x + b±)/(c±x + d±)) (III.5)

with a±d± − b±c± = 1. Note that the associated space-
time transformation is a conformal transformation. The
particular case b± = c± = 0, a± = 1/d± = e±η/2,

ψ′±(x) = e±η/2ψ±(e±ηx), (III.6)

corresponds to a boost of parameter η. Other transfor-
mations preserving (III.1) and (III.4) are the U(1) trans-
formation

ψ′± = eiθ±ψ± , (III.7)

3 More precisely, for any test function f the vector-valued func-

tions ψ±(fy)∣Ω⟩ and ψ
†
±
(fy)∣Ω⟩, where fy(x) = f(x − y), can be

extended continuously in y to analytic functions in the upper
half-plane.

with θ± ∈ [0,2π), and the charge conjugation transforma-
tion,

ψ′± = ψ†
± . (III.8)

On the other hand, the PT transformation

ψ′±(x) = ψ±(−x) (III.9)

preserves the anticommutation relations (III.1) but not
the two-point functions (III.4), which are mapped to their
complex conjugates. Transformations with this property
are implemented by antiunitary (rather than unitary)
operators which leave the vacuum invariant, as can be
shown by exactly the same construction as above.

In this QFT, as is always the case with fermions,
field operators localized in two spacelike separated re-
gions U and V anticommute instead of commuting. Of
course, this does not mean that the corresponding alge-
bras anticommute: for example, the product of two field
operators in U commutes with everything in V. What
is, then, the relation between the algebras AU and AV?
To answer this question, consider the unitary operator
Uπ associated with the U(1) transformation (III.7) with
θ+ = θ− = π,

Uπψ±U
†
π = −ψ±. (III.10)

Clearly, this operator anticommutes with ψ± and ψ†
±,

which implies that the product XUπ, with X a field op-
erator localized in U , commutes with everything in V.
Note also that U2

π = 1 and hence U †
π = Uπ. Taking this

into account one finds that the operator

Z = 1 + iUπ

1 + i , (III.11)

which is called the twist operator, is unitary and satisfies

Zψ±Z
† = −iψ±Uπ. (III.12)

Therefore, ZXZ† commutes with everything in V. In
other words, if SU denotes the set of field operators local-
ized in U (so that AU = S ′′U ), we have ZSUZ† ⊆ S ′V = A′V .
For any set S and any unitary operator U it is easy to
see that (USU †)′ = US ′U †, so this inclusion can be pro-
moted to a relation between von Neumann algebras,

ZAUZ† ⊆ A′V . (III.13)

This is the relation we were looking for. Note that
Z†ψ±Z = −Zψ±Z† and hence Z†AUZ = ZAUZ†, so the
above equation is equivalent to ZAVZ† ⊆ A′U , as it should
be because the regions U and V are arbitrary. We will
refer to ZAUZ† as the twisted algebra of U . Note from
(III.11) that Z leaves the vacuum invariant, because so
does Uπ. This guarantees that the corollary we discussed
above of the Reeh-Schlieder theorem (that the vacuum is
cyclic and separating for non-empty regions with a non-
empty causal complement) remains true in the presence
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x+x−

U U ′U ′

Figure 2: A causal diamond U and its null complement
U∗, i.e., the largest open set of points which cannot be
joined with U by a light ray (gray region). Two of the
four components of U∗ form the causal complement U ′,

which has the same null projections as U∗.

of fermions. In the context of this or any other fermionic
model, we will say that Haag duality holds for a region
U if A′U = ZAU ′Z†, i.e., if there is nothing else in the
commutant than what can be found in the twisted alge-
bra of the causal complement. This is sometimes called
a twisted version of Haag duality.

In fact, Eq. (III.1) tells us that field operators local-
ized in U and V anticommute (and hence the algebra
of one region commutes with the twisted algebra of the
other) whenever there is no light ray joining these regions,
which is a weaker condition than the condition of being
spacelike separated. The largest open set of points that
cannot be joined with U by a light ray will be referred
to as the null complement of U , and will be denoted as
U∗. We thus have ZAU∗Z† ⊆ A′U in this model. Since U∗
is larger than U ′, at first sight this may seem to imply a
violation of Haag duality, but this is not necessarily the
case: for example, if U is a causal diamond as in figure
2, the projections of U∗ onto the null axes coincide with
those of U ′ and hence, as discussed above, AU∗ = AU ′ .

IV. MODULAR CONJUGATION FOR
SINGLE-COMPONENT REGIONS

A. Rindler wedge

We now show the explicit calculation of the modular
conjugation for the vacuum state and the algebra of the
Rindler wedge, first derived by Bisognano andWichmann
[18]. This is an extremely important result since it is an
explicit example which holds for any QFT and shows the
validity of Haag duality for this region.

We restrict to the massless fermion in 1+ 1, although
the same ideas are readily generalized to arbitrary QFTs

in any number of dimensions. The Rindler wedge R is
the set of all points (x+, x−) with x+ > 0 and x− < 0. The
corresponding modular flow is given by

∆isψ±(x±)∆−is = e∓πsψ± (e∓2πsx±) ≡ αs (ψ±(x±)) ,
(IV.1)

which, by comparison with (III.6), tells us that ∆is is the
unitary operator associated with a boost of parameter
−2πs. One way to convince oneself that the above equa-
tion is correct is to verify that α is a one-parameter group
of automorphisms of AR (which it is, because the boosts
map the Rindler wedge to itself) and that it satisfies the
modular condition. It does: for (x+, x−), (y+, y−) ∈ R,
the function

G(z) = 1

2πi

1

e±πzx± − e∓πzy± − iϵ (IV.2)

is analytic on the interior of the strip Im z ∈ [−1,0] and
continuous on its boundary, and satisfies the boundary

conditions (II.4) with a = ψ±(x±) and b = ψ†
±(y±), and

also with a = ψ†
±(x±) and b = ψ±(y±). That the modular

condition is satisfied for arbitrary choices of a and b just
follows by Gaussianity.

The modular flow can be used to determine the mod-
ular conjugation. Indeed, the modular objects associated
with an algebra A and a cyclic and separating vector ∣Ω⟩
are related by

Ja∣Ω⟩ = JSa†∣Ω⟩ =∆1/2a†∣Ω⟩ (IV.3)

for all a ∈ A, where in the first step we have used the
definition of the Tomita operator and in the second step
we have used the property J2 = 1. Moreover, the right-
hand side can be obtained by analytic continuation from
the modular flow. In our case we have

∆isψ†
±(x±)∣Ω⟩ = e∓πsψ†

± (e∓2πsx±) ∣Ω⟩. (IV.4)

We know from section II that the left-hand side is an-
alytic in s on the interior of the strip Im s ∈ [−1/2,0]
and continuous on its boundary. The same is true for
the right-hand side, because for s in that strip the argu-

ment of ψ†
± has a non-negative imaginary part (recall the

discussion under Eq. (III.4)). Therefore, by the unique-
ness of the analytic continuation, the above equation re-
mains valid everywhere in the strip, and in particular for
s = −i/2,

∆1/2ψ†
±(x±)∣Ω⟩ = ±iψ†

±(−x±)∣Ω⟩. (IV.5)

Substituting into (IV.3) with a = ψ±(x±) we obtain

Jψ±(x±)∣Ω⟩ = ±iψ†
±(−x±)∣Ω⟩. (IV.6)

Since both J and Uπ (the unitary operator associated
with the symmetry ψ± → −ψ± that appeared at the end
of last section) leave the vacuum invariant, this equation
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Figure 3: The Rindler wedge (orange) and a region
with the same null projections (blue). Both have the

same causal complement (gray region).

can be rewritten using (III.12) in the form

[Jψ±(x±)J ±Zψ†
±(−x±)Z†] ∣Ω⟩ = 0. (IV.7)

Now, we know from Tomita-Takesaki theory that the first
term between square brackets lies in A′R. The same is
true for the second, because −(x+, x−) ∈ R′. Hence, the
entire operator between square brackets is in A′R. But
the vacuum is separating for this algebra, so the operator
must vanish,

Jψ±(x±)J = ∓Zψ†(−x±)Z†. (IV.8)

In other words,

J = ZΘ, (IV.9)

where Θ is the antiunitary operator associated with the

CPT symmetry ψ±(x) → ∓ψ†
±(−x). As a consistency

check, note that Θ2 = 1 and that Θ commutes with Uπ,
which, by antilinearity, implies ΘZ = Z†Θ. We thus have
J2 = ZΘZΘ = ZZ†Θ2 = 1, as it should be. On the other
hand, note from (IV.8) that

A′R = JARJ = ZAR′Z†, (IV.10)

i.e., Haag duality holds for the Rindler wedge.

As mentioned above, these results hold in fact for any
QFT. What is specific to this model is that all regions
with the same null projections have the same algebra, so
Eq. (IV.9) gives the modular conjugation of any region
with the same null projections as the Rindler wedge. An
example is given in figure 3. Any such region has R′ as
its causal complement, so Haag duality is satisfied for all
these regions as well.

B. Causal diamond

In conformal field theories (CFTs), the modular con-
jugation associated with a causal diamond can be ob-
tained by conformal mapping from the Rindler wedge.
This was done explicitly in [39] for a massless scalar field
theory. Let us see how this works in the case of the mass-
less fermion in 1 + 1.

The causal diamond D is the set of all points (x+, x−)
with ∣x±∣ < R for some R > 0. The conformal transforma-
tion

σ±(x±) = ±Rx
± ∓ 2R
x± ± 2R (IV.11)

maps the Rindler wedge R to D: for x+ > 0 and x− < 0
we have ∣σ±(x±)∣ < R. Hence, if U is the unitary opera-
tor associated with this transformation4, we have AD =
UARU †. This implies a relation between the Tomita op-
erators: for aD ∈ AD we have aR ≡ U †aDU ∈ AR and
therefore

SDaD ∣Ω⟩ = a†
D
∣Ω⟩ = Ua†

R
U †∣Ω⟩ = Ua†

R
∣Ω⟩

= USRaR∣Ω⟩ = USRU †aDU ∣Ω⟩ = USRU †aD ∣Ω⟩,
(IV.12)

which implies

SD = USRU †. (IV.13)

It follows that the modular objects are also related,

∆D = U∆RU
† JD = UJRU †. (IV.14)

Together with the formula (IV.1) for the modular flow
of the Rindler wedge, the first equation above gives the
modular flow of the causal diamond,

∆isψ±(x)∆−is =
R

R cosh(πs) − x sinh(πs)ψ±(σs(x))

σs(x) = R
x cosh(πs) −R sinh(πs)
R cosh(πs) − x sinh(πs) . (IV.15)

Similarly, the second equation in (IV.14), together with
the formula (IV.8) for the modular conjugation of the
Rindler wedge, gives the modular conjugation of the

4 More precisely, one of the unitary operators: there are four of
them, because for each chirality there are two choices of the pa-
rameters a, b, c and d in (III.5) corresponding to the conformal
transformation (IV.11). The unitaries do not form a represen-
tation of the conformal group but of SL(2,R) ×SL(2,R), which
is a covering of the conformal group. Being a fermionic theory,
this should not be surprising: for example, fermions in 3 spatial
dimensions do not carry a representation of the rotation group
SO(3) but of its covering SU(2).
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Figure 4: Regions in the casual diamond D (lighter
colored) are mapped to regions of the corresponding
darker colors outside D by the map x± ↦ R2/x±.

causal diamond,

Jψ±(x)J =
R

x
Zψ†

±(R2/x)Z†, (IV.16)

where we have used that Z commutes with U (because
so does Uπ). The map x± ↦ R2/x± is represented in
figure 4. As we see, J maps the algebra of D to the
twisted algebra of D∗, the null complement of D. As
explained above, this algebra coincides with that of the
causal complement D′, so Haag duality is satisfied also
for the causal diamond.

The remarks at the end of the previous subsection
also apply here. Eq. (IV.16) gives in fact the modular
conjugation of any region whose null projections coincide
with those of the causal diamond. These regions have the
same causal complement as the causal diamond, so Haag
duality is satisfied for them too.

V. MODULAR CONJUGATION FOR
MULTICOMPONENT REGIONS

In this section we compute the modular conjugation
for a generic open spacetime region U . Unlike in the pre-
vious section, here it is crucial to restrict to the massless
fermion in 1+ 1, because it is only in this model that the
relevant modular flow is known. The null projections of
U will be collections of intervals,

π±(U) =
n±

⋃
i=1

(a±i , b±i ). (V.1)

In what follows, for notational simplicity, we drop all
subscripts and superscripts ±; all the equations below
hold for both chiralities. The modular flow is given by

Re u

Im u

a1 b1 a2 b2

θ2

θ1 u

Figure 5: For u in the upper half-plane,
arg(u− bi)− arg(u− ai) = θi, where θi is the angle shown

in the figure. Clearly, ∑i θi ∈ (0, π) and therefore
∑i[arg(u − ai) − arg(u − bi)] ∈ (−π,0).

[44]

∆isψ(x)∆−is = 2 sinh(πs)
n

∑
i=1

1

ω′(xi(s))
1

x − xi(s)
ψ(xi(s)) ≡

≡ αs(ψ(x)), (V.2)

where

ω(x) = log(−
n

∏
i=1

x − ai
x − bi

) ω(xi(s)) = ω(x) − 2πs.

(V.3)
Note that x lies in one of the intervals, because it is a
null projection of a point in U ; this implies that ω(x) is
real. Note also that, within each interval, ω is a mono-
tonic function which goes from −∞ at the left end of
the interval to +∞ at the right end. In consequence, the
equation ω(y) = ω(x)− 2πs has exactly one solution y in
each interval; xi(s) denotes the solution that lies in the
i-th interval. Unlike the modular flows we encountered
in the previous section, the above modular flow is non-
local: the modular evolution of a field operator localized
in one of the components of U is a linear combination of
field operators localized in each of the components.

The action of the operator (V.2) on the vacuum can
be written in terms of a contour integral. Let us think
of ω as a function on the complex plane, which has a cut
on the complement of π(U) in the real line because the
argument of the logarithm is negative there. For u ∈ C,
the imaginary part of ω(u) is

Imω(u) =
n

∑
i=1

[arg(u − ai) − arg(u − bi)]+(2k+1)π, (V.4)

where k is an integer to be chosen so that Imω(u) ∈
(−π,π]. In figure 5 we show by a simple geometrical
argument that, for u in the upper half-plane, the above
sum of n terms lies in (−π,0) and hence Imω(u) ∈ (0, π).
A similar argument shows that Imω(u) ∈ (−π,0) for u
in the lower half-plane. Now, consider the vector-valued
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Re u

Im u

Figure 6: Integration contour for Eq. (V.5).

function

∣ϕx(z)⟩ = −
1

2πi

‰
du

sinh [ω(x)−ω(u)
2

]

sinh [ω(x)−ω(u)
2

− πz]
1

x − uψ(u)∣Ω⟩

(V.5)
for Im z ∈ (−1/2,0), where the contour of integration is
depicted in figure 6. Note that, despite the cuts of ω,
the ratio of hyperbolic sines above is meromorphic in u
(i.e., analytic except for poles). Recalling that ψ(u)∣Ω⟩
is analytic in the upper half-plane and continuous on its
boundary, it follows that the integral can be computed by
residues. Since Imω(u) ∈ (−π,π], the hyperbolic sine in
the denominator only vanishes where its argument van-
ishes, so the only poles of the integrand are the n solu-
tions u = xi(z) of the equation ω(u) = ω(x)−2πz. By the
discussion above, given the range of values of z, these all
lie in the upper half-plane, i.e., within the contour. Ap-
plying the residue formula one obtains

∣ϕx(z)⟩ = 2 sinh(πz)
n

∑
i=1

1

ω′(xi(z))
1

x − xi(z)
ψ(xi(z))∣Ω⟩.

(V.6)
Note from (V.5) that ∣ϕx(z)⟩ is an analytic (i.e., differen-
tiable) function of z everywhere in its domain, the strip
Im z ∈ (−1/2,0). Eq. (V.5) would not make sense for z
on the boundary of that strip because in that case the
contour would hit a pole, but still one can extend ∣ϕx⟩ to
the boundary of the strip by continuity. Doing that, it
follows from the above equation that, for s ∈ R,

∣ϕx(s)⟩ = αs(ψ(x))∣Ω⟩. (V.7)

This gives the desired expression of the operator (V.2)
in terms of a contour integral. We will denote as ∣φx(z)⟩
the function defined in the same way as ∣ϕx(z)⟩ but with
ψ replaced by ψ†; note that it has analogous properties,
and in particular satisfies ∣φx(s)⟩ = αs(ψ†(x))∣Ω⟩.

Eq. (V.2) was derived in [44] by a method based on
the reduced density matrix, which strictly speaking is
not well-defined in QFT. This is not really a problem,

Re u

Im u

Figure 7: Integration contour for Eq. (V.8). The inner
loop encircles the point u = x − iϵ.

because one can make sense of the method by discretizing
the theory and then sending the lattice spacing to zero
at the end of the calculation. Still, it is desirable to
verify the result by checking that α satisfies the modular
condition. To do this, we compute for Im z ∈ (−1/2,0)

G(x, y; z) ≡ ⟨Ω∣ψ(x)∣φy(z)⟩ = ⟨Ω∣ψ†(x)∣ϕy(z)⟩

= −( 1

2πi
)
2 ‰

du
sinh [ω(y)−ω(u)

2
]

sinh [ω(y)−ω(u)
2

− πz]
1

y − u
1

x − u − iϵ .

(V.8)

Note that the integrand above is analytic outside the con-
tour of figure 6 except for a pole at u = x− iϵ. Therefore,
the contour can be deformed to that of figure 7. The
integral along the outer loop vanishes, because the inte-
grand decays quickly at infinity, so one is left only with
the contribution from the inner loop, which is determined
by the pole at u = x − iϵ. The result is

G(x, y; z) = 1

2πi

sinh [ω(x)−ω(y)
2

]

sinh [ω(x)−ω(y)
2

+ πz]
1

x − y . (V.9)

Note that this function can be analytically continued to
the strip Im z ∈ (−1,0) and, after smearing, extends con-
tinuously to the boundary of that strip. By construction,
it is clear that

G(x, y; s − iϵ) = ⟨Ω∣ψ(x)αs(ψ†(y))∣Ω⟩ =
= ⟨Ω∣ψ†(x)αs(ψ(y))∣Ω⟩. (V.10)

Moreover, it follows from (V.9) that G(x, y; s − i + iϵ) =
G(y, x;−s− iϵ), so the modular condition is indeed satis-
fied, as we wanted to show.

Let us now compute the modular conjugation. We
proceed analogously to the case of the Rindler wedge,
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section IVA, by analytic continuation from the modular
flow. From (V.2) we have

∆isψ†(x)∣Ω⟩ = 2 sinh(πs)
n

∑
i=1

1

ω′(xi(s))
1

x − xi(s)
ψ†(xi(s))∣Ω⟩.

(V.11)

As we know, the left-hand side is analytic in s on the
interior of the strip Im s ∈ [−1/2,0] and continuous on its
boundary. And, by the discussion around (V.6), the same
is true for the right-hand side. Note that the terms of the
sum on the right-hand side are not separately analytic,
because xi(s), which is a root of a polynomial of degree
n, generically has branch cuts (think for example of the
case n = 2, where the formula for xi(s) involves a square
root). But the sum of all terms is analytic, because it
can be rewritten in the explicitly analytic form (V.5),
(V.6) (with ψ replaced by ψ†). Therefore, the above
equation holds everywhere in the strip Im s ∈ [−1/2,0],
and in particular for s = −i/2,

∆1/2ψ†(x)∣Ω⟩ = −2i
n

∑
i=1

1

ω′(x̄i)
1

x − x̄i
ψ†(x̄i)∣Ω⟩, (V.12)

where

ω(x̄i) = ω(x) + iπ. (V.13)

Note that x̄i lies in the complement of π(U) in the real
line, which means that Zψ†(x̄i)Z† ∈ A′U . With this in
mind, and following the same steps as in the case of the
Rindler wedge, Eqs. (IV.5)-(IV.8), we obtain

Jψ(x)J = 2
n

∑
i=1

1

ω′(x̄i)
1

x − x̄i
Zψ†(x̄i)Z†. (V.14)

This is the main result of the paper. The maps x± ↦ x̄±i
are represented in figures 8 and 9 in the case of two simple
choices of the region U , both of which correspond to the
same algebra. The geometric action of this modular
conjugation has been studied before for the case n = 2 in
[45]. We have checked that the map x± ↦ x̄± considered
in that work satisfies Eq. (V.13). Moreover, our figure 9
is consistent with figure 13 of that reference.

Note from Eq. (V.14) (and also from figure 8) that
A′U = JAUJ ⊆ ZAU∗Z†, where, again, U∗ denotes the
null complement of U , i.e., the the largest open set of
points which cannot be connected with U by a null line.
Since we already know that the opposite inclusion holds,
we conclude that

A′U = ZAU∗Z†. (V.15)

Thus, whether Haag duality holds or not for a region U
depends entirely on whether the null projections of U ′
coincide with those of U∗ (which form the complement
of the projections of U). We will discuss this in more de-
tail below. Another feature to highlight about Eq. (V.14)
is that, unlike the previous cases discussed, the map in-
duced by J on operators is non-local. This arises, of

Figure 8: If U consists of two spacelike separated and
symmetrically arranged causal diamonds, regions of U

(lighter colored) are mapped to regions of the
corresponding darker color under the maps x± ↦ x̄±1,2.

Figure 9: The maps x± ↦ x̄±1,2 (same color code as
before) for another region U with the same null

projections as that of the previous figure, and hence the
same algebra. Since the algebras coincide, so do the

modular conjugations.

course, due to the non-locality of the modular flow. As
a simple check of (V.14), setting n = 1 and b = −a = R
one recovers exactly the result for the causal diamond,
Eq. (IV.16), as it should be. We have checked that the
result for the causal diamond is also recovered in more
complicated ways, for example starting with two inter-
vals and making them approach one another or sending
one to infinity.

Let us check that our result satisfies J2 = 1. We
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will use that the modular conjugation of an algebra is
equal to that of its commutant [40]. By Eq. (V.15), this

implies J = ZJ̃Z†, where J̃ is the modular conjugation
associated with U∗. Then, taking x in any interval and
thus ψ(x) ∈ AU we have

J2ψ(x)J2 = 2
n

∑
i=1

1

ω′(x̄i)
1

x − x̄i
ZJ̃ψ†(x̄i)J̃Z†. (V.16)

Now, due to the fact that ψ†(x̄i) ∈ AU∗ , we know that the

action of J̃ on ψ†(x̄i) is again given by (V.14). Taking
into account that the analog of the function ω for the
region U∗ is ω̃ = −ω + iπ we obtain

J2ψ(x)J2 = −4
n

∑
ij=1

(ω′(x̄i)ω′(xj))−1

(x − x̄i)(x̄i − xj)
Z2ψ(xj)(Z†)2,

(V.17)
where we have called xj the j-th solution of the equation
ω̃(xj) = ω̃(x̄i) + iπ, which is equivalent to

ω(xj) = ω(x). (V.18)

Note that this equation has exactly one solution within
each interval; we take xj to be the solution lying in the

j-th interval. Furthermore, using that Z2 = (Z†)2 = Uπ,

J2ψ(x)J2 = 4
n

∑
ij=1

(ω′(x̄i)ω′(xj))−1

(x − x̄i)(x̄i − xj)
ψ(xj). (V.19)

Recall that (x̄i−xj)−1 = (−2πi)⟨Ω∣ψ(xj)ψ†(x̄i)∣Ω⟩, so the
last expression can be rewritten using (V.12) and (V.9)
as

J2ψ(x)J2 = 4π
n

∑
j=1

ψ(xj)
ω′(xj)

⟨Ω∣ψ(xj)∆1/2ψ†(x)∣Ω⟩

= 4π
n

∑
j=1

ψ(xj)
ω′(xj)

G(xj , x;−i/2)

= −2i
n

∑
j=1

ψ(xj)
ω′(xj)

sinh [ω(xj)−ω(x)

2
]

sinh [ω(xj)−ω(x)

2
− iπ

2
]

1

xj − x
.

(V.20)

Remembering that ω(xj) = ω(x), one sees that the hy-
perbolic sine in the denominator is equal to −i, while
the one in the numerator vanishes. This implies that all
terms in the above expression are zero, except for the
term corresponding to the interval containing x, because
in that case xj−x = 0. So we can drop the sum and study
the non-vanishing term as a limit:

lim
y→x

sinh [ω(y)−ω(x)
2

]
y − x = ω

′(x)
2

. (V.21)

Inserting this result into our expression for J2ψ(x)J2

yields

J2ψ(x)J2 = ψ(x), (V.22)

which means J2 = 1.

A. Haag duality

As is clear from (V.15), in the model we are con-
sidering Haag duality is satisfied for a region U if and
only if AU ′ = AU∗ , which is equivalent to saying that
π±(U ′) = π±(U∗) or, in other words, that the null pro-
jections of U ′ form the complement of those of U in the
null axes. Let us see some examples of regions for which
Haag duality holds, and others for which it fails.

Figure 10: A generic example of a causally complete
region (orange) and its causal complement (blue). The
null projections of the region and its causal complement
are the collections of segments of the corresponding

color. These fill the null axes, which means that Haag
duality holds for this region.

A region U is said to be causally complete if it satisfies
U ′′ = U ; for U generic, U ′′ is called the causal completion
of U . Note that U ′′ always contains U and has the same
causal complement. Hence we have

ZAU ′Z† ⊆ A′U ′′ ⊆ A′U , (V.23)

so, if Haag duality holds for U , then it also holds for
its causal completion. Causal completions are always
causally complete, so, for this reason, Haag duality is
more likely to hold for causally complete regions. In fig-
ure 10 we show a generic example of a causally complete
region. Its null projections and those of its causal com-
plement fill the null axes, so Haag duality is satisfied for
this region. We expect this to remain true for arbitrary
causally complete regions.

In figure 11 we show an example of a non-causally
complete region. Its null projections and those of the
causal complement do not fill the null axes, so Haag du-
ality does not hold for this region. This is not generic
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Figure 11: A non-causally complete region (orange)
and its causal complement (blue). The null projections

of the region and its causal complement are the
collections of segments of the corresponding color. The
central portion of the null axes is not painted, which

means that Haag duality fails for this region.

of non-causally complete regions: in section IV we have
already seen examples of non-causally complete regions
for which Haag duality holds: these are the blue regions
of figures 1 and 3.

VI. FINAL COMMENTS

In this paper we computed a new modular conjuga-
tion, namely that of a 1 + 1 dimensional free massless
Dirac field in the vacuum state for multicomponent re-
gions. We also revisited some previously known results:
modular conjugation for the vacuum of any QFT in the
Rindler wedge (Bisognano-Wichmann) and for the vac-
uum of any CFT in the ball (Hislop-Longo), with empha-
sis on completing the details that arise when one consid-
ers fermions instead of bosons.

To compute the modular conjugation we first studied
the action of the modular flow on the fields applied to the
cyclic and separating vacuum state. Then, we extended
this to modular parameter s = −i/2 in order to relate it
with the action of J on the fields when applied to the
vacuum. Finally, using the separating property of the
vacuum state we were able to get rid of the vacuum state
and obtained an operator equation relating the action of
J with the modular flow.

For the simple cases of Bisognano-Wichmann [18] and
Hislop-Longo [39], the modular flow is local and J acts ge-
ometrically. In the novel case of multicomponent regions
the modular flow is known to be non-local and exhibits a
“mixing” between components [46]. This translates into
non-localities in the modular conjugation as well.

For the massless free Dirac field in 1 + 1 dimensions
the result for J for arbitrary regions gives us a large play-
ground to test the validity of Haag duality. We observed
that Haag duality holds in this model for the local al-

gebras associated to generic causally complete regions.
When the regions are not causally complete we found
situations in which duality holds but others in which it
does not. We hope that the results found here in this
regard might be helpful in the task of elucidating under
which conditions one can expect this property to hold in
a general QFT.

Notice that in order to obtain the modular conjuga-
tion we heavily relied on the knowledge of the modular
flow. Therefore, one could in principle obtain J for other
models in which the modular flow has been studied. This
is for example the case of the free massless Dirac field but
on the circle at non-zero temperature [27–29].

The modular conjugation for a two-component region
for the massless fermion in 1+ 1 dimensions was recently
considered in [45]. That work also studied the connec-
tion between some modular conjugations in holographic
theories and the geodesic bit threads of the correspond-
ing dual gravitational backgrounds. The result for the
new multicomponent modular conjugation we provided
here might perhaps be useful to explore that interesting
connection further.
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[27] D. Blanco and G. Pérez-Nadal, “Modular Hamiltonian
of a chiral fermion on the torus,” Phys. Rev. D, vol. 100,
no. 2, p. 025003, 2019.

[28] D. Blanco, A. Garbarz, and G. Pérez-Nadal, “Entangle-
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