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Abstract 

Layered double hydroxides were prepared by co-precipitating Mg2+ and Al3+ ions at constant 

pH. Three different methods of solution additions and two temperatures for synthesis and aging 

were tested in each method. Through X-ray diffraction, it was confirmed that all the synthesized 

solids have a hydrotalcite-type structure, obtaining more crystalline compounds when one 

solution of Mg/Al is added to another whit CO3
-/OH- and compounds with greater interlaminar 

spacing when three different solutions are added (Mg/Al, CO3
- and OH-). In addition, the solids 

obtained by this last method have a higher specific surface area and total pore volume, as 

confirmed by the N2 adsorption-desorption.  A similar trend occurs with synthesis and aging 

temperatures where better textural properties are obtained at a higher temperature, reaching 

surface area values of 242 m2/g and pore volume of 0,93 cm3/g. All the synthesized solids were 

active for removing nitrates in water, obtaining the best results with the samples prepared by 

dripping three different solutions at 60 °C (26 mgNO3
-/g.) This fact demonstrates the correlation 

between the synthesis method and the textural properties of the material with its potential 

application in removing contaminants. 

 

Keywords: Layered Double Hydroxides · Synthesis · Textural properties · Adsorption · Water · 

Nitrate removal 
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1 Introduction 

Water pollution with nitrates is a problem far from being solved and cheaply. The technologies 

available today, such as reverse osmosis, ion exchange, electro-dialysis, and biological 

denitrification, are unavailable to most affected populations [1]. A series of different techniques 

to remove nitrates from water are currently under study, including dissimilatory nitrate reduction 

to ammonium (DNRA) [2], electrochemical reduction [3], catalytic reduction [4], and adsorption 

[5]. All these methods have their deficiencies; for example, in DNRA and catalytic reduction 

methods, dangerous products like ammonia and nitrite are formed [6,7]. Adsorption is a 

convenient method compared to others due to the simplicity and ease of operation design, not 

generating harmful by-products, and low operational cost [5]. Among the adsorbent materials 

for nitrate removal, activated carbons [8], zeolites [9], natural clays [10], and layered double 

hydroxides (LDH) [11] stand out.  

LDH or hydrotalcite-like compounds belong to the class of anionic clays whose structure is 

based on layers similar to brucite (Mg (OH)2), in which some divalent cations have been 

replaced by trivalent ions that give place to positively charged layers. This charge is balanced by 

the intercalation of anions in the hydrated intermediate layer, called anionic clays. Weak 

hydrogen bonds connect the metal hydroxide sheets from interlayer water molecules that can be 

easily broken through thermal treatment, generating a mixture of oxides that recovers the 

original structure of the LDH when it is submerged in an aqueous solution with some anion of 

interest [12]. This property is known as the memory effect, which can be used to synthesize the 

LDH with a specific shape for trapping a specific anion after calcination [13,14]. 

LDH's can be represented by the general formula [M+2
1-x M +3

x (OH)2]
+x(A-n)x/n .yH2O. The 

identities of the divalent and trivalent cations (M+2 and M+3, respectively) and the intercalating 

anion (A-n), together with the value of the stoichiometric coefficient (x), can vary across a wide 

range, resulting in a large class of isostructural materials [15]. In nature, layered double 

hydroxides are available as minerals [16]. However, they can be synthetically prepared in the 

lab or large scale [17]. Layered double hydroxides were discovered in Sweden around 1842 as 

natural hydroxycarbonate, and the first synthesis was reported by Feitknecht in 1942 [18]. In 

recent years several reviews have described different synthesis methods and the influence of the 

methods on the formation and structure of layered double hydroxides [13,19–25]. 

The easy control of the composition of the anionic clays and the possibility of increasing the 

surface area and the interlaminar volume with the appropriate choice of intercalated cations 

allow an optimal adjustment of their properties, allowing to synthesize a material according to 

the desired properties and the final application [26–28]. Thus, LDHs are of great importance for 

applications such as fertilizer vehicles for their sustained release, catalysts, flame retardant, 
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biomedical applications, synthesis of polymer nanocomposites, and lubricant additives, among 

others. [11,29]. Many authors are interested in using these materials in environmental 

applications to eliminate heavy metals[28,30–33] and dangerous inorganic anions[27]; among 

them, numerous studies of nitrate removal using hydrotalcites [11,34–36]. 

Among a great variety of synthesis methods for obtaining LDH, we can mention co-

precipitation [37], anion exchange [21], the sol-gel method [38], mechanochemical synthesis 

[24], and hydrothermal synthesis [39]. The co-precipitation process is the most conventional 

and studied among these methods. The synthesis parameters most evaluated for this method are 

the pH, the base solution's nature and concentration, the aging time and temperature, and the 

M2+/M3+ molar ratios [40]. All studies agree that the increase in aging time and temperature 

promotes the formation of LDH with higher crystallinity and larger crystallites. However, it is 

difficult to determine which temperature should be applied since it is necessary to have different 

particle sizes for different applications of LDH [22]. For this reason, it is still interesting to 

study the effect of the synthesis temperature of the material on its ability to adsorb a specific 

anion.  

Cao et al. found that the change in reactant concentration influenced the morphology and size of 

particles of the LDH. In contrast, the pH difference caused by different metal ion concentrations 

may remarkably affect the intercalated anions [41]. It is well known that synthetic minerals like 

LDH are produced in reaction rates faster than the formation of the same natural mineral. Some 

synthetic minerals had not enough time to equilibrate into a minimal energy state affecting some 

properties of the synthetic material [25]. Consequently, it is expected that the order of addition 

of the reagents in the synthesis of LDH strongly influences the material obtained. However, 

other authors have not yet studied this. The co-precipitated method of LDH can be expected to 

contain larger crystallites whose nucleation sites formed early in the co-precipitation and 

smaller crystallites formed closer to the end of reagent addition and therefore experienced a 

shorter aging time [37].   

In this work, the MgAl-LDH was synthesized, and the influence of temperature and reagent 

addition on its morphology, composition, structure, and nitrate adsorption behavior was 

investigated comprehensively. The novelty of the research focuses on the relationship of 

preparation, structure, and properties by investigating the influence of reagent addition and 

temperatures of synthesis and aging on the structure and nitrate adsorption properties.  

2 Materials and methods 

The LDHs were synthesized via co-precipitation of solutions of Mg(NO3)2 and Al(NO3)3 

(Mg/Al molar ratio = 3) at constant pH (near to 10) in the presence of NaOH and Na2CO3. 
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Variations were made in the addition of these solutions: in method A, two solutions were added 

simultaneously, a solution of Mg-Al salts and another with NaOH and Na2CO3, whereas, in 

method B, the Mg-Al solution was added to the NaOH/Na2CO3 solution, and in method C, three 

solutions were mixed, the Mg-Al solution, NaOH and Na2CO3. The solutions were added drop 

by drop in all the cases under constant stirring. Once the drip was finished, it was kept in that 

condition for 3 hours at room temperature. Thus, we obtained the LDHA, LDHB, and LDHC 

samples. Then the three syntheses were repeated at 60 °C in all stages, and we obtained LDHA60, 

LDHB60, and LDHC60. Finally, each one was filtered and washed with milli-Q water until a pH of 

7.0 was reached. The synthesized samples present carbonate ions filling the interlaminar spaces; 

the solids will be calcined to eliminate the interlayer anions before the nitrate removal analysis. 

The calcination was done by heating the samples to 450 °C and keeping them at this 

temperature for 6 hours under nitrogen flow. A summary scheme of these syntheses is shown in 

Figure 1. 

   
 

Fig. 1 Scheme of the three synthesis methods to obtain LDHs 

The X-ray diffractograms (XRD) were obtained in a BRUKER-D2 Phaser diffractometer using 

Cu radiation, a step of 0.02o, a velocity of 2o /min, and a sweep interval of 5 to 70o in units of 

2θ. The basal spacing was determined from the Bragg equation: n·λ = 2dhkl·sin θ where n is the 

order of peak reflection, λ is the X-ray wavelength used, d is the basal spacing corresponding to 

the Miller indexes' crystallographic positions (hkl), and θ is the Bragg angle determined through 

the peak of the sample. 
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Nitrogen (N2) adsorption-desorption isotherms at 77 K were carried out on an automatic 

sorptometer (Micromeritics – ASAP 2050). The samples were previously outgassing at 100 °C 

for 12 h. Specific surface area (SBET) was calculated by Brunauer, Emmett, and Teller methods 

using the IUPAC recommendations [42,43]. The mesopore size distributions (MPSD) were 

determined by Villarroel-Barrera-Sapag (VBS) method [44] using cylindrical pore geometry 

and nitrogen desorption data, and total pore volume (VTP) was obtained by the Gurvich's rule 

[45]. 

Infrared vibrational spectroscopic data were collected using a Perkin-Elmer Spectrum 65 FT-IR 

spectrometer coupled to a Perkin-Elmer Universal ATR sampling accessory. The analysis range 

was 400–4000 cm−1. 

Morphological characterization of samples was carried out using Scanning Electronic 

Microscopy (SEM) obtained in a LEO 1450 VP equipment with an energy dispersive X-ray 

probe (EDX) EDAX Genesis 2000. 

Nitrate removal tests were performed in batches under continuous agitation on a SOLAB 

Orbital Stirring Table, SL-180 / D, placing 100 mg of LDH in 50 mL of 100 mg/L solutions of 

KNO3. Nitrate content was measured in spectrophotometer UV-Vis brand BioTraza, reading at 

220 nm in a quartz cell, discounting matter organic read at 275 nm. Nitrate adsorbed was 

calculated by equation 1: 

𝑞t=(𝐶0−𝐶t) V/𝑚 Equation (1) 

where 𝑞t is the adsorptive capacity of adsorbent at time t (mg/g), V is the volume of solution 

(L), 𝐶0 and 𝐶t (mg/L) are the initial concentration of nitrate, and at time t, respectively, and m is 

the mass of adsorbent (g). 

3 Results and discussion 

Fig. 2 shows the XRD diagrams of the synthesized Hydrotalcites. In all cases, the typical 

laminar structure of the hydrotalcite was obtained [46](Pattern ref. 22-0700, JCPDS) with 

intense and thin peaks corresponding to the planes (003), (006), (009), (110) and (113) and a 

broader peak attributable to the plane (015). 

The less intense and broader peaks of LDHA compared to LDHB and LDHC would indicate a 

lower crystallinity and structural ordering in the solid obtained with this synthesis method. On 

the other hand, LDHB exhibits these solids' higher crystallinity and structural ordering. 

According to Cavani et al. [47], under conditions of low supersaturation, more crystalline 

precipitates are formed due to the higher crystal growth rate versus nucleation rate. Therefore, 

this process is favored if, in the synthesis of LDH, the solution of metal cations is added to the 
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basic solution (method B) and not both solutions at the same time (method A and C) since the 

nucleation sites are formed earlier when the metal cations fall into a basic environment. 

  
Fig. 2 XRD of LDH's synthesized at room temperature (a) and at 60 °C (b) 

 

In the syntheses made at 60 °C, a slight increase in the definition and intensity of the peaks can 

be seen for the syntheses developed at room temperature, which would indicate that more 

crystallinity and order are achieved by performing the synthesis at high temperature, probably, 

because higher temperatures in the co-precipitation and aging stages favor the rate of crystal 

growth over the nucleation rate, which is in agreement with other authors [39,41]. 

Table 1 Crystallographic parameters from XRD analysis 

Parameters LDHA LDHB LDHC LDHA60 LDHB60 LDHC60 

d110 (Å) 1.529 1.527 1.529 1.530 1.526 1.530 

a (Å) 3.059 3.053 3.059 3.060 3.053 3.060 

d003 (Å) 7.773 7.706 7.814 7.814 7.666 7.814 

c (Å) 23.319 23.117 23.443 23.442 22.997 23.442 

Interlayer spacing (Å) 2.973 2.906 3.014 3.014 2.866 3.014 

 

From the XRD plots, the crystallographic parameters were determined using the d(003) and d(110) 

peaks. Parameter a is the distance between the metallic cations (a=2·d110), c is the distance 

between three brucite-type sheets plus their interlaminar space (c=3·d003), and the spacing of the 

interlaminar region was calculated according to Wan et al. [36]. The results are listed in Table 1. 

Compared with the results of other authors, all of these lattice parameters correspond to the 

layered structure of hydrotalcite-like compounds [11,29,42] and agree with the values obtained 

from theoretical calculations [26]. Furthermore, since the anions were adsorbed into the 

interlayer and formed a negative layer, large interlayer spacing was favorable for nitrate 

adsorption; because of this, we expect the solid LDHC60 to have higher adsorption capacities 

because it has the largest interlayer spacing [36,48]. 
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For all solids, the obtained N2 adsorption-desorption isotherms (Fig. 3) were of Type IV, 

according to the IUPAC classification, which is characteristic of mesoporous materials. 

Regarding hysteresis loops, the materials synthesized with method C (LDHC and LDHC60 

samples) present a Type H3 hysteresis loop, typical of the LDH, associated with rigid 

aggregates of particles in the form of plates originating Slit-shaped pores [49]. Instead, the 

materials obtained by methods A and B exhibit Type H1 hysteresis loops, corresponding to 

agglomerated or compact pores of uniform arrangements and sizes. These results show that 

depending on the synthesis method, modifications of the mesoporous structure of the LDH are 

obtained. Respect to the effect of the temperature of synthesis (RT and 60 °C) on the shape of 

the hysteresis loop, it can be seen that with methods A and C, no changes were observed. 

However, with method B, the LDH obtained at 60 °C presented a nitrogen isotherm with a Type 

H1 hysteresis loop more defined than the LDH synthesized at RT, indicating that (employing 

method B) at a higher temperature of synthesis, more uniform mesopores were obtained. The 

specific surface area values (SBET) and the total pore volume (VTP), calculated from the nitrogen 

adsorption data included in Table 2, show typical values for this type of solids similar reported 

by other authors [46,49–51] and in all materials, there is no the presence of micropores. LDHC60 

displayed greater pore volume and specific surface area, desirable results for the application in 

the nitrate removal from water.  

According to XRD, methods B, and C presented structures with better textural properties than 

those obtained with method A. The same behavior appears when the synthesis temperature 

increases. In non-highly porous compounds such as these, it is expected that as the crystallinity 

increases, the specific surface area of the solid decreases [52]. From the XRD results, it was 

found that the LDHB sample has better crystallinity than the LDHC, and that is due to the 

textural properties of the latter reaching higher values than the first. However, it is expected that 

sample LDHA would have higher values of specific surface area, but this trend is not observed. 

This fact could be explained if we consider that the so-called Ostwald ripening occurs during 

the synthesis of LDH [53]. According to this mechanism, in the aging stage of the synthesis, the 

small particles in suspension dissolve and reprecipitate, increasing the size of the crystals; in 

this way, small particles that block the pores at the beginning of aging can grow and leave the 

pores free of access for N2 (closed porosity). We believe that in the case of LDHA this 

recrystallization does not occur to a great extent, and therefore, a large part of the pores is still 

blocked, thus generating a lower SBET. 
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Fig. 3 Nitrogen adsorption-desorption isotherms of LDH's synthesized at room temperature (a) 

and 60 °C (b) 

As mentioned above, in figure 3, the difference among the hysteresis shapes of samples 

synthesized with the three methods and at different temperatures is evident. This difference 

indicates that the mesopores, given by the aggregate particles, are changing their size and the 

way they are packed. In this sense, the mesopore size distributions (MPSD) were obtained using 

the VBS method, as shown in Figure 4. It can be seen that employing the: i) method A at 60 °C 

and RT, similar MPSD is obtained for both, with the same modal mesopore size of 14 nm; ii) 

method B, narrow MPSD at RT was obtained, while at 60 °C a wider MPSD was found, where 

the modal mesopore size shift from 5.6 nm to 21.6 nm, respectively; and iii) method C, widest 

MPSD were obtained (for both temperatures) with mesopores sizes higher than 6 nm. 

  
  

Fig. 4 Mesopore size distribution of LDH synthesized at room temperature (a) and  60 °C (b) 
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Table 2 Textural properties of LDH's synthesized 

Sample/Temperature RT 60 °C 

 SBET 

(m
2
/g) 

VTP 

(cm
3
/g) 

 SBET 

(m
2
/g) 

VTP 

(cm
3
/g) 

 

LDHA 104 0.46  127 0.46  

LDHB 196 0.42  184 0.73  

LDHC 233 0.84  242 0.93  

 

The synthesized solids were studied through the scanning electron micrographs (SEM) 

technique to study the morphological changes, crystal sizes, and the network of pores they form. 

Fig. 5 shows the micrographs of all LDH materials studied. The samples show agglomerates of 

small particles with heterogeneous sizes. In all cases, it can be seen as an aggregate of plate-like 

particles with slit-shaped pores, according to the results obtained from the N2 adsorption 

isotherms technique and the results of other investigations [51,54]. It can also be observed that 

when going from solid LDHA to LDHB and LDHC, the structure appears more porous, showing a 

mixing of a coral-like morphology with large lamellar-shaped materials. Some authors propose 

that the coral-like surface is just plate-like particles arranged in a "hollow-block" fashion, 

generating higher porosity evidenced in the N2 adsorption isotherms technique [55]. On the 

other hand, the SEM technique does not show changes in the morphology of the solids obtained 

by changing the synthesis temperature. 
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Fig. 5 Scanning electron micrographs of materials 

 

Fig. 6 EDX analysis reveals the presence of the typical elements for these compounds, whit the 

appearance of Fluoride and Sodium impurities. The Mg/Al ratios in the analysis were 2.27 for 

LDHA, 1.83 for LDHA60, 2.14 and 2.04 for LDHB series, and 2.11 and 2.58 for LDHC series. The 

precipitation process was not completely efficient because we expected molar values observed 

for calcined solids closer to the nominal ratios used for preparing the starting solutions (Mg/Al 

= 3). Only in the case of LDHC60 do we obtain an Mg/Al ratio close to the desired value, which 

agrees with the other characterizations and shows again that this synthesis has the best nitrate 

removal properties. As the Mg/Al ratio increases, the electric charge density between the layers 

becomes weaker, so the interlayer spacing increases, as demonstrated in Table 1, where LDHC60 

exhibits the largest spacing [36]. 
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Fig. 6 EDX analysis of LDH materials 

 

The nitrate removal capacities in water at different times were evaluated with each of the solids 

obtained (Fig. 7). All LDH's proved to be active for removal, reaching equilibrium before 2 

hours of experiment in all cases, but with marked differences between them. On the one hand, 

the syntheses carried out at high temperatures obtained solids with greater adsorption capacity. 

On the other hand, the solid LDHc60 is the one that shows the best performance in adsorption. 

The syntheses carried out at higher temperatures, particularly the LDHc60 sample, exhibited an 

excellent degree of crystallinity in the XRD diagrams, higher interlayer spacing and specific 

surface area values, and total pore volume from the N2 isotherms. We believe these 
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characteristics give a greater capacity of adsorption to these samples synthesized at a higher 

temperature, which would justify the better removal of nitrates from an aqueous solution. These 

results agree with those previously reported by other authors [11,36,56,57]. The maximum 

capacity reached by our adsorbents was 26 mgNO3
-/g or 0.42 meq/g, similar to those obtained 

by Halajnia et al. [35] and Wan et al. [36], who reached values of 0.3 and 0.4 meq/g, 

respectively, above the 18.17 mg/g obtained by Santos et al. [54], but below of 60 mg/g reached 

by Tong et al. [58] and 46.8 mg/g obtained by Zhou et al.[59] whit a MgAl-LDH doped with Fe 

in both. Regarding removal efficiency, our maximum value was 45.9%, similar to the 45% 

obtained by Hosni and Srasra [60] but below those obtained by Ivanova et al., Silva et al., and 

Socias-Viciana et al., reaching values above 70%  [11,61,62]. It is worth mentioning that the 

nitrate removal capacity with LDH may involve an adsorption process as well as an anion 

exchange process. In this work, by calcining the samples prior to contact with nitrates, we seek 

to minimize the exchange process, although it cannot be completely ruled out. 

 

Fig. 7 Adsorption capacity of nitrate for the different LDH's 

The effect of pH on nitrate removal with the sample LDHC60 was studied, and the results can be 

seen in Figure 8. The removal capacity did not significantly vary when varying the pH from 3 to 

10. Then it decreased slightly, as other authors have mentioned[35,63]. Therefore, it is likely 

that when the pH is above 10, the high concentration of OH− in the solution competes with the 

nitrate ion. 
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Fig. 8 Adsorption capacity of nitrate at different Ph 

 

 

Fig. 9 FTIR spectra of LDH's 
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the typical bands for this type of compound [11,64,65]: The broad absorption band between 

3300-3700 cm-1 is attributed to the stretching of the OH groups present in the brucite-type 

sheets, a board peak at 1640 cm
−1

 for water bending vibrations of the interlayer water, a strong 

peak at 1360 cm−1  for NO3
− intercalated in the interlayer space and between 400-700 cm-1 

lattice stretching and bending vibrations characteristic of the hydroxyl groups attached to Al and 

Mg are observed. The band around 2350 cm−1 is due to the atmospheric background noise used 

in the measurement system [40]. In the spectrum corresponding to the calcined sample, these 

characteristic bands of the hydrotalcite-type structure are diminished or eliminated, which 

shows that the calcination process was effective. Finally, in the case of the LDH used, the 

characteristic bands of the hydrotalcite-type structure are again observed, with the band 

corresponding to adsorbed nitrate ions (1360 cm-1) clearly increased. This indicates that the 

reconstruction of the hydrotalcite-like structure occurred with the incorporation of nitrates as 

interlayer anions [60]. In addition, it can be seen that the broad band at 3500 cm-1 is bigger with 

respect to the case of the LDH fresh and calcined samples, this is due to the fact that a large 

amount of interlaminar water was adsorbed during the removal test. 

 

4 Conclusions 

In this work, different Mg-Al hydrotalcites have been successfully synthesized using the co-

precipitation method at constant pH with slight modifications in adding the reagents and in the 

synthesis and aging temperatures. Hydrotalcite properties were demonstrated to depend on the 

solution incorporation method in the synthesis. In our case, the most crystalline LDH was 

obtained when the Mg/Al solutions were added to the CO3
=/OH- solution since these conditions 

improve the crystal growth rate over the nucleation rate. In any case, the best properties for 

anion adsorption were obtained by dripping three solutions separately. This method obtains an 

LDH with greater interlaminar spacing, specific surface area, and pore volume. The same effect 

is achieved when higher temperatures are used in the synthesis and aging of the samples. 

Furthermore, all the synthesized solids showed to be active for removing nitrates in water, 

obtaining the best results with the method of three different solutions at 60 °C, demonstrating 

the crucial role of the temperature and the solution incorporation method in the synthesis in the 

interlaminar spacing and textural properties and therefore in the removal of nitrates using this 

type of compounds. 
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