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Successful pregnancy for optimal fetal growth requires adequate early
angiogenesis and remodeling of decidual spiral arterioles during placentation.
Prior to the initiation of invasion and endothelial replacement by trophoblasts,
interactions between decidual stromal cells and maternal leukocytes, such as
uterine natural killer cells and macrophages, play crucial roles in the processes of
early maternal vascularization, such as proliferation, apoptosis, migration,
differentiation, and matrix and vessel remodeling. These placental angiogenic
events are highly dependent on the coordination of several mechanisms at the
early maternal–fetal interface, and one of them is the expression and activity of
matrix metalloproteinases (MMPs) and endothelial nitric oxide synthases (NOSs).
Inadequate balances of MMPs and nitric oxide (NO) are involved in several
placentopathies and pregnancy complications. Since alcohol consumption
during gestation can affect fetal growth associated with abnormal placental
development, recently, we showed, in a mouse model, that perigestational
alcohol consumption up to organogenesis induces fetal malformations related
to deficient growth and vascular morphogenesis of the placenta at term. In this
review, we summarize the current knowledge of the early processes of maternal
vascularization that lead to the formation of the definitive placenta and the roles of
angiogenic MMP and NOS/NO mechanisms during normal and altered early
gestation in mice. Then, we propose hypothetical defective decidual cellular
and MMP and NOS/NO mechanisms involved in abnormal decidual
vascularization induced by perigestational alcohol consumption in an
experimental mouse model. This review highlights the important roles of
decidual cells and their MMP and NOS balances in the physiological and
pathophysiological early maternal angiogenesis–vascularization during
placentation in mice.
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Introduction

Maternal uterine microvascular adaptations during pregnancy
are critical for optimal intrauterine growth, fetal survival (Creeth
and John, 2020), and postnatal life. Placenta, a specialized transient
organ during pregnancy, is responsible for keeping up with fetal
nutritional demands and oxygen, molecule, and hormone
feto–maternal exchanges (Guttmacher et al., 2014; Martín-Estal
et al., 2019). During the formation of the hemochorial placenta,
de novo maternal vascularization is dependent on not only normal
development and function of trophoblast cells but also adequate
angiogenesis in decidual tissue. During decidualization, early
maternal vascularization involves physiological modification,
branching, and growth of the uterine artery to transform into
spiral arterioles (SAs). The maternal angiogenesis and remodeling
of the decidual vascular network, consisting of low-resistance vessels
to transport maternal blood with high volume flow at low velocity
and pressure, is coordinated by decidual stromal cells, including
uterine natural killer (uNK) cells and macrophages (Rätsep et al.,
2015). The initiation of SA and matrix remodeling coincides with
leukocyte infiltration and residence in the decidua. Decidual NK
cells and macrophages, of great significance in early angiogenesis
and placental development to pregnancy maintenance (Qin et al.,
2023), express relevant factors, including metalloproteinases
(MMPs) (Choudhury et al., 2019) and nitric oxide synthases
(NOSs), which are some of the most important regulatory
complex pathways of angiogenic-remodeling mechanisms of
decidual tissue during early gestation.

Imbalanced expression, activity, and release of angiogenic and
vasoactive mediators can lead to inadequate spiral artery
angiogenesis, such as low decidual vascular remodeling and
vasoconstriction of the spiral arteries during the early
placentation period, which subsequently reduce perfusion and
increase pressure in the placental feto–maternal interface
(Gyselaers, 2023). An abnormal maternal angiogenesis and
vascular function consequently can induce placental vascular
malperfusion, insufficiency, hypertension, vasculopathy, and
anatomical placental disorders, leading to gestational
complications, recurrent spontaneous abortion, preeclampsia, and
preterm labor (Reynolds et al., 2006; Khong et al., 2016; Gyselaers,
2023). Currently, placental abnormalities are associated with
perinatal fetal malnutrition, morbidity, mortality, and fetal
growth restriction (Sharma et al., 2016; Lacko et al., 2017; Perez-
Garcia et al., 2018; Woods et al., 2018) and predispose to
programming diseases in adults, such as coronary heart disease,
type 2 diabetes mellitus, hyperinsulinemia, and the risk of
developing adult-onset degenerative diseases (McMillen and
Robinson, 2005; Hanson and Gluckman, 2008).

Different reports suggest that fetal and postnatal defects induced
by alcohol use and abuse in gestation, including “fetal alcohol
spectrum disorders” (FASDs) (Gupta et al., 2016; Hoyme et al.,
2016), adulthood obesity, metabolic syndromes, and cardiovascular
disease, among many others, may be due to placental abnormalities
(Bada et al., 2005; Burd et al., 2007; Aliyu et al., 2008; 2011;
Gundogan et al., 2008; 2010; 2015; Meyer-Leu et al., 2011; Patra

et al., 2011; Salihu et al., 2011; Ramadoss and Magness, 2012; Avalos
et al., 2014; Lui et al., 2014; Zhu et al., 2015; Carter et al., 2016; Linask
and Han, 2016; Davis-Anderson et al., 2017; Tai et al., 2017; Ohira
et al., 2019; Orzabal et al., 2019; Kwan et al., 2020; Odendaal et al.,
2020). Some studies, both in human and animal models, have
focused on the effects of maternal alcohol ingestion on the
vascularization of the definitive placenta. Gestational alcohol
exposure can alter maternal systemic and reproductive
circulatory adaptations during pregnancy, affecting uteroplacental
vascular hemodynamics with induced vascular resistance, among
other gestational variables. Gestational alcohol intake produces the
“alcohol-related placental-associated syndrome” (Salihu et al., 2011)
that includes miscarriage, hypertension, preeclampsia, preterm
birth, placenta previa, placenta accreta, and placental hemorrhage
(Gundogan et al., 2010; Avalos et al., 2014; Carter et al., 2016; Tai
et al., 2017; Ohira et al., 2019; Orzabal et al., 2019; Odendaal et al.,
2020). Moreover, a high risk of placental abruption was observed
after the consumption of 7–21 drinks per week (a mean of two
drinks per day and BAC of 5–100 mg/dL) (Burd et al., 2007).
Chronic gestational alcohol in rats (37% of caloric content)
impairs the physiological remodeling of the maternal placental
vasculature (Ramadoss and Magness, 2012). Related to this, some
altered processes proposed to explain uteroplacental vascular
dysfunction following gestational alcohol consumption were the
disruption of trophoblastic function, such as inadequate or poor
differentiation, migration/invasion (Han et al., 2012), and defective
remodeling/endothelial replacement of maternal vessels by these
cells (Radek et al., 2005; Rosenberg et al., 2010; Ramadoss and
Magness, 2012b; 2012c; Subramanian et al., 2014; Orzabal et al.,
2019). Gundogan et al. (2008, 2010) reported, in an animal model,
that one major placental abnormality due to chronic gestational
ethanol exposure is the failure of maternal decidual spiral artery
remodeling by invasive trophoblasts, thus leading to altered
placental blood flow and nutrient exchange. A moderate or high
dose of ethanol intake during gestation also reduces labyrinthine
development (Gundogan et al., 2008; 2010; 2015). During the third
trimester of gestation, alcohol affects the uteroplacental vascular
function (Rosenberg et al., 2010; Subramanian et al., 2014; Orzabal
et al., 2019) by impairment of uterine spiral artery remodeling,
angiogenesis, and vasodilation (Radek et al., 2005) via altered
endothelial angiogenic gene expression (Ramadoss and Magness,
2012b; 2012c). Table 1 summarizes the present background of
altered placental vascularization and some mechanisms involved,
following gestational alcohol exposure in rat, mouse, and human
models. However, although early angiogenesis and vessel
remodeling are major contributing processes defining normal
placental circulation, at present, there are few studies examining
the earlier etiology and molecular mechanisms involved in maternal
alcohol-induced vasculopathy of the placenta in the mouse model.

However, maternal alcohol consumption is often associated with
chronic alcohol ingestion by women prior to and up to early
gestation (around 4–6 weeks after human conception). It is
common to find a high proportion of female consumers that
continue to drink moderate quantities of alcohol (200 mL/day of
wine containing ethanol 11%) up to early gestation, while being
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TABLE 1 Summary of the effects on placental vascularization produced by maternal gestational alcohol exposure.

Alcohol exposure
pattern

Ethanol exposure
values

Time of exposure Placental vascularization
effects

References

Rat model

Chronic alcohol gestational
exposure

8%–18%–24%–37% EDC Gestational days 6–16 Placental oxidative stress and
mitochondrial dysfunction

Gundogan et al. (2008, 2010),
Gundogan et al. (2015)

Incomplete maternal artery remodeling Ramadoss and Magness (2012)

Diminished placental blood flow

Placental vasoconstriction hypoxia

Altered labyrinthine layer

Disrupted spiral artery vascular muscular
layer

Impaired physiological conversion of the maternal uterine vasculature

Chronic alcohol
perigestational exposure

10%–30% v/v ethanol 1 month before and
during gestation

Decreased (52%) placental blood flow Ramadoss and Magness (2012)

Chronic alcohol gestational
exposure

4.5 g/kg dose (BAC:
216 mg/dL)

Gestational days 5–19 Impaired production and NO pathway in
uterine artery

Orzabal et al. (2019)

(daily orogastric gavage) Impaired uterine vascular remodeling

Reduced uterine artery eNOS expression
and activity

Decreased uterine vasodilation

Upregulated MMP-28, RT1-M6-2, MMP-
2, and MMP-9

Diminished uterine artery function and
altered proteome

Chronic alcohol gestational
exposure

4.5 g ethanol/kg/day Gestational days 7–17 Impaired maternal uterine artery
reactivity

Subramanian et al. (2014)

(chronic binge-like alcohol) (BAC: 216 mg/dL) Decreased uterine vasodilation

Uterine vascular dysfunction

Impairs agonist-induced uterine artery
vasodilation

Impaired acetylcholine-mediated uterine
artery vasodilation

Mouse model

Acute alcohol gestational
exposure

Two i.p. injections 3 g/kg
ethanol

Gestational days 8–8.75 Reduced late placental labyrinth Haghighi Poodeh et al. (2012)

Altered cell junctions of placental barrier

Increased permeability

VEGF upregulation in 9.5, 11.5, and
14.5 dpc-placenta

Premature permeability of placenta–yolk
and reduced VEGF

Altered permeability and malfunction of
yolk sac tissues

Chronic alcohol gestational
exposure

(BAC 110 mg/dL) Gestational days 6–18 Placental resistance Ramadoss and Magness (2012)

Abnormal vascular perfusion

Reduced NO modulation of the
mesenteric artery

Reduced maximal relaxation response to
stimulation

(Continued on following page)
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unaware that they are pregnant. In this regard, some data indicate
that approximately 47% of women drink around conception, and
15%–39% cases reported consumption of high doses of alcohol
(more than five standard drinks on one occasion) (Colvin et al.,
2007). In this context, periconceptional alcohol exposure in the
highly susceptible peri-implantatory and early organogenic periods
may be affected and can lead to placentopathy at term (Gualdoni
et al., 2022b). In view of these periods of consumption, we
established a mouse model of perigestational alcohol
consumption starting before pregnancy and continuing up to
early gestation (mouse gestational days (GD) 4, 5, 7, 8, and 10)
to study the embryo development (Cebral et al., 2007; 2011; Coll
et al., 2011; 2017; Perez-Tito et al., 2014; Gualdoni et al., 2022a). We

have shown that moderate oral ethanol intake for 2 weeks before
pregnancy and up to peri-implantational stages affect embryo
differentiation and growth and leads to retardation during
implantation (Pérez-Tito et al., 2014). In addition, PAC up to
early mouse organogenesis (day 10 of gestation) induces delayed
embryo development, reduces viability, produces dysmorphogenesis
of the neural tube, deregulates the embryonic cadherin expression
(Coll et al., 2011), alters the arachidonic acid metabolic pathways
(Cebral et al., 2007), and generates embryo oxidative stress (Coll
et al., 2017), among other effects. Nevertheless, to date, little is
known about the effects of PAC on early maternal vascularization
during placentation. Recently, we suggested that one cause of mouse
placental abnormalities found at term after PAC (Gualdoni et al.,

TABLE 1 (Continued) Summary of the effects on placental vascularization produced by maternal gestational alcohol exposure.

Alcohol exposure
pattern

Ethanol exposure
values

Time of exposure Placental vascularization
effects

References

Rat model

Human model

Chronic alcohol gestational
exposure

20 g ethanol/day During early gestation Diminished placental vascular density Holbrook et al. (2019)

(~10 standard drinks/week) Decreased KDR expression in placenta at
term

Semi-chronic alcohol
gestational exposure

<1.5 or +1.5 drinks/week Until the second/third
trimester

Placental abnormality and altered NO Ohira et al. (2019)

(Standard drink = 14 g
ethanol)

Placenta accreta

(Drinking frequency: <3 or 3+ days/week)

Chronic alcohol gestational
exposure

Altered maternal uterine artery
transcriptome

Ramadoss and Magness (2012)

Altered transcription of proteases/matrix
proteins

Altered uterine vascular remodeling

Altered uterine angiogenic mRNA
transcriptome

Chronic alcohol gestational
exposure

Moderate–high
concentrations

Along gestation Impaired blood flow/artery vasodilatation Burd and Hofer (2008)

Abnormal nutrient transport

Umbilical cord vasoconstriction

Chronic alcohol gestational
exposure

Average of 200–250 mL
ethanol/trimester

Along gestation Altered contractility of the umbilical cord
artery

Iveli et al. (2007)

Altered vasculature, uteroplacental malperfusion, and resistance

Inhibition of NO release and prostacyclin

Chronic–semi-chronic
alcohol gestational

Heavy, moderate, and/or light 2nd, 3rd, 1st + 3rd or Uteroplacental malperfusion and
hypoplasia

Tai y col. 2017

drinking 2nd + 3rd trimesters Premature delivery, IUGR

Acute alcohol gestational
exposure

Eight drinks (one binge-
heavy)

1.5 days/week during
gestation

Decreased placental growth Carter et al. (2016)

Chronic alcohol gestational
exposure

Two drinks (wine)/day Along gestation Placental abruption, IUGR Burd et al. (2007)

(18–30 g ethanol/day) Abnormal fetus

(BAC 5–100 mg/dL)

The ethanol values are given in g, % intake, BAC, % EDC, drinks. i. p.: intraperitoneal; EDC: ethanol-derived calorie; IUGR: intrauterine growth restriction; BAC: blood alcohol concentration.
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2022b) may be associated with alterations in decidual and
trophoblast tissue development during exposure up to
organogenesis (Coll et al., 2018; Ventureira et al., 2019; Gualdoni
et al., 2021). Apart from imbalances in the endothelial vascular
endothelial growth factor (VEGF) system, defects in MMP and NOS
expression/activity and levels of NO may also partially explain the
early abnormal placentation (Gualdoni et al., 2021). However, at
present, there is little evidence, in animal models, of the deleterious
effects of maternal alcohol exposure on early decidual
angiogenesis–vascularization and the involvement of MMP and
NOS/NO factors as mechanisms responsible for triggering late-
stage placental abnormalities.

Considering the background and importance of early maternal
vascularization of the placenta for optimal fetal growth and
maintenance and successful pregnancy at term, and subsequent
life course, in this review, we first overview the current knowledge of
early decidual vascular angiogenesis and remodeling involved in
normal and abnormal mouse early placentation, focusing on the
roles of MMP and NOS/NO systems. Then, we propose hypothetical
altered decidual cellular and MMP and NOS/NO mechanisms
involved in early maternal abnormal vascularization of the
placenta in a PAC experimental mouse model. Overall, this
review highlights the importance of adequate early gestational
balances of decidual cells and MMPs and NO in the physiology
and pathophysiology of maternal vascular development during
placentation.

Metalloproteinases and nitric oxide as
angiogenic placental mechanisms

During the early period of mouse pregnancy, decidual
capillaries and arterioles develop by angiogenesis, the process of
new blood vessel formation and growth from pre-existing vessels.
Angiogenesis involves 1) the expression of angiogenic factors, 2)
vascular growth stimulation by hypoxia, 3) secretion of essential
proteases for tissue remodeling, 4) migration of endothelial cells,
and 5) appropriate proliferation of endothelial cells to secure the
outgrowth of a new vessel. Disruption of the balance between
angiogenic factors and their inhibitors may result in early
miscarriage or, alternatively, defective placentation, thereby
increasing the risk of pregnancy-related disorders.

The processes of neovascularization require the response to a
complex paracrine network of factors (Adams and Alitalo, 2007;
Bryan and D’Amore, 2007; HellstromM et al., 2007), of which one of
the most important is the expression and activation of the VEGF
system that involves in a proper gradient necessary to stimulate
sprouting and branching of maternal vessels (Bautch, 2012;
Gualdoni et al., 2022b). Imbalances of the VEGF lead to aberrant
placental vascular morphogenesis (Roberts and Escudero, 2012; Li
et al., 2014).

In arteriolar vascular smooth muscle and periendothelial cells of
capillaries, the VEGF can act through three receptors: VEGF-R1
(FLT-1), VEGF-R2 (KDR/Flk-1), and VEGF-R3 (FLT-3). The main
physiological VEGF effects are via the activation of KDR (Chung
and Ferrara, 2011), which induces downstream activation of
signaling cascades that stimulate the production of at least
11 angiogenic factors (Lima et al., 2014; Apte et al., 2019),

including the placental angiogenic MMP and eNOS regulators
(Kimura and Esumi, 2003).

MMPs are multigenic proteolytic zinc-dependent enzymes
composed of six classes: collagenases, gelatinases, stromelysins,
matrilysins, and membrane-type MMPs, among others (Amălinei
et al., 2007; Cui et al., 2017; Henriet and Emonard, 2019). The
expressions of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-
9, MMP-10, MMP-13, and MMP-19 are increased by the activation
of the VEGF system (Chen and Khalil, 2017). VEGF-KDR activation
upregulates MMP-2 and MMP-9 expressions in human umbilical
vein endothelial cells (Heo et al., 2010), and FLT-1 can modulate
KDR to regulate the expression of MMP-9 to prevent excessive
angiogenesis (Wang and Keiser, 1998). MMPs, secreted as
zymogens, are strictly controlled at transcription, secretion, and
activation/inhibition levels by exogenous and endogenous factors,
such as cytokines, growth factors, hormones, their inhibitors (tissue
inhibitors of metalloproteinases (TIMP), oxidative stress,
phosphorylation, hypoxia-re-oxygenation, transcription factors,
and others (Nuttall et al., 2004; Amălinei et al., 2007; Jacob-
Ferreira and Schulz, 2013; Cui et al., 2017). Activation of MMP-2
can occur by non-proteolytic post-translational modifications of the
full-length zymogen, by S-glutathiolation, S-nitrosylation, and
phosphorylation (Jacob-Ferreira and Schulz, 2013). Post-
translational activation of latent forms of MMPs is generally
processed in the extracellular compartment (Henriet and
Emonard, 2019). Three tissue inhibitors for MMP (TIMP-1,
TIMP-2, and TIMP-3) regulate MMP activity. TIMP-1 forms
complexes specifically with MMP-9 and TIMP-2 is involved in
the regulation of MMP-2 activity. Interestingly, TIMP-3 supports
the activation of MMP-2 via membrane-type MMP, as well as
inhibition (Alexander et al., 1996). On the other hand, TGFβ1,
expressed in the mouse endometrium during implantation and
decidualization, has a potential role in the regulation of MMP-9
gene expression (Bany et al., 2000).

MMPs have multiple roles, such as tissue and extracellular
matrix (ECM) remodeling, proliferation, apoptosis, migration,
differentiation, invasion (Hamutoğlu et al., 2020), cell–matrix and
cell–cell interactions, and activation or inactivation of autocrine or
paracrine signaling molecules (Amălinei et al., 2007). In addition,
proteolysis of the ECM could release matrix-bound growth factors
and their receptors. MMPs can directly activate growth factors, and
MMP-1, MMP-2, MMP-3, MMP-7, and MMP-9 activate TNFα
(Hulboy et al., 1997).

Placental hemodynamics and adaptations require extensive
structural and functional modifications in the maternal blood
vessels of the placenta. In normal pregnancy, remodeling of
maternal vessels needs secretion of MMPs by trophoblast and
decidual stromal cells to mediate proteolysis and degradation,
vascular and matrix remodeling, and angiogenesis (Staun-Ram
et al., 2004; Gualdoni et al., 2022; Rusidzé et al., 2023). Through
their proteolytic activity, MMPs may mediate detachment of
pericytes from the vessels, release ECM-bound angiogenic growth
factors, expose cryptic proangiogenic integrin-binding sites in the
ECM, generate promigratory ECM component fragments, and
cleave endothelial cell–cell adhesions (Rundhaug, 2005). The
most important gelatinases with a preponderant role in maternal
tissue remodeling, degradation of the basement membrane and
ECM (Cui et al., 2017), vasodilatation, and uterine expansion
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during normal pregnancy in humans and mice are MMP-2 and
MMP-9 (Staun-Ram et al., 2004; Fontana et al., 2012; Chen and
Khalil, 2017). Specifically, MMP-9, which degrades type IV, V, and
IX collagens, gelatin, and elastin, is involved in numerous processes,
including implantation, placentation, and embryogenesis (Silvia and
Serakides, 2016; Espino et al., 2017; Quintero-Fabián et al., 2019;
Timokhina et al., 2020). MMP-9 has been shown to be involved in
endometrial remodeling in mouse invasion of trophoblasts (Zhang
et al., 2020), development of mouse decidua, vascularization of the
implantation site during early organogenesis (Fontana et al., 2012;
Gualdoni et al., 2021), and remodeling of the feto–maternal interface
during advanced stages of mouse placentation (Rusidzé et al., 2023).
However, little has been reported about the localization, expression,
and activation ofMMP-2 and -9 in the early mouse implantation site
prior to the formation of the placenta. In mice, by GD6 and GD8,
MMP-9 immunoreactivity was found mainly in the antimesometrial
non-decidualized endometrium and in trophoblast giant cells
(Alexander et al., 1996). However, deciduomas, in the absence of
trophoblast cells, were shown to contain the same level of MMP-9
activity as decidua (Bany et al., 2000), suggesting that this protease
can be present in decidua derived from other than decidual cells.
Moreover, maternal expression of MMP-9 was demonstrated to be
increased in the uterus during decidualization and in cultured
mouse endometrial stromal cells from uteri sensitized for
decidualization. At mid-gestation, MMP-9 transcripts and protein
were found in trophoblast cells (Teesalu et al., 1999; Gualdoni et al.,
2021), stromal cells, and the ECM of mesometrial decidua (Fontana
et al., 2012), suggesting its role in the angiogenesis of maternal tissue
during mouse organogenesis. On the other hand, at mouse
gestational day 6, MMP-2 is expressed and activated in the
endometrium (Alexander et al., 1996; Bany et al., 2000); by day
8, it was detected in stromal cells at the mesometrial pole of the
mouse implantation site and also in the area of the primary
trophoblast giant cells, while from mouse mid-pregnancy
(GD10), MMP-2 was expressed in trophoblast and decidual
tissue (Teesalu et al., 1999; Heo et al., 2010; Gualdoni et al., 2021).

Altered MMP-2 and MMP-9 expression/activity could lead to the
release of inflammatory cytokines, hypoxia-inducible factor, and
reactive oxygen species, which may target the ECM and endothelial
and vascular smooth muscle cells, causing inadequate remodeling of
spiral arteries, generalized vascular dysfunction, increased
vasoconstriction, and placental ischemia, in turn contributing to the
pathogenesis of abnormal gestational outcome, such as premature birth,
hypertension, and complications of pregnancy (Jacob-Ferreira and
Schulz, 2013; Chen et al., 2020). Particularly, MMP-9 deficiency in
homozygous MMP-9 knockout mice was associated with reduced and
abnormal development of ectoplacental cones at GD 7.5, with impaired
trophoblast differentiation and reduced invasion (Plaks et al., 2013).
Also, in MMP-9 null mice, MMP-9 deficiency was associated with a
decrease in the number of pregnancies and a reduction in litter size
(Dubois et al., 1999; Dubois et al., 2000).

Nitric oxide, the other relevant angiogenic–vasoactive factor, is
produced by the oxidation of L-arginine catalyzed by three NOS
enzyme isoforms: neuronal (nNOS or NOS1), inducible (iNOS or
NOS2), and endothelial (eNOS or NOS3) (Hefler et al., 2001;
Förstermann and Sessa, 2012; Qian and Fulton, 2013). The
nNOS and eNOS isoforms are frequently expressed constitutively,
and their activities are regulated by calcium availability, whereas

iNOS is independent of the intracellular calcium concentration and
generates a high flow of NO (Förstermann and Sessa, 2012; Eelen
et al., 2017). nNOS and iNOS are predominantly cytosolic, whereas
eNOS can be either cytosolic or localized in membrane caveolae of
endothelial cells (Eelen et al., 2017). In normal pregnancy, regulated
by the VEGF by increasing the endothelial calcium signaling, eNOS
is the most relevant enzyme in NO production (Moncada and Higgs,
2006). Additionally, endothelial shear stress, produced by flowing
blood, can stimulate endothelial NO release and increase endothelial
intracellular free Ca2+ concentration (Vanhoutte et al., 2016). Under
basal conditions, iNOS is normally not expressed. However,
different stimuli, including immunologic and inflammatory cues,
can induce iNOS expression in various cell types under changes in
the cellular environment (Eelen et al., 2017).

Endothelial NO, acting on vascular smooth muscle cells
(VSMCs), is a major local regulator of vasodilatation and blood
flow (Chen and Khalil, 2017). In the endothelium, the primary
function of NO is to relax vascular smooth muscle tissue and
regulate arterial blood pressure (Waker et al., 2023). However,
NO also plays roles in angiogenesis, such as endothelial cell (EC)
migration, control of microvascular volume, vascular permeability,
platelet aggregation, and thrombosis (Krause et al., 2011; Aban et al.,
2013). During gestational vascularization, new EC function depends
on NO release from pre-existing ones, while the vascular smooth
muscle responds to released NO levels paracrinally (Esper et al.,
2006). Under controlling by oxygen tension, hormones, and
oxidative stress, among others, NO supports placental
vascularization (Krause et al., 2011) to maintain vascular
vasodilatation and low vascular resistance (Boeldt et al., 2011)
and to attenuate the effects of vasoconstrictors at the
feto–placental interface (Possomato-Vieira and Khalil, 2016).

Relevant balance and gradual increase of the levels of NO are
needed for normal gestation, as demonstrated in eNOS knockout
mice, where the spiral artery remodeling was dysregulated, the
labyrinth was reduced, and uteroplacental hypoxia was induced
(Kulandavelu et al., 2012; Kusinski et al., 2012; Walker et al., 2023).

Brief overview of early maternal
vascularization during mouse placentation

The mouse placenta contains three main layers: the maternal
component of the decidua, the fetal-derived junctional zone (JZ),
and the labyrinth (Lab). The decidua, playing a major role in
placental development, is derived from decidualization of uterine
endometrial stroma. The JZ is composed of glycogen trophoblast
cells (GlyTs), spongiotrophoblast cells (SpTs), and parietal
trophoblast giant cells (P-TGCs) (Simmons et al., 2007). The
placental labyrinth consists of an anastomosing network of
interdigitated maternal blood sinusoids and fetal capillaries
(Rusidzé et al., 2023). To establish the definitive placenta, two
vascular systems are crucial to develop sequentially during mouse
placentation: the maternal vasculature, consisting mainly of decidual
spiral arteries, and the labyrinth (Woods et al., 2018). For achieving
normal and adequate vascularization and normal labyrinthine
formation in the definitive placenta, important changes must
operate in the development of the maternal circulatory system
during early pregnancy (Torry et al., 2007).
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To meet the needs of the growing embryo and maximize
placental perfusion and maintenance of efficient maternal and
fetal exchange, maternal vessels are transformed into large-caliber
ones in a process called spiral artery remodeling, which results in
decreased maternal vascular resistance (Prefumo et al., 2004; Mu
and Adamson, 2006) and increased placental vascular diameter and
elasticity (Mu and Adamson, 2006; Burton et al., 2009). In early
gestation, for normal maternal vascularization, complex angiogenic
processes of remodeling take place in decidual tissue by which the
uterine spiral arteries extend, branch, lose the muscular layer, and
remodel to become dilated (Mandala and Osol, 2011; Brosens et al.,
2019). In mice, similar to humans (Smith et al., 2009), angiogenesis-
remodeling of maternal vasculature may occur in two phases: the
trophoblast-independent phase during early gestation, where
maternal angiogenesis depends on cells of the decidua; and the
trophoblast-dependent phase, occurring during the development of
the definitive placenta, from around mouse mid-gestation (GD
10.5–11), when trophoblasts, in coordination with decidual cells,
play a major role in completing the remodeling of maternal decidual
vessels at the JZ (Cross et al., 2002; Rai and Cross, 2014; Rusidzé
et al., 2023).

Although the process of SA remodeling by trophoblast cells in
mouse mid-gestation is described very well (Rusidzé et al., 2023), to
date, little emphasis has been given in the literature to the maternal
decidual tissue and spiral arteriole remodeling and angiogenesis in
the decidua earlier in the mouse implantation site. To provide
insight into early maternal vascularization, we next summarize
the main events of decidual angiogenesis, with emphasis on the
first phase of SA remodeling.

Trophoblast-independent phase ofmaternal
angiogenesis–vascularization

In mice, the maternal vascular tree originates from the uterine
artery, which branches into radial arteries and then into spiral
arterioles (SAs). Early, in GD 7–7.5, on the mesometrial side of
the mouse implantation site, uterine radial arteries are detected in
the myometrium, from where they begin to branch into the arcuate
arteries and into radial arteries in the distal region of decidua of the
implantation site (Figure 1A). At GD 8–8.5, several spiral arterioles
(SAs) exhibit a narrow lumen, indicating their low development at
this stage (Figure 1B). At mid-gestation (GD 10–11), branched and
dilated SAs form a very dense capillary plexus and maternal blood
lacunae at the mesometrial decidua (Cross et al., 2002; Ventureira
et al., 2019), which converge at the junctional zone, to be then
remodeled completely by trophoblastic cells and form maternal
sinusoidal lacunae surrounded by trophoblastic tissues in the new
placenta (Croy et al., 2013) (Figure 1C).

Prior to the establishment of the functional mouse
choriovitelline placenta (Mu and Adamson, 2006), and previous
to maternal vascular remodeling by trophoblast cells at the
feto–maternal interface, angiogenesis of maternal vessels is
mediated by stromal and immune cells of decidual tissue through
the promotion of many decidual growth and vasoactive factors,
cytokines, and others (Croy et al., 2003; 2009; 2012; Ramathal et al.,
2010). This early trophoblast-independent phase of remodeling is
characterized by the onset of decidualization and leukocyte

infiltration of the spiral artery wall, MMP secretion, disruption of
the VMSC layer, and vascular cell detachment and loss.

To achieve normal maternal vascularization at the mesometrial
side of the mouse implantation site, decidualization of the uterine
endometrium is the first important event that should occur. Mouse
decidualization begins immediately following implantation, when
the antimesometrial endometrial fibroblast cells start to proliferate
and differentiate into the large epithelioid, binucleated decidual cells
(GD 6–6.5), to form the primary decidual zone. This densely packed
avascular decidua grows dramatically and extends toward the
mesometrial compartment of the implantation site (GD 7.5) (Dey
et al., 2004; Wang et al., 2004), while the extracellular matrix of the
endometrial stroma is remodeled, including modifications in
collagen fibril distribution, structure, and thickness (Carbone
et al., 2006). Decidualization is an important event to
immediately prepare the maternal tissue for angiogenic processes
to occur properly.

At an early stage, at GD7 (Figure 1A), the unremodeled intact
maternal vessels (Figure 1A Step 1) respond to the hypoxia state and
several EC- and decidual stromal cell-secreting angiogenic gradient
of factors (Distler et al., 2003; Valdes et al., 2008; Blois et al., 2011;
Zhang et al., 2011; Lima et al., 2014; Grochot-Przeczek et al., 2015;
Sojka et al., 2019). From this stage of gestation and further, the main
steps of decidual angiogenesis–vascularization involve 1) vessel
destabilization, consisting of detachment and removal of the
arterial wall, de-differentiation of VMSCs, and ECM remodeling
by MMPs, which promotes the release of growth factors (bFGF,
VEGF, and IGF-1) sequestered in the ECM. Also, enzymatic
degradation of the endothelial basement membrane and pericyte
cell and EC detachment can be attributable to MMP actions.
Vascular permeability begins to increase in response to hypoxia-
stimulation of the VEGF, directing the associated expression of NOS
and subsequent increment of NO and then allowing extravasation of
plasma proteins that lay down a provisional scaffold for migrating
endothelial cells (Figure 1B; Figure 1 Step 2). 2) Vascular sprouting
involves EC detachment, ECM remodeling by MMPs, CE migration
induced by loosening interendothelial cell contacts and mechanical
stress, CE proliferation in the ECM (Lamalice et al., 2007) induced
by VEGF-A, and increase of permeability and extravasation of
maternal blood, directed by NO (Figure 1B; Figure 1 Step 3). 3)
Tubulogenesis consists of EC and pericyte recruitment and adhesion
into new vessels; basement membrane formation; ECM remodeling;
and EC differentiation and adhesion (Figure 1 Step 4).
Tubulogenesis implies SA branching, elongation, anastomosis,
vessel looping, and vasodilatation, processes that yield large
luminal extensions of maternal decidual vessels at the lateral side
of the mouse implantation site already to GD 10 (Figure 1C;
Figure 1 Step 4).

Particularly, the VSMC remodeling of SA is a crucial process
necessary to reduce arterial contractility, increase the luminal
dilation, and transform spiral arterioles into thin-walled vessels
with high capacitance and low resistance, thus to establish
undisturbed blood flow toward the incipient placenta (Elia et al.,
2011). In the process of smooth muscle wall remodeling, at mouse
GD 7.5, undilated mesometrial distal decidual SA possesses a thick
layer of VSMCs, but from GD 8–8.5, this muscular SA coat becomes
loose and is almost undetectable in proximal decidua at GD 10.5–11
(Zhang et al., 2008; 2011). Therefore, recently, in mouse
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implantation site GD 10, we detected α-SMA-positive cells in SAs in
the distal mesometrial decidua, but in the proximal one, near the
trophoblastic layer, a negative reactivity for α-SMA in maternal
vessels was observed (Ventureira et al., 2019).

During early pregnancy, both in humans and mice,
decidual stromal cells and maternal leukocytes, located
surrounding the vessels, acquire relevance in the regulation
of maternal angiogenesis–vascularization and SA remodeling
for preparation of maternal vessels via the expression of
apoptotic molecules, endothelial cell mitogens, and
proangiogenic and vasoactive factors (Whiteside et al., 2001;
Das, 2009; 2010; Croy et al. 2011; Chambers et al., 2021). In the
early mouse implantation site, decidual leukocytes comprise
30% of decidual stromal cells, and uNK cells constitute 70% of
these leukocytes (Erlebacher 2013), while
macrophages account for 20%. Regulatory T-cells and
dendritic cells are also present in low numbers and are most

involved in the immune tolerance of the semiallogeneic
placenta and fetus.

In normal mouse pregnancy, precursors of uNK cells are
found in the uterus from postnatal week 2 (Croy et al., 2009).
They remain as small, agranular lymphocytes until blastocyst
implantation and decidualization (GD 4.5) (Ashkar et al., 2003;
Croy et al., 2003; 2006). There is a marked increase in uNK cells
with the onset of decidualization (Sojka et al., 2019). Between GD
6-7, uNKs begin to proliferate rapidly and acquire cytoplasmic
granules; however, at GD 7-7.5, the self-renewing uNK
progenitor cells are also reported to be trafficked from
primary and secondary lymphoid organs to the endometrium,
where they rapidly proliferate (Chantakru et al., 2002). During
normal early vascular remodeling, between GD 8.5 and GD 10.5,
10% of large, heavily granulated uNK cells are within lumens of
decidual vessels, particularly small capillaries, about 25% of uNK
cells are embedded within arterial walls, and the remainder

FIGURE 1
Diagrams of early decidual vascularization in the mouse implantation site. In the mouse implantation site (IS) of GD 7, the mesometrial uterine artery
(Ua) crosses the myometrium (My), reaches the endometrium (End), and branches in maternal arterioles (ma) in the distal mesometrial decidua (dMD),
where few uNKs andmacrophages can be found (A). At GD 8–8.5, angiogenesis-remodeling leads to increase in the lumen of decidual SAs (arrow) at the
lateral sides of mesometrial decidua with respect to the center of the uterine lumen (UL) and ectoplacental cone (EPC). uNKs and macrophages
increase in number in MD (B). By GD 10–11.5, ramified, dilated, and partially remodeled SAs, seen at lateral regions of the proximal mesometrial decidua
(pMD), converge at the JZ, forming sinusoidal maternal lacunae that will have contact with the Lab. At this stage, peak uNKs are observed in the pMD. The
decidual SA-angiogenesis and remodeling involve several steps (numbered inserts in the upper diagrams of ISs are shown in the bottom panels). The
unremodeled SAs are characterized by an intact typical wall with pericytes and VSMCs and ECs [A, step (1)]. In dMD, uNKs and macrophages begin to
secrete angiogenic factors around the SAs, inducing maternal vessel destabilization and leading to the separation of VSMCs and pericytes, basement
membrane rupture, permeability, ECM remodeling, and disruption of CE junctions [B, step (2)]. At the pMD, sprouting angiogenic events consist of EC
migration and proliferation, VSMC remodeling, increased permeability, and maternal blood extravasation [B, step (3)]. At GD10–11.5 (C), tubulogenesis in
the pMD involves EC recruitment, EC adhesion and fusion, basement membrane formation, ECM remodeling, and SA elongation and ramification,
yielding to vessels with large luminal extensions at the lateral side of IS [C, step (4)]. The SAs arrive at the JZ partially remodeled (without or with few
VSMCs), where invasive JZ trophoblasts, derived from spongiotrophoblast (spg), cause apoptosis of maternal EC to eventually replace the maternal
endothelium and to form a pseudo-endothelium lined by trophoblastic cells. Trophoblasts, uNKs, andmacrophages establish a crosstalk that plays a role
via the expression of VEGF, MMPs, NOS, and other factors, in the definitive SA remodeling in the placenta (AMD: antimesometrial decidua).
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associate with decidual stromal cells (van den Heuvel et al., 2005;
Zhang et al., 2011; Ventureira et al., 2019). At the mouse mid-
gestation period, uNKs achieve peak numbers and then gradually
decline in number (Zhang et al., 2009). Thus, in mice, uNKs
initiate SA remodeling (Kulandavelu et al. 2012), similarly as in
human pregnancy (Robson et al., 2012), by decreasing the arterial
wall SA-thickness and increasing vessel lumen diameter
(Chakraborty et al., 2011; Harris et al., 2019; Sojka et al., 2019).

Uterine NKs promote angiogenesis by the expression of
IFN-γ (Zang et al., 2011; Harris et al., 2019; Sojka et al., 2019),
placental growth factor (PLGF), VEGF (Zang et al., 2011),
TGFβ1, MMPs (Naruse et al., 2009), TGFβ-1, inducible nitric
oxide synthase (iNOS) (Wang et al., 2003; Croy et al., 2006;
Tayade et al., 2007), type 1 and type 2 receptors for angiotensin
II, and NOS (Zang et al., 2011). Particularly, ECM remodeling
and EC migration are attributed to MMP-2 and MMP-9 from
uNKs localized around maternal blood vessels (Lima et al.,
2014).

In pregnancy diseases and complications, failures in SA
remodeling are associated with altered uNK cell number,
activation, and signaling, which lead to decidual thickening,

low maternal vascularization, and undilated hypertrophied
spiral arteries with smooth muscle coats (Ashkar et al., 2000;
Ventureira et al., 2019). Implantation sites deficient in uNK cells
have anomalous features, diminished pruning of vessels, and
poor development of lateral decidual sinuses (Lima et al., 2014).
In the absence of uNK cells, the onset and progression of
angiogenesis are delayed, leading to decreased oxygen tension,
a hypoxia state that affects the trophoblast differentiation/
invasive phenotype in mice (Chakraborty et al., 2011).

Decidual macrophages constitute about 10% of total uterine cells
in the mouse and account for about 20%–25% of the leukocytes, a
cell number that remains steady throughout the whole gestation
(Chambers et al., 2021). They originate in immature monocytes
released from the bone marrow into the bloodstream and are
recruited to antimesometrial decidua by chemokines after
circulating in the blood, where they differentiate into macrophages.

Macrophages are generally categorized into two subsets of
polarization phenotypes, according to their cell surface markers
and Th1/Th2 immune response of proinflammation or anti-
inflammation properties: M1 macrophages, with proinflammatory
responses, participate in apoptotic cell clearance and tissue

FIGURE 2
Hypothetical mechanisms of early maternal vascular disruption and altered MMP–NO pathways induced by perigestational alcohol consumption in
an experimental mouse model. After PAC, alcohol directly impacts decidual tissue and maternal vasculature, producing OS (1), by which uNKs are
diminished (2). In consequence, uNK–VEGF production is also reduced (3). Alcohol and OS induce low KDR expression and KDR activation
(phosphorylated pKDR), which conduces to eNOS activation in endothelial cells (CE) and decidual cells (4), producing high levels of NO that
enhances OS (5). Thus, bioavailability of NO is reduced in maternal vasculature (6) after PAC, perhaps leading to reduced proliferation and angiogenesis
and decidual artery vasoconstriction. PAC-induced OS can be involved in macrophage phenotype change, increasing the inflammatory ratio M1/M2 (7)
disrupting the expression (exp) and activity of MMPs (8). In parallel, alcohol and OS may induce increase of lymphocytes (8), which release high levels of
proinflammatory cytokines (9) that enhance the balance of M1/M2macrophages in the decidua (7). Proinflamatory macrophages may activate iNOS (10)
yielding to increase NO (11). High NO enhances OS and apoptosis in maternal vasculature. Altered macrophagic MMPs and NO contribute to abnormal
ECM and CE remodeling, leading to defective decidual vascularization. While there are not differences between normal and abnormal decidual
vasculature in non-decidualized endometrium (A, B), in the distal mesometrial decidua (dMD), the abnormal vasculature (D), associated to PAC, consist
onmaternal vessels with uncompleted remodelled vascular smoothmuscle (VSM) cells in the vascular wall (black arrows) and less numbers of endothelial
cells (EC), compared to the normal maternal vessel (C) in control condition. Then, in proximal mesometrial decidua (pMD), abnormal maternal vessels
exposed to PAC have unremodelled VSM (arrows), disrupted endothelium and increased free EC apoptosis into the lumen, and reducedmaternal vascular
expansion (F) compared to normal pMD-vasculature (E) which spiral arteries are completely remodelled, expanded and ramified. Overall, disrupted SA
angiogenesis in early decidua may result in insufficient maternal artery transformation and subsequent abnormal trophoblast-endothelial replacement
and later altered placenta (12).
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remodeling (Sun et al., 2021), and M2 macrophages, with
anti-inflammatory responses, sustain immune homeostasis and
immunosuppression at the maternal–fetal interface (Nagamatsu
and Schust, 2010). Differential metabolism of the amino acid
arginine might also contribute to M1/M2 classification. Human
and mouse decidual M1 macrophages are the products of the iNOS
pathway in which arginine is converted to citrulline and nitric oxide
(NO), enhancing cytotoxicity (Kong et al., 2015; Li et al., 2017),
whereas M2 macrophages utilize the arginase pathway for the
hydrolysis of arginine into urea and ornithine, which is
important for cell proliferation and tissue repair (Neri et al.,
1996). During peri-implantation, macrophages polarize into
M1 macrophages to prepare for pregnancy, in response to
chemokines secreted by decidual stromal cells (Yao et al., 2019),
but a shift toward a more immune tolerant environment must occur
for the pregnancy to continue, and increase of M2 begins (Ning
et al., 2016). This change produces a mixed profile of M1/
M2 macrophages that remains until mid-pregnancy, when the
trophoblast invasion occurs in order to prevent fetal rejection
(Jaiswal et al., 2012). Thereafter, a new shift toward a
predominantly M2 phenotype occurs for extensive remodeling of
the uterine vasculature (Hunt et al., 1984). Thus, both decidual
proinflammatory and anti-inflammatory macrophage subsets
contribute to the inflammatory balance during early gestation to
maintain immune homeostasis at the maternal–fetal interface.

During the trophoblast-independent phase, decidual
macrophages are clustered around spiral arteries at the site of
implantation, highlighting their roles in decidual spiral artery
angiogenesis, including ECM and SA remodeling. In humans, it
was suggested that apoptosis of VSMCs within the remodeling
vascular wall did not occur in situ. Instead of inducing VSMC
apoptosis, macrophages mainly participate in phagocytosing
apoptotic VSMCs that migrated into the surrounding stroma,
where apoptosis occurs. As the disruption of VSMCs increases,
the denser infiltration of decidual macrophages can be detected (Yao
et al., 2019; Chambers et al., 2021; Sun et al., 2021).

Macrophages upregulate the expression of proangiogenic
genes associated with extracellular matrix remodeling and
endothelial proliferation, migration, tube formation, lumen,
and branching (Yao et al., 2019). Decidual macrophages
secrete the VEGF, placental growth factor (PlGF), and their
receptors fms-like tyrosine kinase (Flt-1) (Yao et al., 2019),
several cytokines, and MMPs, especially MMP-1, -2, -7, -9,
and -10 (Choudhury et al., 2019; Harris et al., 2019). MMP-2
and -9 can alter chemokine bioactivity and induce leukocyte
migration, and MMP-7 and -9 are critical in endometrial
remodeling and enhancing trophoblast invasion (Chambers
et al., 2021; Sun et al., 2021).

Altered maternal environment, oxidative stress, and cytokines
can change the balance of M1/M2-type decidual macrophages and
induce the secretion of anti-angiogenic factors (Li et al., 2017).

Overall, in healthy pregnancies, uNKs and macrophages are
balanced toward an immunoregulatory phenotype, leading to
adequate SA remodeling. Abnormal decidual macrophage
number and lower levels of uNKs have been associated with
impaired placental growth and malfunctioning in humans (Eide
et al., 2006), IUGR (Williams et al., 2009), and pregnancy
complications (Bezemer et al., 2020).

Second trophoblast-dependent phase of
maternal vascularization

The trophoblast-dependent phase is characterized by further
VSMC separation and migration, loss of endothelial cells, fibrinoid
deposition, and appearance of trophoblasts in both maternal lumen
and vessels. At mouse mid-gestation, twomain processes of decidual
tissue and SA remodeling and reorganization occur at the
decidual–trophoblast interface, depending on trophoblast actions
(Rusidzé et al., 2023). One process is the interstitial trophoblast
invasion into the decidual stroma, and the other involves the
endovascular trophoblast invasion of the spiral arteries (Cross
et al., 2002; Croy et al., 2012).

In the mouse implantation site GD 10–10.5, once the
chorioallantoic placenta is established with the labyrinthine fetal
vascular formation (Watson and Cross, 2005; Hu and Cross, 2010;
Rai and Cross, 2014; Woods et al., 2018), continuous differentiation
of P-TGCs and spongiotrophoblast cells takes place at the junctional
zone (Cowden et al., 2005; Maltepe et al., 2005; Takeda et al., 2006;
Soares et al., 2017; Gualdoni et al., 2021). From around GD 10.5–11,
new differentiated trophoblasts begin major remodeling of the
maternal SA and decidual stroma by interstitial invasion (Hu and
Cross, 2010) at the decidual–trophoblastic interface (Figures 1.C, 1
step 4). To modify the composition of the decidual ECM and induce
the degradation of the SA-basal membrane, both invasive P-TGC
and GlyT cells secrete several MMPs (Whiteside et al., 2001; Harris,
2010; Varberg and Soares, 2021), thus actioning on SA-
modifications proper of maternal vascular remodeling depending
on trophoblast cells. From around mouse GD 11–11.5, SAs become
invaded endovascularly and remodeled by invasive and migratory
junctional spiral artery-associated trophoblast giant cells (SpA-
TGCs) (Rossant and Cross, 2001; Adamson et al., 2002). Thus,
SpA-TGCs infiltrate, degrade the SA basement membrane, induce
endothelial apoptosis, and replace maternal endothelial cells by
secretion of high amounts of MMPs (Whiteside et al., 2001).
These processes, which allow maternal lacunae to become limited
by trophoblastic cells acquiring a pseudoendothelial phenotype,
result in the distension of arterial blood flow arriving at the JZ
(Rai and Cross, 2014). However, in the mouse mid-gestation period,
since this trophoblast endovascular invasion of SA is normally
shallow compared to the human one, uNKs and macrophages
may also play a role in completed SA remodeling through their
MMP and NOS expressions (Moffet-King 2002; Huhn et al., 2021).

MMP—NO pathways in abnormal early
deciduous vascularization after
perigestational alcohol consumption in an
experimental mouse model

Gestational alcohol consumption can produce vascular
resistance, vasodilation, and reduced blood flow in the placenta
(Burd and Hofer, 2008; Ramadoss and Magness, 2012a). However,
at present, little evidence suggests that perigestational alcohol
consumption (PAC) up to early gestation induces abnormal
placentation and leads to deficient growth and vasculopathy of
the placenta at term. Reduced growth and malformed embryos
(Gualdoni et al., 2021) or abnormal fetuses at term
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(Gualdoni et al., 2022a), induced by perigestational alcohol exposure
up to organogenesis, were associated with altered placental indexes.
Some studies in animal models explain the PAC-induced effects on
the placenta by alterations in trophoblastic development and
functionality (Gårdebjer et al., 2014; Kalisch-Smith and Moritz,
2017; Kalisch-Smith et al., 2019). Also, we recently showed, in a
mouse model, that PAC up to peri-implantation or organogenesis
disrupts the development of trophoblasts and induces deficient
vascularization of the labyrinth (Perez-Tito et al., 2014; Gualdoni
et al., 2021), leading to abnormal placenta later (Gualdoni et al.,
2022a). However, early alterations in decidual angiogenesis during
the trophoblast-independent phase may contribute primarily to
insufficient maternal vascular development in the placenta at
term. Here, we propose possible early sequential disrupted
maternal angiogenic mechanisms induced by PAC leading to
altered maternal vascularization in the definitive placenta.

During early gestation, mainly uNKs and decidual
M2 macrophages regulate angiogenesis and remodeling of spiral
arteries by expression/activity of the VEGF–MMP–NOS system.
PAC up to early gestation (GD 7–10) can directly impact SA
development, disrupting angiogenesis from the endometrium
toward mesometrial decidual tissues in the implantation sites
(Figures 2B, D, F vs Figures 2A, C, E). By producing oxidative
stress (OS) (Coll et al., 2018) (Figure 2, Step 1), PAC reduces the
uNK cell number in the mesometrial decidua (Ventureira et al.,
2019) (Figure 2, Step 2), together with their VEGF production
(Figure 2, Step 3). However, we recently showed that PAC also
leads to reduced endothelial KDR expression (Ventureira et al.,
2019), and in addition, activation of KDR (phosphorylated KDR) is
increased, by which eNOS expression can be induced in CE and
decidual tissue (Figure 2, Step 4). From alcohol-induced eNOS
activation, high levels of NO are generated that, with reactive
oxygen species, form peroxynitrites, contributing to OS increase
(Coll et al., 2018) (Figure 2, Step 5). FLT-1 drives angiogenic
modulation by its binding to VEGF (Lima et al., 2014), but its
increase was associated with oxidative factors and turned into anti-
angiogenic effects. PAC-decidual oxidative stress may induce
increased FLT-1 expression (Ventureira et al., 2019) that,
together with OS, activates KDR, thus contributing to VEGF-
KDR expression disruption. Indeed, eNOS expression could also
be triggered by FLT-1 (Bussolati et al., 2001) or induced by hypoxia
since eNOS promoter contains hypoxia response elements (Schäffer
et al., 2006). In this context, NO bioavailability decreases in maternal
vasculature (Figure 2, Step 6), leading, in part, to reduced VSMC,
EC, and basement membrane remodeling in maternal vessels of
PAC-treated mice (Figure 2D, C). On the other hand, MMPs,
derived from uNKs and/or other decidual stromal cells, may be
altered in maternal tissue (Figure 2, Step 8), therefore worsening the
deficient maternal vascular remodeling.

PAC-induced OS can be involved in changing the macrophage
phenotype to a proinflammatory (M1) phenotype (Figure 2, Step 7),
similar to the preeclamptic placenta in which a decreased M1/
M2 macrophagic balance was observed in concordance with
increased proinflammatory cytokines (Yao et al., 2019).
Moreover, alcohol and OS may induce an inflammatory state in
the decidua through an increase of lymphocytes (Figure 2, Step 8)
and high levels of proinflammatory cytokines (Figure 2, Step 9) that
impact positively to increase M1 macrophages (Figure 2, Step 7).

This decidual OS inflammation can induce M1 macrophagic iNOS
(Figure 2, Step 10) to produce high levels of NO (Figure 2, Step 11),
which results in enhanced OS and apoptosis of cells and the ECM
components of decidual tissue (Coll et al., 2018). In this maternal-
altered environment, M1 macrophages probably secrete defective
MMP levels, whose activation in the ECM could also be affected by
OS–protease nitrosylation leading to loss of function and inhibition
(Figure 2, Step 8). After PAC during early gestation, these
VEGF–NO–MMP and OS-associated disrupted pathways may
contribute to ECM and CE remodeling deficiencies by which the
exposed spiral arteries have incomplete VSMC remodeling, EC
detachment in the lumen, reduced CE proliferation, diminished
lumen expansion, and vasodilation (Figure 2F, E). These
mechanisms could explain the abnormal maternal vessels at the
lateral sides of proximal mesometrial decidua, recently observed by
us after PAC at GD 10 (Ventureira et al., 2019).

The immediate consequence of PAC-induced reduced dilation
and less branching of maternal spiral arteries may be low blood
perfusion and reduced oxygenation consistent with a persistent
hypoxic–oxidative state at the junctional zone. High HIF-1 yields
altered trophoblast growth, differentiation, and invasion (Gualdoni
et al., 2021) that, together with earlier under-remodeled maternal
SA, may lead to a deficient maternal EC remodeling/replacement
from mid-gestation and subsequent abnormal definitive placenta
(Figure 2, Step 12).

Conclusion

In this review, we focused on and summarized the relevant process of
early maternal vascularization for placental development and the roles of
MMPs and NO as regulators of maternal angiogenesis in normal and
abnormal placental conditions in early mouse pregnancy. We provide
knowledge to understand better the importance of the research approach
of these complex networks of molecular and cellular angiogenic
mechanisms affected by maternal exposure to alcohol up to the early
stages of pregnancy. Although it is well known that maternal alcohol
ingestion is a significant risk factor for placentopathy induction, its
association with fetal defects and, potentially, FASD is unclear. At
present, few mouse models for studying the gestational and/or
perigestational effects of alcohol consumption in placentation are
available. In an experimental mouse model, here, we presented
hypothetical mechanisms of alterations in early maternal
vascularization–angiogenesis produced by perigestational administration
of alcohol up to early gestation. This could be useful to explain, in part, the
effects ofmaternal alcohol consumption until the first 2 months of human
pregnancy on the feto-placental development at term.

Early failures of SA remodeling and primary maternal
mechanisms of angiogenesis–vascularization due to PAC up to
early stages of gestation can cause placental pathogenesis, which
may underlie pregnancy complications, IUGR, FASD, and/or
programming postnatal diseases. Alterations in MMP and NOS/
NO mediators may modify placental functions, leading to
pathological conditions of pregnancy. In this regard, based on
our experience and literature exploration, few studies have
described the maternal angiogenic-remodeling events at each
stage of early development of the mouse implantation site.
Bearing in mind that the murine model of placental development
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is not totally equal to the development of the human placenta, their
similarities mean that a slightly more detailed description of early
maternal angiogenesis–vascularization in the mouse model
constitutes a contribution to the understanding of various similar
physiopathological processes of angiogenesis and cellular and
molecular mechanisms that are executed during vascular
formation of the definitive placenta. In this sense, the goal of this
review is to provide a theoretical–conceptual tool in the mouse
experimental model for the analysis of the roles of decidual stromal
and leukocyte cells and some angiogenic relevant molecules, such as
MMPs and NO, in normal or altered vascularization during early
pregnancy under alcohol exposure. However, there is a need to
increase the knowledge of mouse experimental models that
recapitulate the human gestation to better understand the
etiology and pathogenesis of abnormal processes related to
human placentopathies and their implications on fetal
development and growth, produced by maternal alcohol
consumption, at least, up to early gestation.

Studies on relevant angiogenic systems, such as the VEGF/R,
MMPs, and NOS/NO, among others, in animal models should be
continued, highlighting the importance of analyzing changes in
angiogenic–vasoactive molecules in the normal placentation and
their roles in altered pathways as etiological mechanisms of placental
defects and risk for abnormal fetal growth due to maternal alcohol
consumption.
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