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ABSTRACT 27 

 28 

Substantial efforts have been made to understand the immune response during severe 29 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, in order to identify 30 

and characterize risk factors, immune mechanisms responsible for the induction of tissue 31 

injury and potential therapeutic targets. Purinergic signaling pathway has shown to 32 

modulate the inflammatory processes in the course of several infectious diseases, but its 33 

role in the Coronavirus disease 19 (COVID-19) has not been clearly defined. 34 

Inflammation is usually associated to the release of ATP from different cell types, starting 35 

a cascade of events through the activation of a set of different purinergic receptors. This 36 

Review summarizes the evidence showing the involvement of the purinergic system in 37 

the inflammatory condition that characterizes severe COVID-19.  38 

 39 
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INTRODUCTION 55 

 56 

Epidemiological data have confirmed over 600 million Coronavirus disease 19 (COVID-57 

19) cases and almost 6.5 million deaths worldwide. However, the COVID-19 pandemic 58 

is far from over as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 59 

mutated over time giving rise to the appearance of new variants of concern 60 

(https://coronavirus.jhu.edu/map.html). A real-time progress has been made in 61 

controlling the ongoing pandemic, especially through vaccination having been 62 

administered so far more than 12 billion vaccine doses. The clinical manifestations of 63 

acute COVID-19 are highly variable, ranging from asymptomatic infection and mild 64 

symptoms in most cases [1-4] to life-threatening severe disease [5-8]. Even though the 65 

number of pediatric patients with COVID-19 increased after the spread of variants with 66 

greater transmissibility, children show a lower severity and mortality compared to adults 67 

[9].  Moreover, up to   ̴ 20% of both adults [10] and children [11] will develop long 68 

COVID-19. It is well established that severe COVID-19 is associated with a dysregulated 69 

inflammatory response. Because the purinergic signaling has shown to be involved in the 70 

regulation of inflammatory responses in the course of several infectious diseases [12-16], 71 

we will try here to summarize the evidence suggesting its participation in the pathogenesis 72 

of severe COVID-19. 73 

 74 

PURINERGIC SIGNALING PATHWAY 75 

ATP is released from activated, stressed, apoptotic or necrotic cells being tissue damage 76 

induced by neutrophils one of the most relevant sources of extracellular ATP.  Controlled 77 

ATP released by viable cells can progress through different mechanisms such as vesicular 78 

transport, anion channels, and connexin and pannexin hemichannels [17,18]. In the 79 

extracellular space, ATP is hydrolyzed to ADP, AMP, and adenosine by enzymes 80 
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belonging to four ectonucleotidase families: the ectonucleotide 81 

pyrophosphatase/phosphodiesterase family, the ectonucleoside triphosphate 82 

diphosphohydrolase family including CD39, the alkaline phosphatase family, and the 83 

ecto-5’-nucleotidase known as CD73. These ectonucleotidases are widely expressed by 84 

immune and non-immune cells, and display different abilities to hydrolyze ATP, ADP, 85 

and AMP. Thus, the relative tissue expression of these enzymes determines the local 86 

concentration of different purinergic ligands, and the consequent activation of purinergic 87 

receptors, which comprise nineteen different receptors able to recognize ATP, related 88 

nucleotides, and/or adenosine. Purinergic receptors include ionotropic P2X (P2XR) and 89 

metabotropic P2Y receptors (P2YR) families that promote inflammasome activation in 90 

monocytes, neutrophils, macrophages and dendritic cells, and modulate antigen receptor 91 

signaling in T cells [18,19]. Moreover, ATP promotes neutrophil recruitment and 92 

activation perpetuating tissue injury [20]. Of the four adenosine receptor subtypes, the G 93 

protein‑coupled A2A and A2B receptors are commonly upregulated in response to the 94 

activation of immune cells and play an important role in the regulation of the 95 

inflammatory responses [21]. 96 

 97 

A DYSREGULATED IMMUNE RESPONSE CHARACTERIZES SEVERE 98 

COVID-19  99 

The damage mediated by SARS-CoV-2 might explain some of the pathological findings 100 

in COVID-19, however, there is compelling evidence suggesting that the host immune 101 

response also plays a key role. Autopsies of deceased COVID-19 patients have revealed 102 

very little active viral infection and large accumulation of activated immune cells, 103 

suggesting that organ failure is mediated, at least partially, by infiltrating immune cells 104 

[22]. In fact, severe COVID-19 in adults is associated with an overactive inflammatory 105 
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response characterized by high levels of IL-1β, IL-6, TNF-α, IFN-γ, MIP-1α and 1β, and 106 

VEGF [23,24]. In addition, an increased neutrophil count and a high neutrophil-to-107 

lymphocyte ratio have shown to predict a worse outcome [25,26]. High number of 108 

neutrophils have been found in the bronchoalveolar lavage (BAL) fluid of severe COVID-109 

19 patients while lung autopsies revealed variable levels of neutrophil infiltration [27,28]. 110 

Moreover, increased blood concentrations of a variety of neutrophil products such as 111 

NETs, myeloperoxidase, and calprotectin have been described in patients with severe 112 

COVID-19 [29,30]. Thrombosis and coagulopathy are also common findings in severe 113 

disease [31]. Although the underlying mechanisms have been not clearly defined and 114 

characterized, it is clear that the damage of the endothelium, the activation of platelets, 115 

the release of NETs, and an increased expression of tissue factor in target tissues, can 116 

certainly play an active role [32,33].   117 

 118 

EVIDENCE OF PURINERGIC SIGNALING ACTIVATION DURING SEVERE 119 

COVID-19 120 

Different studies have shown that ATP is released to the extracellular space in the course 121 

of severe COVID-19. Luu and coworkers [34] reported that the SARS-CoV-2 spike 122 

protein induces the transient opening of Pannexin-1 (Panx-1) channels in human lung 123 

epithelial cells, allowing the release of ATP and IL-1β. Consistent with these findings, 124 

the analysis of BAL from COVID-19 patients also showed high levels of these mediators. 125 

Single-cell RNA sequencing from nasal epithelia obtained from COVID-19 patients 126 

demonstrated a higher expression of PANX1 mRNA compared with healthy individuals, 127 

while the analysis of lung tissues from lethal COVID-19 cases showed a high expression 128 

of the Panx-1 protein. Interestingly, Panx-1 blockers significantly prevented SARS-CoV-129 

2 replication in human lung epithelial cells. Together, these observations suggest that 130 
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targeting Panx-1 channels might result in both, the inhibition of SARS-CoV-2 replication 131 

and the modulation of inflammatory mechanisms triggered by extracellular ATP in the 132 

course of COVID-19. On the other hand, by performing a single-cell profiling of BAL 133 

from COVID-19 patients and non-infected controls, Wauters and coworkers [35] found 134 

an upregulation of the purinergic receptor P2RX7, NLRP3 and IL-1β genes in 135 

monocyte/macrophage cells from critical COVID-19 patients, but not in cells from 136 

uninfected or mild COVID-19 patients.  In addition, the authors also reported higher 137 

levels of ATP in BAL samples from critical COVID-19 patients compared with patients 138 

suffering mild disease.  139 

 140 

ATP plays a central role in the induction of inflammatory response via the stimulation of 141 

P2X7 receptor, which triggers the activation of the NLRP3 inflammasome [19], while 142 

ADP appears to play a major role in thrombotic events by inducing the activation of 143 

platelets through P2Y12 receptor [36]. CD39, which converts ATP to AMP, and CD73, 144 

that produces adenosine from AMP, are particularly relevant for the balance between the 145 

pro- and anti-inflammatory effects mediated by extracellular ATP [18]. Several works 146 

[37-39], recently reported the presence of high levels of ATP and ADP but low levels of 147 

adenosine in plasma from adults with severe COVID-19, suggesting that purinergic 148 

signaling might promote not only an inflammatory status but also thrombotic events. 149 

Pietrobon and coworkers also reported an impaired adenosine receptor expression and a 150 

reduced ATP hydrolysis capacity during COVID-19, favoring systemic inflammation 151 

[38]. In agreement with these observations, Da Silva and coworkers [39] reported a 152 

decreased ability to hydrolyze ATP in PBMCs from patients with severe COVID-19 153 

together with an increased hydrolysis of ATP mediated by platelets. High levels of soluble 154 

CD39 (sCD39) in plasma were also reported by Diaz Garcia and coworkers [37], and 155 

Jo
urn

al 
Pre-

pro
of



7 
 

consistent with other studies [40,41], a higher expression of cell-surface CD39 was 156 

detected in different leukocyte populations including CD4+ and CD8+ T cells, FOXP3+ 157 

regulatory T cells, NK cells and monocytes. In addition, Symsek and coworkers [42] 158 

reported that CD39+ Tregs frequency increases with disease severity in adult patients but 159 

decreased in juvenile patients in an age-dependent manner . Since the levels of sCD39 in 160 

plasma were shown to be related to length of hospital stay and intensive care unit 161 

admission, it has been suggested that sCD39 might represent a promising biomarker for 162 

COVID-19 severity. Interestingly, Diaz Garcia and coworkers reported that the reversible 163 

antagonist of P2Y12 receptor Ticagrelor, significantly inhibits platelet activation induced 164 

by plasma from patients with severe COVID‐19. Indeed, Ticagrelor has been proposed to 165 

prevent coagulopathy development in COVID‐19 patients [43]. Notably, Wang and 166 

coworkers [41], showed that ENTPD1/CD39, an ectoenzyme defining exhausted T-cells, 167 

is upregulated in the lung, liver, spleen, and PBMCs of severe COVID-19 patients where 168 

expression positively correlates with markers of vasculopathy. They also noted an 169 

aberrant regulation of this ectoenzyme, as indicated by heightened levels of STAT-3 and 170 

HIF-1a, which contribute to CD39 modulation at the transcriptional level. These changes 171 

can contribute to a purinergic pathway imbalance, resulting in metabolic changes and T 172 

cell dysfunction. In this sense, Hou and coworkers [44] reported that SARS-CoV-2-173 

specific T cells are found in peripheral blood from convalescents patients up to 1 year 174 

post-infection, however, these cells show an increased expression of exhaustion markers 175 

such as PD-1, Tim-3, TIGIT, CTLA-4, and CD39, suggesting a dysfunctional phenotype.   176 

Garcia-Villalba and coworkers [45], described that the concentration of soluble P2X7 177 

receptor is elevated in the plasma of COVID-19 patients and shows a positive correlation 178 

with disease severity, suggesting that plasma levels of the P2X7 receptor could be a novel 179 

biomarker of COVID-19 severity. Moreover, they observed that a soluble form of P2X7 180 
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receptor is released from human peripheral blood mononuclear cells upon inflammasome 181 

activation induced by LPS plus ATP. This observation is consistent with previous reports 182 

showing that the stimulation of the P2X7 receptor leads to the shedding of this receptor 183 

associated to extracellular vesicles [46]. The role of this secreted form of the P2X7 184 

receptor remains to be defined.  However, it should be mentioned that circulating 185 

exosomes from COVID-19 patients have shown to activate the NLRP3 inflammasome 186 

(36).  187 

 188 

Contrasting with some of the results described above, Dorneles and coworkers [47] found 189 

lower levels of ATP in plasma from mild and severe COVID‐19 patients, compared with 190 

healthy donors. The reasons for this contrasting observation are not clear. In addition, the 191 

authors reported lower adenosine plasma levels in the blood of severe COVID-19 patients 192 

compared with healthy donors, suggesting that this condition might contribute to the 193 

development of the dysregulated inflammatory response that characterize severe COVID-194 

19. Moreover, an increased frequency of CD4+CD39+ T cells together with low 195 

frequencies of CD4+CD73+ and CD8+CD73+ T cells was also observed. Ahmadi and 196 

coworkers [48], on the other hand, also reported a reduced expression of CD73 in 197 

different lymphocyte populations including CD8+ T cells, NK cells and NKT cells in 198 

COVID-19 patients. Interestingly, the decreased expression of CD73 in CD8+ T cells and 199 

NKT cells was shown to be associated to an inflammatory signature characterized by an 200 

enhanced secretion of granzyme B, perforin, TNF-α and IFN-γ. 201 

 202 

Shultz et al [49] performed an extensive analysis using public datasets of raw proteomics 203 

data acquired by mass spectrometry and raw genomics data obtained by microarray from 204 

COVID-19 patient samples. They found that plasmatic inosine levels are increased in 205 
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patients with severe COVID-19. They also observed an upregulation of PANX1, CD39, 206 

CD38, P2RX7, and ADORA2B mRNA genes. Consistent with these findings, by 207 

performing untargeted metabolomics analyses of serum samples, Dogan and coworkers 208 

reported an increased plasma concentration of inosine in COVID-19 patients compared 209 

with healthy donors [50]. Interestingly, it has been reported that inosine exerts a broad 210 

range of anti-inflammatory effects in experimental models of acute lung injury [51,52]. 211 

Wu and coworkers [53] also reported plasma metabolomic alterations during SARS-CoV-212 

2 infection, including changes in GMP levels, a metabolite partially generated by CD39 213 

and CD73, showing higher levels in fatal cases compared with mild COVID-19 patients.  214 

Finally, by studying children with COVID-19 we recently reported [54] that plasma levels 215 

of ATP were higher in infected children compared with healthy ones. Interestingly, 216 

plasma levels of ATP showed a negative correlation with the frequency of regulatory T 217 

cells but a positive correlation with the frequency of Th17 cells, suggesting a possible 218 

role for the extracellular ATP in the acquisition of an inflammatory signature by the T 219 

cell compartment. Interestingly, Symsek and coworkers [42], found that CD39‐220 

expressing Tregs increased with disease severity in adult patients while decreased in 221 

young patients in an age‐dependent manner. 222 

 223 

PERSPECTIVES 224 

The purinergic system is a complex jigsaw puzzle of nucleotides, nucleosides, 225 

ectonucleotidases, receptors and transporters, able to modulate the course of 226 

inflammation associated to infectious, autoimmune, and neoplastic diseases. This 227 

complexity explains why it has long been difficult to define therapeutic targets among 228 

purinergic receptor and ectonucleotidases, useful for the treatment of inflammatory 229 

conditions. Severe COVID-19 is clearly associated to the development of an exacerbated 230 

inflammatory response and hence the use of anti-inflammatory agents such as 231 
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corticosteroids, Tozilizumab (a monoclonal antibody directed to the IL-6 receptor), or 232 

inhibitors of the JAK/STAT pathways have been incorporated as therapeutic tools. In 233 

spite that the purinergic signaling shows to be affected in severe COVID-19, further 234 

studies are needed to clearly define potential targets for the successful treatment of 235 

inflammatory and thrombotic processes underlying critical illness.  236 
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 507 

LEGEND TO FIGURE 1.  508 

Pro-inflammatory pathways related with purinergic signaling during severe 509 

COVID-19. SARS-CoV-2 infection of respiratory epithelial cells promote cell stress and 510 

cell damage inducing ATP release to the extracellular space through different 511 

mechanisms, including the transient opening of PANX1.  Injury of different cell types in 512 

the course of severe COVID-19, such as tissue damage mediated by neutrophils, also 513 

contributes to the enhancement in the extracellular concentration of ATP (not shown in 514 

the Figure). Severe COVID-19 is associated to an increased expression of CD39 and a 515 

decreased expression of CD73. This result in an increased ATP/ADP: adenosine ratio that 516 

promotes the activation of immune cells and platelets through the P2X7R and P2Y12R, 517 

respectively, and the development of inflammatory and thrombotic events. 518 

Abbreviations: PANX1, pannexin 1; Ado, adenosine; P2X7R, P2X7 receptor; NLPR3, 519 

NLR family pyrin domain containing 3; NETs, Neutrophil Extracellular Traps; ROS; 520 

Reactive Oxygen Species; P2Y12R; P2Y12 receptor. The figure was drawn by using 521 

pictures from Servier Medical Art, provided by Servier, licensed under a Creative 522 

Commons Attribution 3.0 Unported License. 523 
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