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ON THE MIXED LOCAL–NONLOCAL HÉNON EQUATION

ARIEL M. SALORT AND EUGENIO VECCHI

Abstract. In this paper we consider a Hénon-type equation driven by a non-
linear operator obtained as a combination of a local and nonlocal term. We
prove existence and non-existence akin to the classical result by Ni, and a
stability result as the fractional parameter s → 1.

1. Introduction

Given β ∈ [0, 1], a fractional parameter s ∈ (0, 1) and p > 1 we consider the
following mixed local–nonlocal elliptic operator

(1.1) Ls,p,βu := (1− β)(−∆p)u+ β(−∆p)
su.

It is obvious that Ls,p,β boils down to the usual p−Laplacian operator when β = 0
and to the pure fractional p−Laplacian when β = 1. In the linear case p = 2, this
operator has a probabilistic interpretation consisting in describing a discontinuous
process where the local part provides the continuous part, while the nonlocal one
represents the jump process. We postpone to the end of the Introduction a brief
account of the existing literature.

In this paper we consider the following Dirichlet boundary value problem

(1.2)















Ls,p,βu = |x|αuq−1 in B
u > 0 in B
u = 0 on ∂B if β = 0
u = 0 in R

n \B if β ∈ (0, 1],

where B stands for the unit ball in R
n, n ≥ 2, α > 0, s ∈ (0, 1), p > 1; we assume

that n > sp if β = 1, while n > p if β ∈ [0, 1), and p < q < p∗β , where

p∗β :=

{ np
n−p if β ∈ [0, 1)
np

n−sp if β = 1.

Here we are primarily interested in proving existence and non-existence of weak
solutions, which we define in a classical variational way: we consider the functional
J : Xβ,rad(B) → R associated to (1.2)

(1.3) J (u) =
1− β

p
‖∇u‖pLp(B) +

β

p
[u]ps,p −

1

q

∫

B

|x|α(u+)q dx,

defined on a suitable space Xβ,rad(B), see Section 2.1, where [u]s,p stands for the
Gagliardo seminorm

(1.4) [u]s,p := K(n, s)

(
∫∫

R2n

|u(x)− u(y)|p

|x− y|n+2s
dx dy

)1/p

,
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2 A.M.SALORT AND E.VECCHI

where K(n, s) is a positive constant, depending only on n and s, such that [u]ps,p →
‖∇u‖pp as s → 1, see e.g. [7].

Clearly, J is class C1 and its Frechét derivative is given by the expression

〈J ′(u), v〉 = (1− β)

∫

B

‖∇u‖p−2〈∇u,∇v〉 dx

+ βK(n, s)

∫∫

R2n

|u(x)− u(y)|p−2(u(x)− u(y))(v(x) − v(y))

|x− y|n+sp
dx dy

−

∫

B

|x|α(u+)q−1v dx

for all v ∈ Xβ,rad(B). Therefore, any critical point of J is a weak solution of (1.2).

Obviously, when β = 0 and p = 2, problem (1.2) boils down to the classical
Hénon equation introduced in [29] to model spherically symmetric stellar clusters.
The literature related to this famous equation is huge and encompasses several in-
teresting lines of research in Nonlinear Analysis, including existence of solutions,
nonexistence, multiplicity and finer qualitative properties of solutions. Here we do
not aim at providing a complete and fully detailed list of references, but rather we
limit ourselves in mentioning the papers which are closely related to the content of
this note. Our main interest is to extend a classical result in [32], where Ni noticed
that the presence of the term |x|α was modifying the problem enough to increase
the range of powers of u for which a solution exists, in this way presenting a quite
different scenario with respect to the case α = 0. Indeed, he was able to show
that in there is a weak solution for 2 < q < 2n+2α

n−2 = 2∗ + 2α
n−2 , so going beyond

the classical nonexistence threshold 2∗ related to the critical Sobolev embedding.
Interestingly, due to the method for proving such existence, Ni was also able to get
radiality of such a solution. Indeed, that solution is of Mountain Pass type, exploit-
ing the Radial Lemma of Strauss and the compactness of radial Sobolev functions.
This fact is noteworthy because the term |x|α prevents from applying the symmetry
results due to Gidas-Ni-Nirenberg already in the pure local case, and so even more
in the mixed case, where similar qualitative results have been recently proved in
[4]. Actually, already in the pure local case, in [38] it was proved that there is a
sort of critical threshold for the parameter α beyond which there exist non-radial
ground states.

Following the result of Ni, there have been several extension of it to different
operators. Let us briefly recall them. The case of the p−Laplacian was treated in
[31] for p > 1 while the purely linear nonlocal case (i.e., β = 1 and p = 2) was
addresses in [37] , where it was proved that for 1 < 2s < n and q < 2n+2α

n−2s , there

exists a positive weak solution for (1.2). The critical case q = 2∗s,α was studied in
[2]. To the best of our knowledge, the pure nonlocal and nonlinear case (i.e. β = 1
and p 6= 2) has not be covered so far: this is the main reason why we choose the
operator in (1.1), so to get existence and non-existence of solutions for both the
nonlocal nonlinear case as well as mixed local-nonlocal combinations.

Before stating our results, let us introduce a further threshold quantity which
will play a major role in the following:

(1.5) p∗β,α :=

{

np+αp
n−p if β ∈ [0, 1)

np+αp
n−sp if β = 1.
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Our first results concern the range of existence and non-existence of weak solu-
tions to (1.2).

Theorem 1.1. Let α > 0, p > 1 and s ∈ (0, 1) be such that

p < n when β ∈ [0, 1), sp < n when β = 1.

Then for all p < q < p∗β,α there exists a positive weak solution u ∈ Xβ,rad(B) to

(1.2).
Moreover, we have that u ∈ L∞(B) for β ∈ [0, 1) when 0 < s < 1 < p < q < p∗β,α

such are that p < n and

(1.6) α > max

{

0, (q − 1)

(

n

p
− 1

)

− p

}

,

and for β = 1 when 0 < s < 1 < p < q < p∗β,α are such that sp < n and

(1.7) α > max

{

0, (q − 1)

(

n

p
− s

)

− sp

}

,

or for all α > 0 when 1 < p < q < p∗β,α are such that sp < n and the range for s is

(1.8) 0 < s <
n

p

q − 1

p+ q − 1
.

Theorem 1.2. Let α > 0, p > 1 and s ∈ (0, 1) be such that

p < n when β ∈ [0, 1), sp < n when β = 1.

Then for all q > p∗β,α problem (1.2) has no solutions u ∈ Xβ(B)∩W 1,r(B)∩L∞(B),
for some r > 1.

In particular, there are no positive weak solutions to (1.2) for

• β ∈ [0, 1) when p < n and (1.6) holds;
• β = 1 when sp < n and (1.7) holds, or when α > 0 and (1.8) holds.

The proof of Theorem 1.1 follows the scheme introduced by Ni in [32]. To this
aim, we need several ingredients, like a proper version of the Radial Lemma (see
Section 2.3) and compactness of the embeddings of the appropriate radial Sobolev
spaces. The proof of Theorem 1.2 is heavily based on a previous non-existence result
by Ros–Oton and Serra [34]. In order to apply it, we have to prove a regularity result
of independent interest, namely Theorem 2.4, where we show the boundedness of
weak solutions of

{

Ls,p,βu = f in Ω,

u = 0 in R
n \ Ω,

when f ∈ Lr(Ω) with r > n
p .

Our next result establishes the stability of solutions of uniformly bounded solu-
tions of (1.2) as s ր 1.

Theorem 1.3. Let β ∈ (0, 1]. Let p > 1 and sk ∈ (0, 1) be such that skp < n and

sk → 1 as k → +∞. Given p < q < p∗β,α, let uk ∈ Xβ,rad(B) be a solution of (1.2)
such that

sup
k∈N

‖uk‖β < +∞.

Then, every accumulation point u of {uk}k∈N in the Lp(B)-topology is a weak so-

lution of (1.2) with β = 0.
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Since the β-norm of weak solutions to (1.2) can be bounded uniformly on s (see
Remark 3.3), we immediately obtain the following consequence.

Corollary 1.4. Let β ∈ (0, 1]. Let p > 1 and sk ∈ (0, 1) be such that skp < n and

sk → 1 as k → +∞. Given p < q < p∗β,α, let uk ∈ Xβ,rad(B) be a weak solution of

(1.2). Then

uk → u strongly in Lp(B) as k → ∞

where u ∈ Xβ,rad(B) is a solution of (1.2) with β = 0.

We remark that, since the above convergence implies in particular that uk → u
a.e., the limit function u is actually radial.

Our last result extend the result of Smets, Willem and Su to the linear mixed
case, showing the possibly intuitive fact that coupling a nonlocal part with the local
one still allows for non-radial solutions to (1.2).

Theorem 1.5. Given n ≥ 3 and 0 ≤ β < 1, then for any 2 + β < q < 2∗, there
exists α∗ > 0 such that no ground state of (1.2) with p = 2 is radial, provided

α > α∗.

We want to stress that the proof exploits several relations between the local and
nonlocal terms and is heavily based on the original proof in [38] in the linear case.
This is the reason why the pure nonlocal case is actually not covered by our result.

We want close this Introduction spending a few words regarding the existing
literature: as far as we know, Fonduun [23] was the first who proved bounds for
the heat kernel associated to (1.1) for p = 2, a Harnack inequality and a regularity
theorem for mixed local-nonlocal harmonic functions. A few years later, in [10] the
authors proved Harnack estimates in the linear case. Further regularity results for
p = 2 are contained in [3], where the authors prove localHk+2 estimates and several
maximum principles. Qualitative properties of solutions of semilinear equations in
the spirit of the classical results by Gidas, Ni and Nirenberg have been proved in
[4], while a quantitative version of a Faber-Krahn inequality has been proved in
[5]. We refer also to [28] for related results. Recently, the nonlinear operator (1.1)
has also been considered: in [9] the authors considered an eigenvalue problem for
a system of local-nonlocal operators and studied the asymptotics as p → +∞. In
a similar spirit, in [13] the authors considered a nonlinear equation with concave-
convex right hand side. We also quote [6] where the authors considered a nonlinear
version of the famous Brezis-Oswald problem, and [24, 26] where the authors proved
regularity results and studied mixed Sobolev inequalities and quasilinear singular
problems in the spirit of Boccardo and Murat. We finally mention [17] for a first
study of such operators with (nonlocal) Neumann boundary conditions. We want
also to remind that there is a pretty active line of research dealing with evolution
equations having the operator (1.1) as elliptic part: we refer e.g. to [18, 25] and
to [19] where such operators are used to propose a model to describe the diffusion
of a biological population living in an ecological niche and subject to both local
and nonlocal dispersals. Finally, we want to mention that several papers, see e.g.
[11, 15, 20, 27], have also investigated the coupling of a local operator with a
nonlocal and nonsingular one having a different kernel with respect to the one
considered in the present note.
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The paper is organized as follows: in Section 2 we collect all the preliminaries
needed to prove our results. In particular, we introduce the functional and varia-
tional setting to study (1.2), we collect the different versions of the radial Lemma
needed for our purposes and we prove the boundedness of the solutions. In Section
3 we prove Theorem 1.1 and Theorem 1.2, while the proof of Theorem 1.3 is post-
poned to Section 4. In Section 5 we prove Theorem 1.5. Finally, we add a brief
Appendix A where we recall the classical Mountain Pass Lemma and a few other
classical results used along the paper.

2. Preliminaries

2.1. Function spaces. Problem (1.2) is the local-nonlocal and nonlinear counter-
part of the Hénon problem studied in the celebrated paper by Ni [32]. As already
mentioned in the Introduction, the problem has to be settled in the proper function
space, which we consider to be

(2.1) Xβ(B) :=







W 1,p
0 (B) if β = 0
Xp(B) if β ∈ (0, 1)

W s,p
0 (B) if β = 1,

where W 1,p
0 (B) is the classical Sobolev space whose functions have null trace on

the boundary of B, while for β = 1 we have the classical fractional Sobolev space

(2.2) W s,p
0 (B) := {u ∈ W s,p(Rn) : u = 0 in R

n \B} .

Concerning the true mixed local-nonlocal case, i.e. for β ∈ (0, 1), the space Xp(B)
has been introduced in [6] for more general open sets Ω ⊂ R

n with C1-smooth
boundary. Nevertheless, to simplify the reading, we recall its precision definition in
our specific case:

(2.3) Xp(B) :=
{

u ∈ W 1,p(Rn) : u ≡ 0 a.e. on R
n \B

}

.

Since ∂B is smooth, we can identify Xp(B) with the space W 1,p
0 (B) in the following

sense: denoting by 1B the indicator function of the ball B, we have that

(2.4) u ∈ W 1,p
0 (B) ⇐⇒ u · 1B ∈ Xp(B).

Therefore, in what follows we will always identify a function u ∈ W 1,p
0 (B) with

û := u · 1B ∈ Xp(B), obtained as a zero-extension outside of B. We further notice

that by the Poincaré inequality and (2.4), we get that the quantity

‖u‖Xp
:=

(∫

B

‖∇u‖p dx

)1/p

, u ∈ Xp(B),

endows Xp(B) with a structure of real Banach space, which is actually isometric

to W 1,p
0 (B). We briefly list a couple of useful properties that hold true:

(i) Xp(B) is separable and reflexive (being p > 1);

(ii) C∞
0 (B) is dense in Xp(B).

Summarizing, we will denote

(2.5) ‖u‖β :=

{

‖∇u‖Lp(B) if β ∈ [0, 1)
[u]s,p if β = 1.
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Finally, since we are mainly interested in proving results related to radial func-
tions, we introduce the following subspaces:

(2.6) Xβ,rad(B) := {u ∈ Xβ(B) : u is radial}.

2.2. The local-nonlocal operator. Given β ∈ [0, 1], a fractional parameter s ∈
(0, 1) and p > 1 the mixed local–nonlocal elliptic operator

Ls,p,βu := (1 − β)(−∆p)u+ β(−∆p)
su

is well defined between Xβ(B) and its dual space X∗
β(B) and the following repre-

sentation formula holds:

〈Ls,p,βu, v〉 = (1− β)

∫

B

|∇u|p−2〈∇u,∇v〉 dx

+ βK(n, s)

∫∫

R2n

|u(x)− u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x− y|n+sp
dx dy

for any v ∈ Xβ(R
n).

Therefore, we say that u ∈ Xβ(B) is a weak solution of (1.2) if

〈Ls,p,βu, v〉 =

∫

B

|x|αuq−1v dx for all v ∈ Xβ(B).

Observe that with this notation we have

(2.7) 〈Ls,p,βu, v〉 = 〈J ′(u), v〉+

∫

Ω

|x|αuq−1v dx for all v ∈ Xβ(B).

Remark 2.1. Given u, v ∈ Xβ(B), by Hölder’s inequality

〈Ls,p,βu, v〉 ≤ (1− β)

(∫

B

(|∇u|p−1)p
′

dx

)
1

p′
(∫

B

|∇v|p
)

1
p

+ βK(n, s)





∫∫

R2n

(

|u(x)− u(y)|p−1

|x− y|
n+sp

p′

)p′

dxdy





1

p′
(∫∫

R2n

|v(x) − v(y)|p

|x− y|n+sp
dxdy

)
1
p

= (1− β)‖∇u‖p−1
Lp(Rn)‖∇v‖Lp(Rn) + β[u]p−1

s,p [v]s,p.

This relation together with [14, Proposition 2.2] gives that

〈Ls,p,βu, v〉 ≤ C‖u‖p−1
β ‖v‖β for all u, v ∈ Xβ(B) and for every β ∈ [0, 1].

Therefore, in light of Proposition A.4, Ls,p,β satisfies the so-called (S)-property
of compactness (see Definition A.3).

2.3. Radial Lemma. In [39], Strauss shed some light on the relation between the
regularity and the decay of a Sobolev function inH1(Rn). In particular, he proved a
nowadays famous pointwise inequality, often referred to as Strauss’ Radial Lemma,
which reads as follows: let n ≥ 2 and let u ∈ H1

rad(R
n), then

(2.8) |u(x)| ≤ C(n)|x|(1−n)/2
{

‖u‖
1/2
L2(Rn)‖∇u‖

1/2
L2(Rn)

}

, for a.e. x ∈ R
n.

It is also possible to prove that there exists a radial function ũ which coincides
almost everywhere with u and that it is continuous outside of the origin. The
inequality (2.8) plays a crucial role in proving compact embeddings. According
to [30, Remark I.3], the above inequality holds replacing the exponent of |x| with
−α+ 2−n

n for every α ∈
[

0, 1
2

]

. Now, the case α = 0 gives back the exponent found
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by Ni in [32], where he was dealing with radial functions in H1
0 (B). The nonlinear

case is treated in [30], where Lions proved the following: let n ≥ max{2, p} and let

u ∈ H1,p
rad(R

n), then,

(2.9) |u(x)| ≤ C(n, p)|x|−γ
{

‖u‖
(p−1)/p
Lp(Rn) ‖∇u‖

1/p
Lp(Rn)

}

, for a.e. x ∈ R
n,

for every γ = n
p − δ, where δ ∈

[

1
p , 1
]

. The case δ = 1 gives the analogous of [32]

for a general p 6= 2.
For the nonlocal case, we refer to [12] in the linear case (see also [37]), and [36] for
the case p 6= 2.

In order to simplify the readability, we list below the variants of the Strauss’
Lemma needed for our purposes. We start from the pure nonlocal case.

Lemma 2.2 ([36]). Let p > 1 with 1 ≤ sp < n. Then there exists C > 0 with

|u(x)| ≤ C|x|s−
n
p ‖u‖W s,p(Rn)

for every u ∈ W s,p
rad(R

n) and for a.e. 0 < |x| ≤ 1.

In the mixed case, the radial lemma can be stated as follows:

Lemma 2.3. Let p ≥ 1 and let n ≥ max{2, p}. Then, for every radial function

u ∈ Xp,rad(B), there exists a positive constant C = C(n, p,Ω) > 0 such that

(2.10) |u(x)| ≤ C|x|1−
n
p ‖∇u‖Lp(B), for a.e. 0 < |x| ≤ 1.

Proof. We first notice that by the very definition of the (radial) Sobolev space
Xp,rad(B), and thanks to the regularity of ∂B, it actually holds that u ∈ W 1,p(Rn).
Therefore, we can apply [30, Lemma II.1, Remark II.3], finding that

(2.11) |u(x)| ≤ C(n, p)|x|(p−n)/p
{

‖u‖
(p−1)/p
Lp(Rn) ‖∇u‖

1/p
Lp(Rn)

}

, for a.e. x ∈ R
n.

In particular, the latter holds for a.e. 0 < |x| ≤ 1. Now, it suffices to notice that

(2.12)
‖u‖Lp(Rn) = ‖u‖Lp(B) ≤ C(n, p,Ω)‖∇u‖Lp(B) (Poincaré ineq.)

≤ C(n, p,Ω)‖∇u‖Lp(Rn).

Now, (2.10) easily follows. �

It remains the pure local case corresponding to β = 0. As for the consider-
ations made on the space Xp(B), thanks to the regularity of ∂B, we can reverse

the identification of Xp(B) with W 1,p
0 (B) and use Lemma 2.3 also in the case β = 0.

We stress that the radial Strauss-Ni’s Lemmas presented before are the key
ingredients for the validity of the Palais-Smale condition.

2.4. Boundedness. We want now to discuss the boundedness of the weak solutions
of (1.2). In the case β ∈ [0, 1), we start with a general theorem of classical flavor
whose proof is an adaptation of the classical method by Stampacchia. This approach
has been already extended to the purely nonlocal setting, see e.g. the proof of
Proposition 9 in [35] and of Theorem 2.3 in [16], and even to the linear mixed local-
nonlocal case in [3]. Nevertheless, we will show all the details in order to make the
paper self-contained.
In the purely nonlocal case β = 1, we refer to [8, Theorem 3.1].
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Theorem 2.4. Assume that n ≥ 3 and that β ∈ [0, 1). Let f ∈ Lr(Ω), with

1 < p < n, r > n/p, and assume that there exists the weak solution uf ∈ Xβ(Ω) of

(2.13)

{

Ls,p,βu = f in Ω,

u = 0 in R
n \ Ω.

Then, uf ∈ L∞(Rn).

Proof of Theorem 2.4. We note first that the case β = 0 which corresponds to the
purely local case is already well-known.
Let δ > 0 be a positive number that we will conveniently choose later on. We can
certainly assume that uf 6≡ 0 else there is nothing to prove. Therefore, we can
define the functions

(2.14) ũ :=
δ1/p−1 uf

‖uf‖Lp∗(Ω) + ‖f‖Lr(Ω)
and f̃ :=

δ1/p−1 f

‖uf‖Lp∗(Ω) + ‖f‖Lr(Ω)
,

which satisfy

(2.15)

{

Ls,p,β ũ = f̃ in Ω,

ũ = 0 in R
n \ Ω.

Now, for every k ∈ N, we define the sequence of real numbers Ck := 1 − 2−k and
the auxiliary functions

vk := ũ− Ck, wk := (vk)+ := max{vk, 0}, Uk := ‖wk‖
p

Lp∗(Ω)
.

We notice that, by the Dominated Convergence Theorem,

(2.16) lim
k→+∞

Uk = lim
k→+∞

‖wk‖
p

Lp∗(Ω)
= ‖(ũ− 1)+‖

p

Lp∗(Ω)
.

Also, if we take k := 0, we see that w0 = (v0)+ = (ũ − C0)+ = ũ+. Now, denoting
by p∗ := np

n−p the classical Sobolev critical exponent, we get that

(2.17) U0 =

(∫

Ω

wp∗

0 (x) dx

)p/p∗

≤

(∫

Ω

ũp∗

(x) dx

)p/p∗

= ‖ũ‖p
Lp∗(Ω)

≤ δp/p−1.

We will take it conveniently small in what follows. Now, since in R
n \ Ω we have

that vk+1 = −Ck+1 ≤ 0 and thus

wk+1 = 0,

we get that wk+1 is an admissible test function, so that

∫

Ω

|∇ũ|p−2〈∇ũ,∇wk+1〉 dx+

∫∫

R2n

|ũ(x) − ũ(y)|p−2(ũ(x)− ũ(y))(wk+1(x)− wk+1(y))

|x− y|n+2s
dx dy

=

∫

Ω

wk+1(x) f̃ (x) dx.

(2.18)

We now exploit the fact that the nonlocal part has a positive sign to get rid of it:
indeed, for a.e.x, y ∈ R

n, we have (see, e.g., [35, Lemma 10])

|wk+1(x)− wk+1(y)|
2 = |(vk+1)+(x)− (vk+1)+(y)|

2

≤ ((vk+1)+(x) − (vk+1)+(y))(vk+1(x) − vk+1(y))

= (wk+1(x)− wk+1(y))(ũ(x)− ũ(y)).

(2.19)
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Moreover,

∫

Ω

|∇ũ(x)|p−2〈∇ũ(x),∇wk+1(x)〉 dx =

∫

Ω∩{ũ>Ck}

|∇ũ(x)|p−2〈∇ũ(x),∇vk+1(x)〉 dx

=

∫

Ω

|∇wk+1(x)|
p dx.

From this, (2.18) and (2.19) we can infer that

∫

Ω

|∇wk+1(x)|
p dx ≤

∫

Ω

wk+1(x) f̃(x) dx.

Hence, by Sobolev Inequality,
(2.20)

Uk+1 =

(∫

Ω

|wk+1(x)|
p∗

dx

)p/p∗

≤ C

∫

Ω

|∇wk+1(x)|
p dx ≤ C

∫

Ω

wk+1(x) |f̃ (x)| dx,

for some C > 0. Also, vk+1 ≤ vk and therefore

(2.21) wk+1 ≤ wk.

Moreover, we observe that

wk = (ũ− Ck)+ =

(

ũ− Ck+1 +
1

2k+1

)

+

=

(

vk+1 +
1

2k+1

)

+

,

and, as a result,

(2.22) {wk+1 > 0} = {vk+1 > 0} ⊆

{

wk >
1

2k+1

}

.

We now introduce the following number

(2.23) τ := p∗
(

p∗ −
p∗

r
− 1

)−1

<
p∗

p− 1
,

in such a way that

(2.24)
1

p∗
+

1

r
+

1

τ
= 1.

Thanks to the lower bound for q, we also have that

p∗ −
p∗

r
− 1 > p∗ −

p∗

n/p
− 1 =

np

n− p
−

p2

n− p
− 1 = p− 1,

and it clearly follows from its very definition that

τ >
p∗

p∗ − 1
> 1.
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From this, (2.21) and (2.22), using Hölder inequality with exponents p∗, r and τ ,
we get that

∫

Ω

wk+1(x) |f̃(x)| dx =

∫

Ω∩{wk+1>0}

wk+1(x) |f̃(x)| dx

≤ ‖f̃‖Lr(Ω) ‖wk+1‖Lp∗(Ω) |Ω ∩ {wk+1 > 0}|1/τ

≤ ‖wk‖Lp∗(Ω)

∣

∣

∣

∣

Ω ∩

{

wk >
1

2k+1

}∣

∣

∣

∣

1/τ

≤ U
1/p
k

(

2p
∗(k+1)

∫

Ω∩{wk>
1

2k+1 }
wp∗

k

)1/τ

≤ C̃k U
1/p
k U

p∗/(pτ)
k ,

(2.25)

where C̃ > 1. We now define

γ :=
1

p
+

p∗

τp
,

and, thanks to (2.23), we can easily notice that

(2.26) γ > 1,

By (2.20) and (2.25), we can notice that

Uk+1 ≤ Ĉk Uγ
k ,

for some Ĉ > 1. As a result, recalling (2.17) and keeping in mind that δ > 0 can
be taken sufficiently small, we conclude that

lim
k→+∞

Uk = 0.

This and (2.16) give that

‖(ũ− 1)+‖
p

Lp∗(Ω)
= 0,

and therefore ũ ≤ 1. As a consequence, recalling (2.14), for every x ∈ Ω,

(2.27) uf(x) ≤
‖uf‖Lp∗(Ω) + ‖f‖Lr(Ω)

δ
,

and this closes the proof. �

Corollary 2.5. Assume that β ∈ [0, 1), 0 < s < 1, 1 < p < n and let u be a weak

solution of (1.2). Then

(2.28) u ∈ L∞(Rn) for every α > max

{

0, (q − 1)

(

n

p
− 1

)

− p

}

.

If β = 1, 0 < s < 1 is such that 1 < sp < n and u is a weak solution of (1.2),
then

(2.29) u ∈ L∞(Rn) for every α > max

{

0, (q − 1)

(

n

p
− s

)

− sp

}

.
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Proof. First we notice that if

(2.30) r

(

α+

(

1−
n

p

)

(q − 1)

)

+ n > 0,

then

|x|αuq−1 ∈ Lr(B).

This follows noticing that, thanks to Lemma 2.3, it holds that
∫

B

|x|αrur(q−1) dx ≤ C

∫

B

|x|αr|x|(q−1)r(p−n)/p dx.

Now, it is clear that if

(2.31) α ≥

(

n

p
− 1

)

(q − 1),

then (2.30) is trivially satisfied for every r > 0, in particular for r > n
p . Therefore

the conclusion follows from Theorem 2.4.
On the other hand, if

(2.32) α <

(

n

p
− 1

)

(q − 1),

it is enough to take

r =
−n

(q − 1)

(

1−
n

p

)

+ α

,

and one can easily recognize that such r > n
p if and only if

(2.33) α >

(

n

p
− 1

)

(q − 1)− p.

Combining (2.31), (2.32) and (2.33) we immediately get (2.28). An analogous
argument by using Lemma 2.2 and [8, Theorem 3.1] gives the result for β = 1.

�

Remark 2.6. It is clear that the maximum found in (2.28) in the case β ∈ [0, 1)
imposes a new relation between p, q and n. By quite simple computations one can
find bounds on q in terms of p and n for which that maximum is actually 0. This

happens e.g. if n = 2, 3, 4, 5 and q < p2+n−p
n−p . For n ≥ 6 one has more restrictions

on p. On the other hand, in the case β = 1, we find that u ∈ L∞(Rn) for every
α > 0 if we restrict the range of 0 < s < n

p as

0 < s <
n

p

q − 1

p+ q − 1
.

Finally, we recall the following well-known compactness result:

Lemma 2.7. Let Ω ⊂ R
n be a bounded domain, let p > 1 and let {un}n∈N be a

bounded sequence in Lp(Ω) such that {un}n∈N converges to u a.e. Then u ∈ Lp(Ω)
and un → u in Lr(Ω) for r ∈ [1, p).
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3. Existence and non-existence results

The proof of the existence result follows by using the mountain pass lemma
(Proposition A.2) due to Ambrosetti and Rabinowitz.

Lemma 3.1. Let p > 1 and α > 0. Then the following holds:

(i) (case β = 1) if s ∈ (0, 1) and n > sp, then the inclusion W s,p
rad(R

n) ⊂
Lr(|x|α, B) is compact provided that

(3.1) 1 ≤ r <

{

np
n−sp−αp if α < n−sp

p ,

∞ if α ≥ n−sp
p .

(ii) (case β ∈ [0, 1)) if n ≥ max{2, p}, then the inclusion W 1,p
rad(R

n) ⊂ Lr(|x|α, B)
is compact provided that

(3.2) 1 ≤ r <

{

np
n−p−αp if α < n−p

p ,

∞ if α ≥ n−p
p .

Proof. We start proving (i), hence let u ∈ W s,p
rad(R

n). By virtue of Lemma 2.2, we
have

∫

B

|x|αr |u|r dx ≤ c‖u‖rW s,p(Rn)

∫

B

|x|αr+sr− rn
p dx

= nωnc‖u‖
r
W s,p(Rn)

∫ 1

0

ρr(α+s−n
p
)+n−1 dρ

= nωnc‖u‖
r
W s,p(Rn)

1

r(α + s− n
p ) + n

(3.3)

provided that n+ r(α + s− n
p ) > 0.

Now, let {un}n∈N be a bounded sequence in W s,p
rad(R

n). Up to a subsequence, by
the compact embedding theorem for fractional Sobolev spaces [14, Corollary 7.2],

un → u strongly in Lm(B) for all m < p∗s

un → u a.e. in B.

Therefore,

|x|αun → |x|αu a.e. in B.

By estimate (3.3) the sequence {|x|αun}n∈N is bounded in Lr(B) for all r satisfying
(3.1). In turn, in light of Lemma 2.7, it follows that

|x|αun → |x|αu strongly in Lq(B)

for all q < r, and then the lemma follows.
The proof of (ii) runs in an analogous way, so we omit the details. �

Let us check that J satisfies the Palais-Smale condition.

Lemma 3.2. Let p < q < p∗β,α. For β ∈ [0, 1] the functional J defined in (1.3)
satisfies the conditions

(i) J (0) = 0 and J (v) ≤ 0 for some v 6= 0 in Xβ,rad(B),
(ii) there exists µ ∈

(

0, ‖v‖β
)

and σ > 0 such that J ≥ σ on Sµ := {u ∈
Xβ,rad(B) : ‖u‖β = µ}.
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Proof. Let us check (i). Obviously J (0) = 0. Let u0 ∈ Xβ,rad(B) be a positive
function such that ‖u0‖β = 1. Then, since q > p, we have that there exists a
positive constant C > 0 such that

J (tu0) ≤ (1 + C)
tp

p
−

tq

q

∫

Ωρ

|x|α(u+
0 )

q dx ≤ 0(3.4)

for t > 0 large enough. The constant C can be taken equal to zero in the cases
β = 0 or β = 1.

Let us check (ii). First, we consider the pure nonlcal case β = 1. We observe
that J is well defined since for x ∈ B, by Lemma 2.2

∫

B

|x|α(u+)q dx ≤ c[u]qs,p

∫

B

|x|α+sq− nq
p dx

= c[u]qs,p

∫ 1

0

rα+q(s−n/p)+n−1 dr

≤ c[u]qs,p

(3.5)

for q < p∗β,α. Since q > p, from (3.5) we get that

(3.6) J (u) ≥
1

p
[u]ps,p − c[u]qs,p =

µp

p
− cµq = σ > 0

if [u]s,p = µ for µ > 0 small enough.

The case β ∈ [0, 1) works in a similar way replacing [u]s,p with ‖∇u‖Lp(B) and
taking s = 1. This closes the proof. �

Remark 3.3. We note that the function v in (i) is given by tu0 in (3.4). Since t can
be taken large enough and u0 has been normalized, we can infer that ‖tu0‖β does
not depend on s and therefore the Mountain Pass solution found in (ii) has a norm
which is uniformly bounded (in s).

Lemma 3.4. Let p < q < p∗β,α. Then, the functional J satisfies the Palais-Smale

condition for every β ∈ [0, 1]

Proof. Let us first prove that every Palais-Smale sequence {un}n∈N ⊂ Xβ,rad(B)
for J is bounded. Since J ′(un) → 0,
(3.7)

|〈J ′(un), un〉| =

∣

∣

∣

∣

(1− β)‖∇un‖
p
Lp(B) + β [un]

p
s,p −

∫

B

|x|α(u+
n )

q dx

∣

∣

∣

∣

≤ ‖un‖β,

for n large enough. The condition |J (un)| ≤ C is equivalent to

(3.8)

∣

∣

∣

∣

1− β

p
‖∇un‖

p
Lp(B) +

β

p
[un]

p
s,p −

1

q

∫

B

|x|α(u+
n )

q dx

∣

∣

∣

∣

≤ C.

From (3.7) and (3.8) it follows that

(1− β)‖∇un‖
p
Lp(B) + β[un]

p
s,p ≤ pC +

p

q

∫

B

|x|α(u+
n )

q dx

≤ pC +
p

q
‖un‖β +

(1− β)p

q
‖∇un‖

p
Lp(Rn) +

βp

q
[un]

p
s,p

from where, since p < q, we get that
(

1−
p

q

)

((1− β)‖∇un‖
p
Lp(B) + β[un]

p
s,p) ≤ pC +

p

q
‖un‖β.
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In particular, when β = 1 this gives that
(

1−
p

q

)

[un]
p
s,p ≤ pC +

p

q
[un]s,p,

and when β ∈ [0, 1),
(

1−
p

q

)

‖∇un‖
p
Lp(B) ≤ pC +

p

q
‖∇un‖Lp(B).

Hence, for β ∈ [0, 1] the sequence {un}n∈N is bounded in Xβ,rad(B). Passing now
to a subsequence, we have un ⇀ u in Xβ,rad(B). Let us first prove that

(3.9) lim
n→∞

∫

B

|x|α(u+
n )

q−1(un − u) dx = 0.

Up to a further subsequence, the sequence {un − u}n∈N converges weakly to zero

in Lp∗

β (B). Then, in order to get (3.9) we have to prove that |x|αuq−1
n → |x|αuq−1

strongly in L(p∗

β)
′

, where

(3.10)
(

p∗β
)′

=

{ np
np+p−n if β ∈ [0, 1),

np
np+sp−n if β = 1.

This is equivalent to prove that

|x|α/(q−1)un → |x|α/(q−1)u strongly in L(q−1)(p∗

β)
′

(B).

By using Lemma 3.1, this is actually true whenever

(3.11) (q − 1)(p∗β)
′ <

{ np
n−p− αp

q−1

if β ∈ [0, 1),
np

n−sp− αp
q−1

if β = 1,

that is, when

q < p∗β,α.

Therefore, from (2.7), we have for all n ∈ N,

|〈Ls,p,β(un), un − u〉| =
∣

∣

∣〈J ′(un), un − u〉+

∫

B

|x|α(u+
n )

q−1(un − u) dx
∣

∣

∣

≤ ‖J ′(un)‖X∗

β
(B)‖un − u‖β +

∫

B

|x|α(u+
n )

q−1(un − u) dx

and the latter tends to 0 as n → ∞ by virtue of (3.9).
Finally, since by Remark 2.1, Ls,p,β fulfills the (S)-property of compactness,

due to Proposition A.4 the previous computations give that un → u strongly in
Xβ,rad(B), which concludes the proof. �

We are now in position to prove our existence result.

Proof of Theorem 1.1. From Lemmas 3.2 and 3.4 we are in position to apply the
Mountain pass Theorem stated in Proposition A.2. Indeed, when 1 < p < q < p∗β,α
there is a function u ∈ Xβ,rad(B) which is a critical point of J and hence is a
non-trivial weak solution of (1.2). Moreover, Corollary 2.5 and Remark 2.6 ensure
that u ∈ L∞(B) under our assumptions of the parameters. �

As already mentioned, the non-existence result follows from [34].
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Proof of Theorem 1.2. Given u ∈ Xβ(B), denote uλ(x) = u(λx) for λ > 1. For any
β ∈ [0, 1] it is easy to check that

‖uλ‖β ≤ λ−γ‖u‖β

with γ = n−sp
p when β ∈ [0, 1) and γ = n−p

p when β = 1.

Denote f(x, t) = |x|αtq−1 and F (x, u) =
∫ u

0 f(x, t) dt and let u ∈ Xβ(B) be a
weak solution of (1.2). A straightforward computation shows that f is supercritical
in the sense that

βtf(x, t) > nF (x, t) + x · Fx(x, t) for all t ∈ B and t 6= 0

whenever q > (n+ α)/γ, i.e., when

(3.12) q >
p(n+ α)

n− sp
when β ∈ (0, 1], q >

p(n+ α)

n− p
when β = 1.

If u ∈ Xβ(B) ∩W 1,r(B) ∩ L∞(Ω), by [34, Proposition 1.4] we have that u ≡ 0.
In particular, if u ∈ Xβ,rad(B) is a weak solution of (1.2), by [14, Proposition 2.2]

we have that u ∈ W 1,p(B); moreover, by Corollary 2.5 and Remark 2.6 u ∈ L∞(B).
As a consequence, by [34, Proposition 1.4] we obtain that u ≡ 0. �

4. Stability of solutions

This section is devoted to prove our stability result for solutions of (1.2) as s ր 1.
We start with the following useful lemma.

Lemma 4.1. Let sk ↑ 1 and vk ∈ W 1,p
0 (B) be such that supk ‖∇vk‖

p
Lp(Rn) < ∞.

Assume without loss of generality that vk → v strongly in Lp(B). Then, for every

u ∈ W 1,p
0 (Ω) we have that

〈Lsk,p,βu, vk〉 → 〈−∆pu, vk〉.

Proof. If we prove that for any u ∈ W 1,p
0 (B)

(4.1) 〈−∆pu, v〉 ≤ lim inf
k→∞

〈Lsk,p,βu, v〉,

then applying (4.1) to −u gives the reverse inequality and hence the result. By a
refinement of [7, Section 3] we have

(4.2) ‖∇(u+ tv)‖pLp(Rn) ≤ lim inf
k→∞

[u+ tvk]
p
sk,p

Moreover, from [7] it follows that

(4.3) lim
k→∞

[u]psk,p = ‖∇u‖pLp(Rn).

Denote I := ‖∇(u+ tv)‖pLp(Rn) − ‖∇u‖pLp(Rn). We write

I = βI + (1 − β)I.

By using the lower semicontinuity of the Lp norm, we have

(1− β)I ≤ (1− β) lim inf
k→∞

(

‖∇(u+ tvk)‖
p
Lp(Rn) − ‖∇u‖pLp(Rn)

)

.

From (4.2) and (4.3) we get

βI ≤ β lim inf
k→∞

(

[u+ tvk]
p
sk,p

− [u]psk,p
)

.
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Then, from the last three relations and the superaditivity property of the liminf we
obtain

I ≤ lim inf
k→∞

(

(1− β)
(

‖∇(u+ tvk)‖
p
Lp(Rn) − ‖∇u‖pLp(Rn)

)

+ β
(

[u+ tvk]
p
sk,p − [u]psk,p

)

)

.

Then, from [21, Lemma 2.7] it is immediate that

〈−∆pu, v〉+ o(1) ≤ lim inf
k→∞

((1 − β)〈−∆pu, vk〉+ β〈(−∆p)
sku, vk〉) + o(1)

= lim inf
k→∞

〈Lsk,p,βu, vk〉+ o(1)

from where (4.1) follows. �

Proof of Theorem 1.3. The proof closely follows the one of [21, Theorem 3.3]. We
start assuming that uk → u in Lp(B). Since the sequence {uk}k∈N is uniformly

bounded in Xβ,rad(B), and hence, due to [7], we can infer that u ∈ W 1,p
0 (B).

Possibly passing to a subsequence, we can also suppose that uk → u a.e. in B.
Now, we define the sequence of functions {ηk}k∈N as follows:

(4.4) ηk := Lsk,p,βuk ∈ W−1,p′

(B).

By equation (1.2) and the fact that supk∈N ‖uk‖
p
β < ∞, we get that the sequence

{ηk}k∈N is actually bounded in W−1,p′

(B), and therefore, possibly passing once

again to a subsequence, we can infer the existence of a function η ∈ W−1,p′

(B)
such that

(4.5) ηk ⇀ η weakly in W−1,p′

(B).

Now, since the uk’s are weak solutions of (1.2), and exploiting the appropriate

convergences, we find that for every v ∈ W 1,p
0 (B) it holds that

(4.6)

0 = 〈Lsk,p,β , v〉 −

∫

B

|x|αuq−1
k v dx → 〈η, v〉 −

∫

B

|x|αuq−1v dx as k → +∞.

The monotonicity of both the p-Laplacian and the fractional p-Laplacian implies
that

(4.7)

0 ≤ 〈Lsk,p,βuk, uk − v〉 − 〈Lsk ,p,βv, uk − v〉

=

∫

B

|x|αuq−1
k (uk − v) dx− 〈Lsk ,p,βv, uk − v〉.

Passing to the limit as k → +∞, and using Lemma 4.1, we get

(4.8)
0 ≤

∫

B

|x|αuq−1(u− v) dx − 〈−∆pv, u− v〉

= 〈η, u− v〉 − 〈−∆pv, u− v〉.

Now, taking v = u− tw for a given w ∈ W 1,p
0 (B) and with t > 0, we obtain that

(4.9)

0 ≤ 〈η, tw〉 − 〈−∆p(u − tw), tw〉

= 〈η, w〉 − 〈−∆p(u − tw), w〉

→ 〈η, w〉 − 〈−∆pu,w〉 as t → 0+.

This shows that u ∈ W 1,p
0 (B) is a weak solution of (1.2) with β = 0. �
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5. The linear case: existence of non-radial ground states

The aim of this section is, following the ideas of [38], to prove that under suitable
conditions on β and q, there exists α∗ > 0 such that, ground states of Ls,p,β in the
linear case are no radial provided α > α∗.

We recall the following relation (see for instance [22, Lemma 4.2]).

Lemma 5.1. Let u ∈ W 1,p(Rn), 1 ≤ p < ∞. Then, for each 0 < s < 1
∫∫

R2n

|u(x)− u(y)|p

|x− y|n+2s
dxdy ≤

nωn

p

(

1

1− s
‖∇u‖pLp(Ω) +

2p

s
‖u‖pLp(Ω)

)

.

In particular, if u ∈ Xp(B), for some c = c(n, s, p)
∫∫

R2n

|u(x)− u(y)|p

|x− y|n+2s
dxdy ≤ c‖∇u‖p.

In order to simplify our notation, in this section we redefine the Gagiardo semi-
norm as

(5.1) [u]s,p :=

(

C(n, s, p)

∫∫

R2n

|u(x)− u(y)|p

|x− y|n+2s
dx dy

)1/p

,

where, in light of Lemma 5.1 the constant C is chosen such that

(5.2) [u]s,p ≤ ‖∇u‖Lp(Ω)

for all u ∈ Xp(B).
Moreover, for β ∈ [0, 1) we set

Ls,βu := (−∆)u+ β(−∆)su.

We say that u ∈ X2(B) is a ground state of

Ls,βu = |x|αuq−1, u > 0 in B

if u is a minimizer of

inf
06=u∈X2(B)

R(u)

where

R(u) =
Z(u)

N(u)
=

β[u]2s,2 + ‖∇u‖2L2(Ω)
(∫

B
|x|α|u|q dx

)
2
q

.

Proposition 5.2. Let α > 0, 0 ≤ β ≤ 1, n ≥ 3 and q > 2 + β. Then any radial

minimizer of R satisfies that

(5.3) β[u]2s,2 + ‖∇u‖2L2(B) ≤
(1 + β)(n− 1)

q − 2− β

∫

B

u2

|x|2
dx

Proof. We assume that N(u) = 1. Let u ∈ X2(B) be a minimizer of R and define
g(t) = R(u + tv) for t ≥ 0 and v ∈ X2(B). Then g′′(0) ≥ 0 and g′(0) = 0, which
gives

g′′(0) =
1

N2(u)
(〈Z ′′(u)v, v〉N(u)− 〈N ′′(u)v, v〉Z(u))

An easy computation shows that

〈Z ′′(u)v, v〉 = 2

(

βC

∫∫

Rn×Rn

|v(x) − v(y)|2

|x− y|n+2s
dxdy +

∫

B

|∇v|2 dx

)
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and that

〈N ′′(u)v, v〉 = 2(2− q)

(∫

B

|x|αuv dx

)2

+ 2(q − 1)

∫

B

|x|αv2 dx.

Then, g′′(0) ≥ 0 is equivalent to I1 ≤ I2 where

I1 :=

(

(2− q)

(∫

B

|x|αuv dx

)2

+ (q − 1)

∫

B

|x|α|uv|2 dx

)

(β[u]2s,2 + ‖∇u‖2L2(B))

I2 :=

(

βC

∫∫

Rn×Rn

|v(x)− v(y)|2

|x− y|n+2s
dxdy +

∫

B

|∇v|2 dx

)

Observe that by (5.2)

I2 ≤ (1 + β)‖∇v‖2L2(B).

Assume u is radial and choose v of the form v = u(r)f(σ), where f is a smooth
function defined in Sn−1 with zero mean. Observe that v ∈ X2(B) for n ≥ 3.

Since

|∇v|2 =

(

∂u

∂r

)2

f2 +
u2

r2
|∇σf |

2

we have that

1

1 + β
I2 ≤

∫

B

|∇v|2 dx =

∫

B

|∇u(|x|)|2 dx

∫

Sn−1

f2 dSσ +

∫

B

u(|x|)2

|x|2
dx

∫

Sn−1

|∇σf |
2 dSσ

≤
(

β[u]2s,2 + ‖∇u‖2L2(B)

)

∫

Sn−1

f2 dSσ +

∫

B

u(|x|)2

|x|2
dx

∫

Sn−1

|∇σf |
2 dSσ;

since f has zero mean and N(u) = 1 we get

I1 =

(

(2− q)

(∫

B

|x|αu(|x|) dx

∫

Sn−1

f dSσ

)2

+ (q − 1)

∫

B

|x|αu(|x|)2 dx

∫

Sn−1

f2 dSσ

)

Z(u)

= (q − 1)(β[u]2s,2 + ‖∇u‖2L2(B))

∫

Sn−1

f2 dSσ.

Then I1 ≤ I2 means that

(q−2−β)(β[u]2s,2+‖∇u‖2L2(B))

∫

Sn−1

f2 dSσ ≤ (1+β)

∫

B

u(|x|)2

|x|2
dx

∫

Sn−1

|∇σf |
2 dSσ

that is
q − 2− β

1 + β
(β[u]2s,2 + ‖∇u‖2L2(B)) ≤ Sn(f)

∫

B

u2

|x|2
dx

where

Sn(f) =

∫

Sn−1 |∇σf |
2 dSσ

∫

Sn−1 f2 dSσ
.

Since the infimum of Sn(f) over all f ∈ H1(Sn−1) with
∫

Sn−1 = 0 equals to n− 1,
we get

β[u]2s,2 + ‖∇u‖2L2(B) ≤
(1 + β)(n− 1)

q − 2− β

∫

B

u2

|x|2
dx

and the proof concludes. �

We are now ready to prove Theorem 1.5.
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Proof of Theorem 1.5. Given 0 < r ≤ 1, let uα(r) ∈ X2(Br) be the ground state of

−∆u = |x|αuq−1, u > 0 in Br

normalized such that Z(uα(r)) = 1. When r = 1 we just write uα.
Step 1. It holds that

(5.4)

∫

Br

|∇uα|
2 dx → 0 as α → ∞.

Indeed, from the equation for uα, as in [38, Equation 16], we get

∫

Br

|∇uα|
2 dx ≤

∫

Br

|∇uα|
2 dx+ β[uα]

2
s,2 ≤

∫

Br
|x|αuq

α dx
∫

B |x|αuq
α dx

.

Now, since by (5.2), ‖uα‖
2
L2(Br)

≤ ‖uα‖
2
L2(Br)

+ β[uα]
2
s,2 ≤ (1 + β)‖uα‖

2
L2(Br)

, the

claim follows similarly as in the proof of [38, Lemma 3.1].
Step 2. Consider the ground state uα in B. Let us see that

(5.5)

∫

B

u2
α

|x|2
dx → 0 as α → ∞.

Indeed, as in [38, Proposition 3.1, Step 1], observe that there exists 0 < r < 1
independent of α such that uα(r) < ε.

We decompose B as
∫

B

u2
α

|x|2
dx =

∫

Br

u2
α

|x|2
dx+

∫

Ar

u2
α

|x|2
dx

≤ 2

∫

Br

ũ2
α

|x|2
dx+ 2

∫

Br

uα(r)
2

|x|2
dx+

∫

Ar

u2
α

|x|2
dx

where Ar = B \Br, ũα := uα − uα(r) and ũα ∈ X2(Br).
Observe that, as in [38, Equation 13], from Hardy’s inequality and (5.4) we get

∫

Br

ũ2
α

|x|2
dx ≤

4

(n− 2)2

∫

Br

|∇uα|
2 dx → 0 as α → ∞

and, due to the election of r,
∫

Br

uα(r)
2

|x|2
dx ≤ Cε2 as α → ∞.

For the third term, observe that (5.4) gives in particular that

uα(r) ⇀ 0 weakly in X2 as α → ∞.

which, together with Rellich-Kondrakov theorem gives
∫

Ar

u2
α

|x|2
dx → 0 as α → ∞.

Mixing up the last expressions we obtain (5.5).

Step 3. Finally, from (5.3) and (5.5) the result follows. �
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Appendix A. Mountain pass lemma

Definition A.1. We say that the functional J satisfies the Palais-Smale compact-

ness condition if each sequence {un}n∈N ⊂ Xrad(B) such that

(i) {J (un)}n∈N is bounded, and
(ii) J ′(un) → 0 in Xrad(B)

is precompact in Xrad(B).

We state the mountain-pass theorem due to Ambrossetti and Rabinowitz [1].

Proposition A.2. Let E be a Banach space and let J ∈ C1(E,R) satisfy the

Palais-Smale condition. Suppose that

(i) J (0) = 0 and J (e) = 0 for some e 6= 0 in E;

(ii) there exists ρ ∈ (0, ‖e‖), σ > 0 such that J ≥ σ in Sρ = {u ∈ E : ‖u‖ = ρ}.

Then J has a positive critical value

c = inf
h∈Γ

max
t∈[0,1]

J (h(t)) ≥ σ > 0

where

Γ = {h ∈ C([0, 1], E) : h(0) = 0, h(1) = e}.

Definition A.3. The functional J defined onE satisfies the (S)-property if {un}n∈N

is a sequence in E such that un ⇀ u weakly in E and 〈J (un), un − u〉 → 0, then
un → u strongly in E.

The following result characterizes the (S)-property. See [33, Proposition 1.3].

Proposition A.4. Let E be a uniformly convex Banach space and let Ap ∈ C1(E,R)
be such that

(i) 〈Ap(u), v〉 ≤ r‖u‖p−1
E ‖v‖E

(ii) 〈Ap(u), u〉 = r‖u‖pE
for some r > 0, for all u, v ∈ E. Then Ap satisfies the (S)-property.
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