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Abstract: Osteoarticular injury is the most common presentation of active brucellosis in humans.
Osteoblasts and adipocytes originate from mesenchymal stem cells (MSC). Since those osteoblasts
are bone-forming cells, the predilection of MSC to differentiate into adipocytes or osteoblasts is
a potential factor involved in bone loss. In addition, osteoblasts and adipocytes can be converted
into each other according to the surrounding microenvironment. Here, we study the incumbency
of B. abortus infection in the crosstalk between adipocytes and osteoblasts during differentiation
from its precursors. Our results indicate that soluble mediators present in culture supernatants
from B. abotus-infected adipocytes inhibit osteoblast mineral matrix deposition in a mechanism
dependent on the presence of IL-6 with the concomitant reduction of Runt-related transcription
factor 2 (RUNX-2) transcription, but without altering organic matrix deposition and inducing nuclear
receptor activator ligand kβ (RANKL) expression. Secondly, B. abortus-infected osteoblasts stimulate
adipocyte differentiation with the induction of peroxisome proliferator-activated receptor γ (PPAR-γ)
and CCAAT enhancer binding protein β (C/EBP-β). We conclude that adipocyte–osteoblast crosstalk
during B. abortus infection could modulate mutual differentiation from its precursor cells, contributing
to bone resorption.
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1. Introduction

Brucellosis is a zoonotic disease caused by Brucella spp. Clinical manifestations of
human brucellosis involve sweats, undulant fever, arthralgia, myalgia, lymphadenopathy,
and hepatosplenomegaly [1]. Osteoarticular diseases are the most frequent clinical indica-
tions of active brucellosis [2,3]. The most common forms of osteoarticular involvement are
spondylitis, sacroiliitis, and peripheral arthritis [3].

Clinical aspects and imaging findings of osteoarticular brucellosis have been described,
but the molecular mechanisms involved in the pathogenesis of bone disease have not been
completely elucidated until now [4].

Osteoblasts are responsible for the deposition of bone matrix and are thought to
facilitate bone calcification and mineralization [5]. In contrast, osteoclasts drive resorption
of the bone by acidification and release of lysosomal enzymes [6].

Osteoblasts originate from multipotent mesenchymal stem cells (MSC). In the bone
marrow, MSC could differentiate into fibroblasts, myocytes, chondrocytes, osteoblasts,
and adipocytes, in a process that depends on a variety of external cues that participate
in this delicate balance [7]. Bone tissue formation and the homeostatic maintenance are
attributed to the activity of MSC from bone marrow. The microenvironment present in bone
marrow plays a critical role in MSC maintenance and in the regulation of the osteogenic
process provided by signals from systemic factors and extracellular matrix. In this context,
adipocyte differentiation of MSC in the healthy bone is tightly regulated [8].
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It has been demonstrated that a pathological decrease in bone mineral density is
followed by fat accumulation [9–11]. Since both osteoblasts and adipocytes originate from
MSC, it is expected that the predilection of MSC to differentiate into adipocyte instead of
osteoblast lineage is a contributing factor to bone loss. The commitment of MSC toward each
osteoblast or adipocyte lineage is dependent on specific transcriptional regulators [9,12].
Among these, peroxisome proliferator-activated receptor gamma (PPAR-γ) and CCAAT
enhancer binding protein α (C/EBPα) are critical regulators of adipogenesis [13]. In
contrast, Runt-related transcription factor 2 (Runx2) is the master transcription factor
for osteoblast differentiation [14–16]. This process is also regulated by PPAR-γ, which
suppresses osteoblastogenesis through the inhibition of Runx2 transcription [17].

Beyond this reciprocal regulation during bone formation, osteoblasts and adipocytes
can be converted into each other under appropriate conditions, indicating a high degree
of plasticity between these two cell types [18,19]. They also share a variety of genetic,
hormonal, and environmental factors [20]. Moreover, the increase in the accumulation of
adipocytes and the soluble factors in bone marrow could affect bone remodeling, not only
via modulation of the osteoblast but also by the regulation of osteoclast development and
activity [21].

Despite the multiplicity of symptoms, the inflammatory features of the brucellosis in
humans during the acute and chronic stages of the disease, together with the presence of
the bacteria in inflamed tissues, indicate that a strong and localized inflammatory response
is induced by Brucella [22]. Previous studies suggested that local TNF-α and IL-6 hinder
new bone formation [23,24]. Both cytokines could be secreted by adipocytes. However, we
demonstrated that IL-6 is secreted by B. abortus-infected adipocytes [25]. The consequence of
IL-6 on osteoblast differentiation previously demonstrated that IL-6 inhibits the expression
of Runx2 and Osterix (Osx) with concomitant inhibition of matrix mineralization [26].

We have already reported that B. abortus can infect and survive in osteoblasts and
adipocytes and that this infection induces the expression of proinflammatory cytokines,
matrix metalloproteases and chemokines, which could be implicated in the osteoarticu-
lar manifestations of brucellosis [25,27,28]. Here, we investigate the crosstalk between
B. abortus-infected osteoblasts and adipocytes and the incumbency of soluble mediators
produced by each of these in the modulation of precursor cell differentiation.

2. Results
2.1. Culture Supernatants from B. abortus-Infected Adipocytes Inhibit Osteoblast Differentiation

The proximity of adipocytes to osteoblasts and their precursor cells in the bone marrow
allow us to hypothesize that soluble mediators from B. abortus-infected adipocytes may
modify the differentiation of osteoblasts. To test this hypothesis, osteoblast precursor
cells were stimulated with culture supernatants from B. abortus-infected adipocytes in the
presence of an osteoblast differentiation culture medium. As a control, cells were stimulated
with culture supernatants from non-infected adipocytes. Alkaline phosphatase (ALP) is
both an essential enzyme for mineralization and an osteoblast phenotype marker [29,30].
Thus, ALP activity was measured in osteoblasts differentiated in the presence of conditioned
media from B. abortus-infected adipocytes or conditioned media from non-infected cells
as a control. ALP activity was reduced by conditioned media from B. abortus-infected
adipocytes, but it was not significantly modified by conditioned media from uninfected
adipocytes (Figure 1). These results indicate that B. abortus-infected adipocytes release
soluble mediators able to down-modulate osteoblast differentiation and activity.
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Figure 1. B. abortus-infected adipocytes inhibit osteoblast differentiation. Pre-osteoblasts were dif- 95 
ferentiated in the presence of culture supernatants from B. abortus-infected adipocytes at multiplic- 96 
ity of infection (MOI) 100 (SN-BA) or culture supernatants from non-infected adipocytes as control 97 
(SN-NI). Scale bar: 50 µm. Alkaline phosphatase (ALP) activity was revealed by staining with 98 
BCIP-NBT solution (A and B). Quantification of ALP activity was performed on 2 mg total protein 99 
of cell lysates incubated with pNPP for 10 min at 37 °C. The absorbance was measured at 420 nm 100 
on a microplate reader (C). NT: non-treated. *p < 0.001 vs. cells treated with culture supernatants 101 
from non-infected adipocytes (SN-NI). 102 
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Figure 1. B. abortus-infected adipocytes inhibit osteoblast differentiation. Pre-osteoblasts were differ-
entiated in the presence of culture supernatants from B. abortus-infected adipocytes at multiplicity of
infection (MOI) 100 (SN-BA) or culture supernatants from non-infected adipocytes as control (SN-NI).
Scale bar: 50 µm. Alkaline phosphatase (ALP) activity was revealed by staining with BCIP-NBT
solution (A,B). Quantification of ALP activity was performed on 2 mg total protein of cell lysates
incubated with pNPP for 10 min at 37 ◦C. The absorbance was measured at 420 nm on a microplate
reader (C). NT: non-treated. * p < 0.001 vs. cells treated with culture supernatants from non-infected
adipocytes (SN-NI).

2.2. Culture Supernatants from B. abortus-Infected Adipocytes Inhibit Osteoblast Differentiation
Largely Due to IL-6

IL-6 has different effects on bone turnover. Among these, IL-6 could exacerbate bone
loss through the inhibition of osteoblast differentiation [31]. As we have demonstrated,
B. abortus-infected adipocytes secrete IL-6 [25] (Figure 2A). Additionally, IL-6 was secreted
by osteoblasts stimulated with culture supernatants from B. abortus-infected adipocytes,
while supernatants from non-infected adipocytes had no effect. The IL-6 level from os-
teoblasts exposed to the conditioned medium showed an early release peak at 48 h, remain-
ing at a stable level up to three weeks after the challenge (Figure 2C). To determine if the
amounts of IL-6 present in culture supernatants from B. abortus-infected adipocytes could
inhibit osteoblast differentiation, osteoblast precursor cells were cultured with differenti-
ation media in the presence of culture supernatants from B. abortus-infected adipocytes
preincubated or not for 1 h with either an anti-IL-6 blocking antibody or its isotype control.
Thus, ALP activity was evaluated on day 14 post-differentiation. Neutralization of IL-6
reduced the ability of culture supernatants from B. abortus-infected adipocytes to inhibit
osteoblast differentiation, whereas the isotype control had no effect (Figure 2B). From these
results, we concluded that IL-6 plays a key role in the inhibition of osteoblastogenesis
induced by B. abortus-infected adipocytes.
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Figure 2. B. abortus-infected adipocytes inhibit osteoblast differentiation largely due to IL-6. IL-6 in 123 
adipocyte culture supernatants were detected by ELISA 24 h after B. abortus infection (A). Pre- 124 
osteoblasts were differentiated in the presence of culture supernatants from B. abortus-infected 125 
adipocytes at MOI 100 (SN-BA) or culture supernatants from non-infected adipocytes as control 126 
(SN-NI). Supernatants were incubated with an anti-IL-6 neutralizing antibody (SN-Ba-anti-IL-6) or 127 
isotype control (SN-BA-Isotype). Recombinant mouse IL-6 (rIL-6, 1 ng/mL) was used as a positive 128 
control. Osteoblast differentiation was measured by staining ALP activity (B). IL-6 secretion was 129 
measured at different times during the osteoblast differentiation process carried out in the pres- 130 
ence of culture supernatants from B. abortus-infected adipocytes at MOI 100 (SN-BA) or culture 131 
supernatants from non-infected adipocytes (SN-NI) by ELISA (C). NT: non-treated. Scale bar: 50 132 
µm. * p < 0.001, ** p < 0.001, and *** p < 0.0001 vs. cells treated with culture supernatants from non- 133 
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Figure 2. B. abortus-infected adipocytes inhibit osteoblast differentiation largely due to IL-6. IL-
6 in adipocyte culture supernatants were detected by ELISA 24 h after B. abortus infection (A).
Pre-osteoblasts were differentiated in the presence of culture supernatants from B. abortus-infected
adipocytes at MOI 100 (SN-BA) or culture supernatants from non-infected adipocytes as control
(SN-NI). Supernatants were incubated with an anti-IL-6 neutralizing antibody (SN-Ba-anti-IL-6) or
isotype control (SN-BA-Isotype). Recombinant mouse IL-6 (rIL-6, 1 ng/mL) was used as a positive
control. Osteoblast differentiation was measured by staining ALP activity (B). IL-6 secretion was
measured at different times during the osteoblast differentiation process carried out in the presence of
culture supernatants from B. abortus-infected adipocytes at MOI 100 (SN-BA) or culture supernatants
from non-infected adipocytes (SN-NI) by ELISA (C). NT: non-treated. Scale bar: 50 µm. * p < 0.001,
** p < 0.001, and *** p < 0.0001 vs. cells treated with culture supernatants from non-infected cells
(SN-NI).

2.3. Culture Supernatants from B. abortus-Infected Adipocytes Inhibit the Osteoblast-Mediated
Matrix Mineralization

Osteoblasts are active bone-forming cells. The process is characterized by the de-
position and mineralization of the bone matrix, driving the rigidity of the skeleton [32].
Mineralization occurs within 7 to 10 days and can be identified by the presence of calcium-
rich deposits as the extracellular matrix in osteoblast culture. Experiments were aimed to
determine whether culture supernatants from B. abortus-infected adipocytes could affect the
deposition of bone mineral matrix. For this goal, the osteoblast differentiation process was
carried out in the presence of conditioned media from B. abortus-infected adipocytes. Cul-
ture supernatants from uninfected cells were included as control. The osteoblast-dependent
extracellular matrix mineralization was revealed by staining calcium-rich deposits with
alizarin red S. Figure 3 shows that osteoblast differentiation in the presence of B. abortus-
infected adipocyte culture supernatants resulted in much lower mineral deposition than
cultures stimulated with culture supernatants from uninfected adipocytes or unstimulated
cells. Together, these results indicate that soluble factors released from B. abortus-infected
adipocytes inhibit osteoblast-dependent extracellular matrix mineralization.
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Figure 3. B. abortus-infected adipocytes inhibit mineral matrix deposition by osteoblasts. Effects of
culture supernatants from B. abortus-infected adipocytes (SN-BA) on mineral deposition by osteoblasts.
Culture supernatants from non-infected adipocytes (SN-NI) were used as control (A,B). Calcium
deposition was revealed by spectrophotometric quantification (C). NT: non-treated. Scale bar: 50 µm.
*** p < 0.0001 vs. cells treated with culture supernatants from non-infected adipocytes (SN-NI).

2.4. Culture Supernatants from B. abortus-Infected Adipocytes Do Not Modulate Collagen
Deposition by Osteoblast

The organic component of bone is formed by 90% type I collagen [33]. The adequate
deposition of the organic matrix contributes to the adequate mineral matrix deposition and
bone architecture [34]. To establish whether culture supernatants from B. abortus-infected
adipocytes could modulate organic matrix deposition, osteoblast precursors were differen-
tiated in the presence of culture supernatants from B. abortus-infected adipocytes. Culture
supernatant from uninfected cells was used as control. Our results indicate that culture
supernatants from B. abortus-infected adipocytes do not modulate collagen deposition from
osteoblasts (Figure 4).

2.5. Culture Supernatants from B. abortus-Infected Adipocytes Induce RANKL Expression
in Osteoblasts

Nuclear receptor activator ligand kβ RANKL plays a key role in the differentiation
and activation of osteoclasts, thereby influencing bone remodeling [35]. Previous reports
demonstrated that this cytokine is upregulated in other bone infections [36]. Thus, we
studied whether conditioned media from B. abortus-infected adipocytes added in the
presence of osteoblast differentiation medium lead to RANKL expression in osteoblasts.

Our results indicate that culture supernatants from B. abortus-infected adipocytes
upregulate belatedly RANKL expression as measured in cell lysates compared with cells
stimulated with non-infected culture supernatants or untreated cells (Figure 5). RANKL
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was not detected in culture supernatants from osteoblasts (not shown). These results indicate
that supernatants from B. abortus-infected adipocytes induce the upregulation of RANKL,
which could contribute to bone damage through the induction of osteoclast differentiation.
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Figure 4. B. abortus-infected adipocytes do not modulate collagen deposition by osteoblasts. Ef-
fects of culture supernatants from B. abortus-infected adipocytes (SN-BA) on collagen deposition
by osteoblasts. Culture supernatants from non-infected adipocytes (SN-NI) were used as control.
Collagen deposition revealed by Sirius red staining (A,B). Spectrophotometric quantification of A (C).
Immunofluorescence with a specific antibody also revealed collagen deposition (D). NT: non-treated.
Scale bar: 50 µm. ns: non-significant.
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Figure 5. Culture supernatants from B. abortus-infected adipocytes induce RANKL expression by
osteoblasts. RANKL production by osteoblasts stimulated with supernatants from B. abortus-infected
adipocytes (SN-BA) or from adipocytes that were not infected (SN-NI) was determined in cell lysates
by ELISA. NT: non-treated. * p < 0.001, ** p < 0.001, and *** p < 0.001 vs. cells treated with culture
supernatants from non-infected cells (SN-NI). ns: non-significant.
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2.6. Supernatants from B. abortus-Infected Adipocytes Modulate Runx2 Transcription
in Osteoblasts

Runx2 and Osx are the main osteoblast transcription factors and regulators of os-
teoblast differentiation [37,38]. Thus, experiments were conducted to determine whether
supernatants from B. abortus-infected adipocytes could modulate Runx2 and Osx tran-
scription during osteoblast differentiation. Culture supernatants from B. abortus-infected
adipocytes were added to osteoblast precursors in the presence of osteoblast differentiation
medium, and the modulation of both transcription factors was evaluated at 1 and 14 days
post-stimulation. Our results indicated that osteoblasts exposed to supernatants from
B. abortus-infected adipocytes exhibited a significantly lower level of Runx2 gene tran-
scription at 1 (Figure 6A) and 14 (Figure 6B) days post-stimulation. Additionally, culture
supernatants from uninfected adipocytes had no effect (Figure 6). Runx2 could regulate the
expression of Osx. However, its expression is also mediated through Runx2-independent
pathways during osteoblast differentiation [39]. Thus, supernatants from B. abortus-infected
adipocytes were analyzed, aimed at determining whether they could modulate Osx tran-
scription. B. abortus-infected supernatants did not significantly modulate Osx transcription
during our experiments (Figure 6).
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Figure 6. Culture supernatants from B. abortus-infected adipocytes inhibit Runt-related transcription
factor 2 (Runx2) transcription by osteoblasts. Effects of culture supernatants from B. abortus-infected
adipocytes (SN-BA) on osteoblast differentiation transcription factors. Runx2, Osterix (Osx), and
osteopontin (OPN) transcription were determined by RT-qPCR at day 1 (A) and at day 14 (B) post-
stimulation. Cells stimulated with culture supernatants from non-infected adipocytes (SN-NI) were
used as control. NT: non-treated, ** p < 0.001, *** p < 0.0001 vs. cells treated with culture supernatants
from non-infected cells (SN-NI). ns: non-significant.

Osteopontin (OPN) is one of the non-collagenous proteins present in the bone ma-
trix. In inflammatory bone disease, OPN expression is increased [40–42]. Additionally,
we previously demonstrated that OPN transcription was increased in B. abortus-infected
osteoblasts [43]. However, culture supernatants from B. abortus-infected adipocytes were
unable to induce OPN transcription by osteoblasts during our experiments. Conversely,
culture supernatants from B. abortus-infected adipocytes induced the down modulation of
OPN transcription at day 14. Culture supernatants from non-infected cells had no effect.
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Together, these results indicate that conditioned media from B. abortus-infected adipocytes
inhibit Runx2 transcription without any effects on Osx or OPN transcription.

2.7. B. abortus-Infected Osteoblasts Modulate Adipocyte Differentiation

To determine whether conditioned media from B. abortus-infected osteoblasts affects
the adipocyte differentiation process, the reciprocal experiment was performed by adding
the conditioned media from B. abortus-infected osteoblasts to adipocyte precursors in the
presence of adipocyte differentiation media. Differentiated adipocytes were identified by
lipid droplet staining with Bodipy 493/503 and Oil Red O.

The addition of culture supernatants from B. abortus-infected osteoblasts to uninfected
adipocyte precursors in the presence of adipocyte differentiation media induced a signifi-
cant increase in the number differentiated adipocytes compared with unstimulated cells or
cells stimulated with culture supernatants from uninfected osteoblasts (Figure 7).
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Figure 7. Culture supernatants from B. abortus-infected osteoblasts induce adipogenesis. Effect of
culture supernatants from B. abortus-infected osteoblasts on adipocyte differentiation determined
by lipid droplet staining with Oil Red O (A), quantified by cell counts (44,940 µm2) (B) and Bodipy
493/503 staining (24,000 µm2) (C), quantified by cell counts (D). NT: non-treated. Scale bar: 50 µm.
** p < 0.001, and *** p < 0.0001 vs. cells treated with culture supernatants from non-infected cells
(SN-NI).

2.8. B. abortus-Infected Osteoblasts Modulate the Transcription of Essential Pro-Adipogenic Factors

Given the ability of B. abortus-infected osteoblasts to induce an increase in adipocyte
differentiation, subsequent experiments were conducted to determine whether such super-
natants could also control the transcription of the main pro-adipogenic factors PPAR-γ,
C/EBP-α, and C/EBP-β [44]. To this end, adipocyte precursor cells were stimulated
with conditioned media from infected and uninfected osteoblasts in the presence of
adipocyte differentiation media. RNA levels of pro-adipogenic factors were determined at 1
(Figure 8A) and 14 (Figure 8B) days post-stimulation. Our results demonstrate that culture
supernatants from B. abortus-infected osteoblasts induce an increase in the transcription of
PPAR-γ and C/EBP-β but do not modulate C/EBP-α transcription. The effect was evident
only at 14 days post-stimulation (Figure 8). These results indicate that conditioned media
from B. abortus-infected osteoblasts promote adipogenesis.
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Figure 8. B. abortus-infected osteoblasts modulate adipocyte transcription factors. Effect of infected
culture supernatants on peroxisome proliferator-activated receptor γ (PPAR-γ), CCAAT enhancer
binding protein α (C/EBP-α), and β (C/EBP-β) transcription determined by RT-qPCR in adipocytes
at days 1 (A) and 14 (B) post-stimulation. NT: non-treated. * p < 0.001, and ** p < 0.001 vs. cells treated
with culture supernatants from non-infected cells (SN-NI). ns: non-significant.

3. Discussion

Osteoarticular disease is the most frequent manifestation of human brucellosis [2,45].
Osteoblasts have long been known to play a central role in the pathological process of
osteoarticular diseases caused by bacteria [46]. Osteoblasts are not only bone-forming cells
but also dynamic controllers of osteoclast development, and they play a key role in the
homeostasis of hematopoietic stem cells [47]. To our best knowledge, various studies have
recently revealed the implications of osteo-adipogenic transdifferentiating of bone marrow
cells in bone loss [48]. Osteoblasts and adipocytes originate from the same precursor
cell in bone marrow, and there is a grade of flexibility between the two cell types [49,50].
This inverse relationship is modulated by overlapping signaling pathways that regulate
PPAR-γ and RUNX2 [51]. The new knowledge that arises from the mechanisms involved
in osteoblast and adipocyte differentiation is crucial to identify factors that may be linked
to the pathophysiology of osteoarticular diseases. As demonstrated by our research group,
both cells are susceptible to B. abortus invasion and replication [25,27,28]. Here, we describe
the reciprocal modifications in osteoblast–adipocyte homeostasis during B. abortus infection.
Osteoblast mineralization comprises the deposition of phosphate and calcium with the
concomitant deposition of organic matrix, thus contributing to bone architecture, strength,
and rigidity [52]. Recent findings on the role of adipose tissue in calcium and phosphate
homeostasis suggest that the unbalance in adipose tissue may affect bone tissue, and vice
versa [53].

During osteoblast differentiation in the presence of culture supernatants from
B. abortus-infected adipocytes, osteoblasts turned into less differentiated cells and de-
clined the alkaline phosphatase activity, a particular marker of osteoblast differentiation
involved in bone mineralization. Our previous findings revealed that B. abortus-infected
adipocytes secrete IL-6, but not IL-1β or TNF-α [25]. IL-6 is crucial to the pathogenesis
of rheumatoid arthritis–inducing osteoporosis at local and peripheral levels [26]. The
consequences of IL-6 in osteoblast differentiation involves a significant reduction in ALP
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activity and in the expression of osteoblastic genes Runx2 and Osx and subsequent de-
crease in mineralization [26]. Accordingly, our results indicate that culture supernatants
from B. abortus-infected adipocytes exert an inhibitory effect on ALP activity in osteoblast
precursors through a mechanism dependent on the presence of IL-6. However, the effects
on other cytokines that could be present in the conditioned media cannot be completely
ruled out. In bone tissue, minerals are deposited through a protein matrix formed by 90%
type I collagen [33]. The adequate deposition of organic matrix contributes to the adequate
mineral matrix deposition and bone architecture [34]. However, our results indicate that
culture supernatants from B. abortus-infected adipocytes were not able to modulate collagen
deposition as revealed by Sirius red staining at 14 days of differentiation.

Osteoblasts can also induce bone damage through an increase in osteoclast differen-
tiation, the cell implicated in bone resorption. This process involves RANKL, a molecule
displayed on the membrane of osteoblasts that stimulates differentiation and resorptive
activity of osteoclasts, leading to bone resorption. Previous studies on the interaction
between bacteria and osteoblasts also found an increase in RANKL [36,54,55]. Culture
supernatants from B. abortus-infected adipocytes induce RANKL expression in osteoblasts.
This phenomenon was induced by soluble mediators released after B. abortus infection,
since supernatants from uninfected adipocytes had no effect.

The balance between adipocytes and osteoblasts can be altered by aging and pathologi-
cal conditions, including infections [56–59]. In this process, the differentiation of adipocytes
is favored to the detriment of the osteoblast population, with concomitant bone resorption.
Moreover, culture supernatants from B. abortus-infected osteoblasts increase adipocyte
differentiation as revealed by lipid droplet staining. Adipogenesis involves the main
transcription regulators PPAR-γ, C/EBP-α, and C/EBP-β [44,60]. The role of PPAR-γ in
adipocyte differentiation during infection was reported elsewhere [61,62]. Soluble me-
diators from B. abortus-infected osteoblasts increase the main adipogenic transcription
factors PPAR-γ and C/EBP-β. C/EBP-β is induced early to stimulate the expression of
C/EBP-α and PPAR-γ [44]. Curiously, C/EBP-α was not modulated under this stimulus.
However, PPAR-γ expression could be directly promoted by other mediators [63]. Further
studies are needed to determine the significance of this regulation on the increase in the
adipogenesis observed.

Largely, these results propose a mechanism in which B. abortus infection, through
the induction of soluble mediators, might reciprocally modulate the crosstalk between
adipocytes and osteoblasts. As a result, soluble mediators released from B. abortus-infected
adipocytes inhibit osteoblastogenesis as a mechanism in which IL-6 is involved and favors
its own differentiation. These early studies using murine cell lines provide seminal ideas
regarding potential mechanisms involved during the interaction between osteoblasts and
adipocytes in the context of B. abortus infection.

Further studies using primary human adipocytes, human adipose tissue explants, and
in vivo murine models will be needed to confirm whether the responses described here
have a role in the chronic inflammation and chronicity of the infection.

4. Materials and Methods
4.1. Bacterial Culture

Brucella abortus S2308 was grown for 18 h in 10 mL tryptic soy agar supplemented
with yeast extract (Merck, Darmstadt, Germany) with constant agitation (150 rpm) at
37 ◦C. Bacteria were collected and inoculums prepared as described previously [64]. Live
B. abortus manipulation was performed in biosafety level 3 facilities.

4.2. Cell Culture

3T3-L1 fibroblasts were obtained from the American Type Culture Collection (ATCC,
Manassas, VA) and cultured in DMEM (Gibco, Grand Island, NY, USA)) containing 10%
of heat-inactivated fetal bovine serum (FBS) (Gibco), 2 mM of L-glutamine (Gibco), 1 mM
of sodium pyruvate (Gibco), and penicillin-streptomycin. For differentiation, 3T3-L1 cells
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were seeded at 5 × 104 cells/well in 24-well plates and allowed to reach confluence. After
2 days (day 0), the medium was changed to a differentiation medium containing 0.5 mM
3-isobutyl-1- methylxanthine (IBMX), 1 µM dexamethasone (DM), and 1 µg/mL human
insulin, all from Sigma-Aldrich (St. Louis, MO, USA). At day 2, the medium was replaced
by a maintenance medium (1 µg/mL insulin). Full differentiation was reached at days
10–15. Adipocyte differentiation was evaluated by oil-red O staining (Sigma-Aldrich).
Cultures in 24-well plates were fixed for 1 h with 10% formalin and then washed with 60%
isopropanol, stained for 30 min by complete immersion in a working solution of 6% oil
red O, and washed repeatedly with water. Ten microscopic fields per well in three wells
per condition were quantified for each experiment. The percentage of adipocytes was
calculated for the non-treated controls.

The mouse clonal MC3T3-E1 preosteoblastic cell line, a standard osteoblast cell line
used routinely for the assessment of osteoblasts under different culture conditions, was
obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) and
cultured in alpha minimum essential medium (α-MEM) (Gibco) containing 10% of heat-
inactivated fetal bovine serum (FBS) (Gibco), 2 mM of L-glutamine (Gibco), 1 mM of sodium
pyruvate (Gibco), and penicillin-streptomycin. For differentiation, α-MEM containing 10%
FBS, 50 mg/mL ascorbic acid, and 4 mM β-glycerophosphate was used.

4.3. B. abortus Infection of Adipocytes and Osteoblasts

These two cell types were infected with B. abortus S2308 at a multiplicity of infection
(MOI) of 100. After the bacterial suspension was dispensed, plates were centrifuged for
10 min at 2000 rpm and then incubated for 2 h at 37 ◦C under a 5% CO2 atmosphere. Cells
were washed extensively with DMEM to remove extracellular bacteria and incubated in
medium supplemented with 100 µg/mL gentamicin and 50 µg/mL streptomycin to kill
extracellular bacteria. Supernatants from adipocytes and osteoblasts were harvested at 24 h
post-infection and sterilized by filtration through a 0.22-µm-pore-size nitrocellulose filter.

4.4. Stimulation with Conditioned Medium

Culture supernatants from B. abortus-infected MC3T3-E1 differentiated osteoblasts
and culture supernatants from B. abortus-infected 3T3-L1 differentiated adipocytes were
harvested at 24 hours post-infection (h.p.i.), sterilized by filtration through a 0.22-µm-pore-
size nitrocellulose filter, and used at 1/2 dilution to stimulate non-infected 3T3-L1 and
MC3T3-E1 cells during the adipocyte and osteoblast differentiation process, respectively.
As control, conditioned media from uninfected cells were included.

4.5. Measurement of RANKL Expression

Osteoblasts differentiation was performed in the presence of B. abortus-infected cul-
ture supernatants from B. abortus-3T3-L1 adipocytes. At different times (2, 7, 14, and 21
days), cells were washed and lysed in an ice-cold lysis buffer consisting of 20 mM HEPES,
pH = 8, 5 mM EDTA, 0.4% Triton X-100, and protease inhibitor cocktail (Sigma-Aldrich).
The resulting protein was removed and centrifuged at 10,000× g for 10 min. RANKL was
detected in culture supernatants and lysates using an ELISA kit (R&D Systems, Minneapolis,
MN) according to the manufacturer’s instructions.

4.6. Measurement of IL-6 Concentration

IL-6 was measured by sandwich ELISA in culture supernatants from B. abortus-infected
adipocytes and osteoblasts, using paired cytokine-specific monoclonal antibodies, accord-
ing to the manufacturer’s instructions (BD Pharmingen, San Diego, CA, USA).

4.7. Blocking of IL-6

Neutralization experiments were performed with an anti-IL-6 neutralizing antibody
(clone 406) or its isotype control, both from R&D systems. In neutralization experiments
the conditioned medium was pre-incubated with the anti-IL-6 neutralizing antibody (or
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isotype control) at a concentration of 20 µg/mL for 1 h at 37 ◦C before use. Recombinant
mouse IL-6 (R&D systems) (1 ng/mL) was used as control.

4.8. Alizarin Red S Staining

To determine calcium deposition, alizarin red staining was used, and osteoblast cells
were seeded onto glass coverslips. On day 14 of culture differentiation, osteoblasts were
fixed in 4% PFA for 10 min at room temperature. Then, cells were washed with deionized
water and stained with 2% (w/v) alizarin red S and visualized by light microscopy or
extracted to perform quantitative analysis. To perform quantitative analysis, monolayers
were treated with 10% (v/v) of acetic acid added to each well and incubated at room
temperature for 30 min with shaking. Cells were detached and heated at 85 ◦C for 10 min
and then centrifuged at 20,000× g for 15 min. Supernatants were neutralized by the addition
of 10% (v/v) ammonium hydroxide. Absorbance at 405 nm was measured on a microplate
reader (Metertech, Inc., Taipei, Taiwan) against 0.1 N sodium hydroxide as a blank.

4.9. Alkaline Phosphatase Staining

On day 14 of the osteoblast culture’s differentiation, ALP staining was carried out
with BCIP (5-Bromo-4-chloro-3-indolylphosphate)-NBT (nitroblue tetrazolium) solution
(Sigma-Aldrich) according to the manufacturer’s instructions. Briefly, cells were incubated
with BCIP-NBT substrate for 10 min in the dark at room temperature. The colorimetric
reaction was stopped by washing the cells with distilled water. To quantify ALP activity,
cells were lysed with 0.1 M Tris buffer containing 0.5% Triton X-100. Cell lysates containing
2 mg total protein were incubated with p-nitrophenylphosphate (pNPP) for 10 min at
37 ◦C. The reaction was stopped by the addition of 0.5 M NaOH. Absorbance at 420 nm
was measured on a microplate reader.

4.10. Assessment of Collagen Deposition by Sirius Red Staining

Collagen deposition was quantified using Sirius red (Sigma-Aldrich, Argentina). Cell
layers were extensively washed with PBS before being fixed with 1 mL Bouin’s fluid for
1 h. The fixation fluid was removed, and the culture plates were washed 3 times with
deionized water and air dried before adding 1 mL Sirius red dye reagent dissolved in
saturated aqueous picric acid at a concentration of 0.1% in Bouin’s fluid. Cells were stained
for 18 h with mild shaking. The stained cell layers were extensively washed with 0.01 N
hydrochloric acid to remove all unbound dye. After rinsing, coverslips were mounted in
PBS-glycerine (9:1 [vol/vol]) and analyzed by light microscopy. For quantitative analysis, the
stained material was dissolved in 0.2 mL 0.1 N sodium hydroxide by shaking for 30 min.
The dye solution was transferred to microtiter plates, and the optical density (OD) was
measured with a microplate reader (Metertech) at 550 nm against 0.1 N sodium hydroxide
as a blank.

4.11. Assessment of Collagen Deposition by Immunofluorescence

Stimulated cells were fixed in 4% paraformaldehyde for 10 min at room temperature.
Cells were first incubated with rabbit anti-collagen (Abcam, Cambridge, UK) diluted in
PBS-Tween 0.1% for 30 min at room temperature, and then with Alexa Fluor 488 anti-rabbit
antibodies (Abcam). DAPI (Invitrogen) was used for nuclear staining for 30 min at room
temperature. Coverslips were mounted in PBS-glycerin (9:1 v/v) and analyzed in a Zeiss
LSM 800 confocal microscope (Zeiss, Jena, Germany).

4.12. Assessment of Adipocyte Differentiation Measuring Lipid Droplet Accumulation

Adipocyte differentiation was performed in the presence of culture supernatants
from B. abortus-infected MC3T3-E1 osteoblasts. At day 14, adipocyte differentiation was
evaluated by oil red O staining (Sigma). Cultures in 24-well plates were fixed for 1 h with
10% formalin and then washed with 60% isopropanol, stained for 30 min by complete
immersion in a working solution of 6% oil red O, washed repeatedly with water, and
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analyzed in a NIKON eclipse TI-S-L100 microscope with a 40× objective. Ten microscopic
fields at 400× magnification (44,940 µm2) per well in three wells per condition were
quantified for each experiment. Alternatively, cells were fixed with paraformaldehyde,
permeabilized with 0.3% Triton X100, and then lipid droplets were stained with 1 µg/mL
of Bodipy 493/503 (Invitrogen), and nuclei were stained with Hoechst 33342 (Invitrogen).
Coverslips were mounted in PBS-glycerin (9:1 v/v) and analyzed in a Zeiss LSM 800 confocal
microscope with oil-immersion 63× objective. Ten microscopic fields at 630×magnification
(24,000 µm2) per well in 3 wells per condition were quantified for each experiment.

4.13. mRNA Extraction and Quantitative Real-Time PCR

Total RNA was extracted from cells using the Quick-RNA MiniPrep Kit (Zymo Re-
search) according to the manufacturer’s instructions. cDNA was synthesized from 1 µg
total RNA with the enzyme reverse transcriptase Improm-II (Promega). Real-time PCR
was done with a SYBR green as a DNA-binding fluorescent dye using a StepOne Real-Time
PCR System (Applied Biosystems). The pairs of primers used were the following: PPAR-γ
sense: 5’-CTGATGGCATTGTGAGACAT-3′, antisense: 5′-ATGTCTCACAATGCCATCAG-
3′, C/EBP-α sense: 5′-TGTGCGAGCACGAGACGTC-3′, antisense: 5′-AACTCGTCGT
TGAAGGCGG-3′, C/EBP-β sense: 5′-GCTGAGCGACGAGTACAAGA-3′, antisense: 5′-
CAGCTCCAGCACCTTGTG-3′, β-actin sense: 5′-AACAGTCCGCCTAGAAGCAC-3′, anti-
sense: 5′-CGTTGACATCCGTAAAGACC-3′.

Runt-related transcription factor 2 (Runx2) sense: 5′-TGCACCTAC CAGCCTCACCAT
AC-3′, antisense: 5′- GACAGCGACTTCATT CGACTTCC-3′; OPN sense: 5′- TTCACTCCA
ATCGTCCCTAC-3′, antisense: 5′- TGCCCTTTCCGTTGTTGT C-3′; Osx sense: 5′-AGCGAC
CACTTGAGCAAACAT3′, antisense: 5′- GCGGCTGATTGGCTTCTTCT-3′.

Amplification cycles for Runx2 and OPN were carried out at 95 ◦C for 15 s, 56 ◦C for
30 s, and 72 ◦C for 60 s; and for Osx, PPAR-γ, C/ EBP-α, and C/EBP-β, for 10 min at 95 ◦C,
40 cycles for 15 s at 95 ◦C, 60 ◦C for 30 s, and 72 ◦C for 60 s. All primer sets yielded a single
product of the correct size. The fold change (relative expression) in gene expression was
calculated using the relative quantification method (2−∆∆Ct) [65]. Relative expression levels
were normalized against β-actin. Intra experiment CT value differences between samples
were less than 0.5.

4.14. Statistical Analysis

Where applicable, statistical analysis was performed. Multiple comparisons between
all pairs of groups were made with Tukey’s test, and those against two groups were made
with the Mann–Whitney U test. Graphical and statistical analyses were performed with
GraphPad Prism 5.0 software (San Diego, CA, USA). Each experiment was performed in
triplicate with different culture preparations on five independent occasions. Data were
represented as mean ± SD. A p < 0.05 is represented as *, p < 0.01 as **, p < 0.001 as
**, and p < 0.0001 as ***; p < 0.05 was the minimum level regarded as a statistically significant
difference between groups.
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