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Abstract
Microglia (MG) play a crucial role as the predominant myeloid cells in the central nerv-
ous system and are commonly activated in multiple sclerosis. They perform essential 
functions under normal conditions, such as actively surveying the surrounding pa-
renchyma, facilitating synaptic remodeling, engulfing dead cells and debris, and pro-
tecting the brain against infectious pathogens and harmful self-proteins. Extracellular 
vesicles (EVs) are diverse structures enclosed by a lipid bilayer that originate from 
intracellular endocytic trafficking or the plasma membrane. They are released by cells 
into the extracellular space and can be found in various bodily fluids. EVs have re-
cently emerged as a communication mechanism between cells, enabling the transfer 
of functional proteins, lipids, different RNA species, and even fragments of DNA from 
donor cells. MG act as both source and recipient of EVs. Consequently, MG-derived 
EVs are involved in regulating synapse development and maintaining homeostasis. 
These EVs also directly influence astrocytes, significantly increasing the release of in-
flammatory cytokines like IL-1β, IL-6, and TNF-α, resulting in a robust inflammatory re-
sponse. Furthermore, EVs derived from inflammatory MG have been found to inhibit 
remyelination, whereas Evs produced by pro-regenerative MG effectively promote 
myelin repair. This review aims to provide an overview of the current understanding of 
MG-derived Evs, their impact on neighboring cells, and the cellular microenvironment 
in normal conditions and pathological states, specifically focusing on demyelination 
and remyelination processes.
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1  |  INTRODUC TION

Microglia (MG) are the most abundant resident myeloid cells in the 
central nervous system (CNS), representing 5%–20% of CNS cells 
and 0.2% of total retinal cells. Unlike oligodendrocytes (OLG) and 
astrocytes (AST), which originate in the neuroectoderm, MG have 
their origin in the mesoderm. MG are produced through hemato-
poiesis in the yolk sac during embryogenesis (Ginhoux et al., 2010) 
and can self-renew throughout life, their number remaining stable 
in the brain through the coupled processes of apoptosis and mitosis 
(Askew et al., 2017; Askew & Gómez-Nicola, 2017; Li & Barres, 2017; 
Li, Cheng, et al., 2019; Li, Liu, et al., 2019; Li, Tong, et al., 2019; Salter 
& Stevens, 2017; Sierra et al., 2019). Studies using the Microfetti 
mouse, which randomly expresses one of four possible fluorescent 
proteins and thus enables the monitoring of MG dynamics and fate, 
have shown that MG are long-lived and their population is renewed 
at random locations three times during the 2-year half-life of a 
mouse. These observations suggest that the microglial network in 
the healthy adult mouse brain is largely stable and that microglial 
self-renewal is likely a stochastic process. In humans, MG live for de-
cades and their turnover is thus slow, which suggests that MG may 
have a memory of past events imprinted on their epigenome (Askew 
et al., 2017; Sierra et al., 2019; Tay et al., 2017). It has been further 
shown that depleted MG are replaced by new MG derived from re-
sidual MG in adults (Huang, Ge, et al., 2018; Huang, Xu, et al., 2018; 
Wolf et al., 2017).

Being in contact with different cell types and detecting multi-
ple extracellular signals, MG fulfill critical functions in physiological 
conditions; more specifically, MG (i) actively survey surrounding pa-
renchyma via dynamic movement of processes, (ii) maintain synap-
tic remodeling, phagocytosis of dead cells or cell debris, and myelin 
homeostasis, and (iii) protect the brain against infectious pathogens 
and injurious self-proteins (Aires et al., 2021; Hickman et al., 2018). 
MG can integrate into, translate, and respond to different stim-
uli, rapidly changing their state to maintain homeostasis (Salter & 
Stevens, 2017). During development, MG are chiefly responsible 
for remodeling synapses, rearranging neural circuits, and engulfing 
apoptotic neurons (Marín-Teva et al., 2004). In adult life, MG closely 
interact with neurons, the movement of MG processes depends 
on neuronal activity (Szepesi et al., 2018). The maintenance of ho-
meostasis by MG partly relies on signals derived from neuronal and 
AST-derived factors. Healthy neurons secrete membrane-bound 
signals such as CD200 (Hatherley & Barclay, 2004) and fractalkine 
(CX3CL1; Harrison et al., 1998). In addition, neurons and AST re-
lease immune-related soluble factors that bind to cognate receptors 
on MG and promote specific MG phenotypes. These factors com-
prise neurotrophins (e.g., NT-3, BDNF, and NGF), neurotransmitters 
(e.g., glutamate), and anti-inflammatory cytokines (e.g., TGF-β; Biber 
et al., 2007; Kerschensteiner et al., 2009).

Notably, a reduction in fractalkine signaling observed in neuroin-
flammatory settings results in MG activation and pro-inflammatory 
activity (Pawelec et al., 2020). AST can influence several functions 
of the MG. They can modulate phagocytosis by releasing CXCL10 

and regulate macrophage colony-stimulating factor expression, 
which modulates MG activation. Moreover, AST release advanced 
glycation end-products, whose receptors are expressed by MG and 
induce NFκB activation and pro-inflammatory cytokine release. 
Additionally, iron transport regulation by AST may influence MG 
function, as a decrease in iron reduces the microglial secretion of 
pro-inflammatory cytokines TNF-α and IL-1β (Molina-Gonzalez & 
Miron, 2019). Conversely, a regulatory negative feedback loop has 
been recently identified, driven by MG-AST interactions and me-
diated by amphiregulin and IL-33 receptor signaling. Amphiregulin 
produced by MG limits NF-κB-driven AST pro-inflammatory re-
sponses which promote CNS pathology in experimental autoim-
mune encephalomyelitis (EAE) and, potentially, multiple sclerosis 
(MS) (Wheeler et al., 2023).

Extracellular vesicles (EVs) are heterogeneous lipid bilayer-en-
closed structures originated from the intracellular endocytic traf-
ficking pathway or from the plasma membrane which are released 
by cells into the extracellular space and are present in all body fluids 
(György et al., 2011; Harding et al., 1983). EVs were initially thought 
to be a disposal mechanism to discard unwanted materials from cells. 
However, later studies showed several EVs biological functions in 
both physiological and pathological conditions (D'Anca et al., 2021). 
EVs are one of the most recently discovered communication mecha-
nisms between surrounding and distant cells, facilitating the transfer 
of functional proteins, lipids, multiple RNA species, and even DNA 
fragments from donor cells (Skog et al., 2008). EVs recognize and 
interact with specific target cells (Lösche et al., 2004). They can 
influence the behavior of these target cells through various mech-
anisms, including: (i) acting through signaling complexes mediated 
by surface-expressed ligands (Ratajczak, Wysoczynski, et al., 2006), 
(ii) receptor-mediated binding to the surface of target cells (Quah 
et al., 2008), (iii) delivering functional proteins (Sarkar et al., 2009), or 
(iv) transferring genetic information via mRNA, microRNA, or tran-
scription factors (Ratajczak, Miekus, et al., 2006). However, EVs can 
also directly interact with the surrounding extracellular matrix (ECM; 
Patel et al., 2023) and actively degrade it with their surface-associ-
ated enzymes (Sung et al., 2015), thus playing an integral role in ECM 
evolution in both physiological and pathological conditions.

In this context, this review provides an overview of the current 
knowledge of the role of MG-derived EVs and their impact on neigh-
boring cells and the cellular microenvironment in homeostasis and 
pathological conditions, with a particular emphasis on demyelination 
and remyelination processes.

1.1  |  MG phenotypes

MG are highly heterogeneous cells characterized by a dual function. 
Like peripheral macrophages, MG play important roles in both ho-
meostatic and inflammatory conditions (Epelman et al., 2014). They 
express surface markers typically present on many other tissue mac-
rophages and/or monocytes, including colony-stimulating factor re-
ceptor 1 (CSF-1R), integrin CD11b, glycoproteins CD68 and F4/80, 
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    |  3WIES MANCINI et al.

ionized calcium-binding adapter molecule 1 (Iba-1), proto-oncogene 
tyrosine-protein kinase MER (MerTK), and common leukocyte anti-
gen CD45, the latter showing lower expression than in circulating 
monocytes/macrophages (Amici et al., 2017; Tay et al., 2017). By 
contrast, unlike most other tissue macrophages, adult MG consti-
tutively express high levels of fractalkine receptor CX3CR1. At the 
same time, specific markers distinguish MG from other myeloid 
cells. In physiological conditions, Tmem119 is specifically expressed 
in homeostatic human and murine MG, but not in other brain-res-
ident cells or infiltrating macrophages (Bennett et al., 2016; Ruan 
et al., 2020; Satoh et al., 2016). However, more recent studies have 
shown that Tmem119 immunoreactivity decreases in reactive MG 
under pathological conditions to levels comparable to those of 
blood-borne macrophages, which blurs discrimination between 
these myeloid populations after brain injury (Mercurio et al., 2022). 
In addition, conventional immunohistochemistry and double-labeled 
immunofluorescence studies have shown that CD163 specifically re-
veals perivascular macrophages in the normal human CNS. However, 
in MS lesions, CD163 staining is observed in foamy macrophages 
and MG, together with an increase in the number of perivascular 
macrophages stained. In contrast, mannose receptor expression is 
restricted to perivascular macrophages in both normal and inflamed 
brain tissue (Fabriek et al., 2005). Table 1 shows markers specific to 
MG in their different stages, as well as markers specific to peripheral 
macrophages.

MG had been long believed to be quiet, resting cells in steady-
state conditions; however, due to advances in immunological and 
molecular techniques that allow for the in-depth study of cell popu-
lations, MG are now known to have extremely mobile processes and 
protrusions which are in constant movement to survey the environ-
ment (Figure 1). Moreover, ongoing research has shown that MG do 
not only change morphology (for example, branched, primed, reactive 
or amoeboid) but also present different phenotypes in both homeo-
static and pathological conditions (Torres-Platas et al., 2014). In the 
initial paradigm, MG were classified into two opposite types: classi-
cal (M1) or alternative (M2). This classification was eventually found 
to oversimplify the real complexity of MG (Ransohoff, 2016), and 
a continuum of intermediate phenotypes was established between 
M1 and M2 along which MG can transit (Colonna & Butovsky, 2017). 
M1 MG release pro-inflammatory mediators, inducing inflamma-
tion and neurotoxicity. In particular, M1 MG produce CCL2, IL-12, 
IL-1β, IL-6, IL-18, IL-23, and TNF-α, reactive oxygen species (ROS), 
and inducible and nitric oxide synthase (iNOS). The release of these 
cytokines into the surrounding tissues creates a feed-forward loop, 
activating neighboring MG and promoting further inflammation. 
Furthermore, MG express the main histocompatibility complex type 
II (MHC-II), Fc receptors, integrins, co-stimulatory molecules, and 
matrix metallopeptidase (MMP)-12. In contrast, M2 MG are pro-
posed as anti-inflammatory, healing cells, releasing anti-inflamma-
tory cytokines such as TGF-β and IL-10 and secreting growth and 
neurotrophic factors such as FGF, IGF-1, CSF-1, NGF, BDNF, GDNF, 
arginase 1, and the pro-survival factor progranulin. CD206 has been 
considered a specific marker for this population (Miron et al., 2013). 

It is worth noting that marker expression varies according to the 
regions in which MG are studied. Additionally, a critical issue to 
consider is the disparity in microglial markers expressed in rodents 
as compared to humans (Martinez & Gordon, 2014). This disparity 
often hinders the translation of primary study findings to human 
disease (Jubb et al., 2016). Moreover, microglial subsets in the de-
velopmental brain differ considerably from those in the adult brain, 
especially during aging (Réu et al., 2017).

Given that MG perform pleiotropic functions in the CNS, studies 
first focused on potentially specialized subsets of MG. Early analy-
ses such as immunohistochemistry, in situ hybridization, and flow 
cytometry were unable to probe and monitor the MG landscape in-
different conditions. However, the recent introduction of single-cell 
(scRNA-seq) and single-cell mass spectroscopy technologies has 
made it possible to profile single cells with high-throughput datasets, 
which may allow the identification of new markers, pathways, and 
microglial states with critical roles in homeostasis and disease (Ajami 
et al., 2018; Masuda et al., 2019; Morris et al., 2020; Trapnell, 2015).
In conditions of homeostasis, MG subtypes differ in gene expression 
profiles, stages of development, and CNS regions populated, which 
hints at local MG specificity. Grabert et al. (2016) demonstrated that 
MG exhibit unique transcriptional profiles dependent on the region, 
and these profiles are associated with aging in mice. The influence 
of aging on this diversity also implies a foundation for regional dis-
parities in susceptibility to age-related neurodegenerative processes 
involving neuro-inflammatory mechanisms. More recently and 
using multiplex mass cytometry of post-mortem samples, Böttcher 
et al. (2019) determined the expression levels of 57 postmortem 
human MG-specific markers from up to five different brain regions. 
These signatures were different from those of peripheral myeloid 
cells but comparable to those obtained from fresh human MG. In 
subsequent work, Masuda et al. (2019) used single-cell analysis of 
homeostatic CNS tissues in mice and revealed specific time- and re-
gion-dependent MG subtypes. MG development and survival crit-
ically rely on class III tyrosine kinase CSF-1R. Recently, studies by 
our groupusing animal cuprizone (CPZ)-induced demyelination have 
shown that pharmacological inhibition of CSF-1R generates differ-
ent responses to microglial depletion in terms of myelin protection 
and axonal degeneration across the cortex, striatum, corpus callo-
sum, hippocampus, and cerebellum, which may be associated with 
the regional heterogeneity of MG (Wies Mancini et al., 2019, 2022).

Moreover, a growing body of evidence demonstrates that demy-
elinating and neurodegenerative diseases evoke context-dependent 
MG subtypes with distinct molecular hallmarks and cellular kinetics. 
Analysis of disease-specific signatures in MG has revealed that sub-
populations emerge in demyelination and remyelination processes, 
which indicates that different MG phenotypes may perform differ-
ent functions (Flowers et al., 2017; Grabert et al., 2016; Hammond 
et al., 2019; Masuda et al., 2019; Rodríguez-Gómez et al., 2020). In 
EAE, purinergic receptor P2X4 is expressed by MG at the recov-
ery peak, suppressing pro-inflammatory genes such as Nos2, which 
codes for iNOS and Tnf (Lloyd & Miron, 2019; Yu et al., 2015; Zabala 
et al., 2018). Indeed, P2X4 blockade worsens EAE severity, impairing 
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the removal of myelin debris. In addition, the expression of homeobox 
transcription factor protein MSX3 is associated with a pro-remyelin-
ation microglial activation state (Yu et al., 2015), which increases the 
expression of Mrc1 (encoding CD206) and Igf1 and reduces the expres-
sion of Nos2 (encoding iNOS) and Tnf (Yu et al., 2015). Furthermore, 
cells isolated from the brains of patients with histologically confirmed 

early active MS express increased levels of APOE, the transcription 
factor MAFB, SPP1, PAD12, and LPL, whereas the expression levels of 
TMEM119 and the purinergic receptor P2RY12 are significantly lower 
or null. Notably, MG gene profiles enriched in the brain of MS patients 
are similar to those observed in murine demyelination models in de-
myelination and remyelination (Masuda et al., 2019).

TA B L E  1  Cell-specific markers of MG, macrophages, and vesicles derived from these cells.

(a) Selective markers for MG, macrophages, perivascular macrophages, choroid plexus macrophages, and meningeal macrophages

Cells Specific markers Reference

MG

Ramified or steady 
state

IBA1+, P2RY12+, TMEM119+, CD74+, Cx3cr1hi, CD11b+, CD115+, CD64+, MerTK+, F4/80+, 
FCRLS+, Siglec-H+, CD206− CD45low, CD163− CD11b+, MHCII+, Ly6C−, Sall1+, HexB+

Ginhoux et al. (2010)
Kierdorf et al. (2013)
Greter et al. (2015)
Jurga et al. (2020)
Lier et al. (2021)
Kenkhuis et al. (2022)

Pro-inflammatory, 
M1-like

IBA1+, CD74+, CD68+, ferritin, CD45+, CD11b+, F4/80+, Cx3cr1 hi, CD11cint, MHCIIint, 
CD14+, CD16+, CD32+, CD40+, CD86+, TLR2+, TRL4+, CD36+, iNOS, Cox-2, Trem-1+

Greter et al. (2015)
Jurga et al. (2020)
Lier et al. (2021)
Wu et al. (2022)

Anti-inflammatory, 
M2-like

IBA1+, CD74+, CD68+, CD301+, MHCIIlow, ferritin, CD163+, CD206+, CD204+, arginase, 
TGM2, NR1C3, Trem-2+

Abellanas et al. (2019)
Lier et al. (2021)
Wu et al. (2022)

Amoeboid IBA1+, CD74+, CD68+, MHCII+ Lier et al. (2021)

Dystrophic IBA1+, CD74+, TMEM119+, ferritin+ Lier et al. (2021)

Macrophages Lier et al. (2021)

Steady-state CD44+, CD45hi, CD169+, CD206hi Jurga et al. (2020)

Pro-inflammatory, 
M1-like

CD80+, CD86+, TRL-2+, TLR-4+, iNOS+, MHC-II+, CD16+, CD32+ Yao et al. (2019)
Lyu et al. (2020)

Anti-inflammatory, 
M2-like

CD163+, CD206+, CD209+, FIZZ1+, Ym1/2+, Arg-1+, CD14+, CD204+, CCL17+, CCL22+, 
CCD24+

Yao et al. (2019)
Chu et al. (2018)

M2a IL-1R+, CD206+, Arg-1+, FIZZ1+, Ym1/2+ Yao et al. (2019)

M2b IL-10R+, IL-12R+, CD86+, IL-6R+ Yao et al. (2019)

M2c Arg-1+, TRL-8+, TLR-1+, CD206+, CD163+ Yao et al. (2019)

M2d IL-10R+, IL-12R+ Yao et al. (2019)

Perivascular 
macrophages

CD206+, CD163+, CD45hi, CD11b+, MHCIIhi, Ly6Clow, F480+, Cx3cr1low, Iba1low, LYVE1+ Zeisel et al. (2015)
Faraco et al. (2016)
Goldmann et al. (2016)

Choroid plexus 
macrophages

CD206+, CD163+, CD45hi, CD11b+, MHCIIhi, Ly6Clow, F480+, Cx3cr1low, Iba1low Chinnery et al. (2010)
Goldmann et al. (2016)

Meningeal 
macrophages

CD206+, CD163+, CD45hi, CD11b+, MHCIIhi, Ly6Clow, F480+, Cx3cr1low, Iba1low, LYVE1+ Chinnery et al. (2010)
Goldmann et al. (2016)

(b) Selective markers for MG- and macrophage-derived EVs

Cells Specific EV markers Reference

MG TMEM119+

GFP-transgenic rats
Iba-1+/PKH67+

TMEM119+/CD14+

CD11b+

Visconte et al. (2023)
Zhang et al. (2023)
Lombardi et al. (2019)
Xin et al. (2020)
Roseborough et al. (2023)
Cohn et al. (2021)

Macrophages CD14+

PKH67 staining kit
Albrecht et al. (2023)
Chu et al. (2023)
Zhang et al. (2023)
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    |  5WIES MANCINI et al.

F I G U R E  1  In a surveillance state, MG monitor the brain parenchyma and detect danger signals. This state is maintained through 
interactions with neurons, such as CD200-CD200R, CD47-CD172a, and fractalkine-CX3CR1 interactions. As a consequence of 
neuroinflammation mediated, for example, by cytokines released by Th1 and Th17 cells, these interactions are lost, and resident MG change 
phenotypes to an “activated” state. In addition, EVs induced by peripheral inflammation can cross the BBB and activate M1 MG (1). The 
expansion and activation of activated MG are associated with the production of EVs capable of releasing pro-inflammatory cytokines and 
toxic metabolites such as nitric oxide (NO), reactive oxygen species (ROS), and nitric oxide species (RNS). EVs can also transport glutaminase, 
which increases pro-inflammatory miRNAs and reduces anti-inflammatory miRNAs. Furthermore, EVs transfer the inflammasome adapter 
ASC, increasing the activation of NLRP3 and the production of IL-1β (2). EVs from activated MG also release IL-1α, TNF, and the C1q 
component of complement, promoting the transformation of AST into harmful A1 cells. In turn, A1 AST can re-stimulate MG, promoting a 
retro-stimulation circuit (3). In addition, the release of MG-derived EVs containing ATP stimulates the purinergic receptor P2X7, inducing 
the release of pro-inflammatory cytokines IL-1, IL-6, and TNF-α by AST (4). Through their cargos, MG-derived EVs exert multiple actions on 
synapses, including detrimental effects on dendritic spines, the stimulation of Glu release, the down-regulation of GABAergic transmission, 
and the silencing of pre-synaptic neuroligin-1 and post-synaptic synaptotagmin-1, among other effects, thus promoting synaptic dysfunction 
(5). For further details on these effects, see Table 3. ASC, apoptosis-associated speck-like protein containing a CARD; C1q, complement 
component C1q; EVs, extracellular vesicles; GABA, Gamma-aminobutyric acid; Glu, glutamic acid; IL, interleukin; NLRP3, NOD-, LRR- and 
pyrin domain-containing protein 3; TNF, tumor necrosis factor.
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2  |  E X TR ACELLUL AR VESICLES

EVs play an important role in cellular processes such as signal trans-
duction (Gangoda et al., 2015), antigen presentation (Mittelbrunn 
et al., 2011), and immune responses (Greening et al., 2015). The 
contents transported by EVs and their function depend on age 
(Alibhai et al., 2020; Lazo et al., 2021; Pusic & Kraig, 2014), cell type 
(Nazarenko et al., 2010; Prada et al., 2018; Zhang, Zou, et al., 2021; 
Zhang, Wei, et al., 2021), and status of cell activation (Bhargava 
et al., 2019; Lombardi et al., 2019). EVs can survive in circulation, 
keep the cargo safe from the immune system, and even cross ana-
tomical barriers like the blood–brain barrier (BBB) in a bidirectional 
manner between the bloodstream and brain parenchyma (Basso 
& Bonetto, 2016; Rajendran et al., 2014; Ridder et al., 2014). This 
communication is of vital importance, as neurons have a high me-
tabolism and the BBB controls iron and molecule traffic. This makes 
EVs important mediators, as they might play a major role in health 
and disease, interfering with neuroinflammatory (Selmaj et al., 2017) 
and neurodegenerative processes (Quek et al., 2017). Biochemical 
fractionation has revealed that both EVs cargo and surface lipids can 
have either harmful or protective effects. For example, AST may be 
converted into harmful cells by inflammatory EVs cargo, whereas EV 
surface lipid components released by MG promote oligodendroglial 
progenitor cell (OPC) migration and/or differentiation, which links 
EV lipids to myelin repair (Lombardi et al., 2019). In the CNS, recent 
evidence suggests that the protein content of EVs might reflect the 
phenotype of the tissue of origin (Yates et al., 2022).

Tetraspanins such as CD9, CD63, CD81, CD82, and CD15 are 
highly enriched in EVs (Andreu & Yáñez-Mó, 2014). Differential pro-
tein expression has been observed in EVs released by various cell 
types (Dozio & Sanchez, 2017; Xu et al., 2016). It should be noted, how-
ever, that while tetraspanins have been proposed as markers for some 
EVs, it is unclear whether all EVs contain tetraspanins. On the other 
hand, separate EVs populations isolated from the blood of patients 
with specific clinical pictures have been reported to express the same 
miRNA sequences (Nuzziello et al., 2017; Ramirez et al., 2018). These 
small, single-stranded, non-coding RNA molecules can post-transcrip-
tionally regulate gene expression. Therefore, improvements in EVs 
isolation and characterization may raise awareness of additional com-
mon markers for and properties of different EVs subtypes. These dif-
ferences may prove significant for EVs to serve as disease biomarkers, 
as they are highly stable, reach sufficient concentrations in biological 
fluids, and carry molecules that reflect their parental cells. However, 
a panel approach of various biomarkers, along with large-scale multi-
center longitudinal approaches, will be needed to fully evaluate the 
utility of EVs as biomarkers in diagnosing and monitoring recovery 
following disease or injury onset (Kawata et al., 2018).

2.1  |  EV biogenesis, composition, and cargo

The characterization of EVs is key to their analysis and application in 
experimental models (Théry et al., 2018). EVs comprise three main 

vesicle subtypes: exosomes (40–100 nm in diameter), microvesicles 
or ectosomes (>100 nm in diameter), and apoptotic bodies (1–5 μm in 
diameter) (Beyer & Pisetsky, 2010; Cocucci et al., 2009; Mathivanan 
et al., 2010; Théry et al., 2009). Although the last decade has seen a 
marked increase in the number of scientific publications describing 
physiological and pathological functions of EVs the criteria for EV 
classification into subclasses is still matter of debate. Therefore, the 
International Society for Extracellular Vesicles has endorsed “extra-
cellular vesicle” as the generic term for particles naturally which are 
released by cells, are delimited by a lipid bilayer, and cannot replicate, 
that is, do not contain a functional nucleus (Théry et al., 2018). This 
heterogeneity is a consequence of the variety and functional states 
of releasing cells, as well as of the different cell death mechanisms.

Almost all cells can produce and release EVs which can both 
exert their action locally or migrate long distances through biological 
fluids to host cells, a recently discovered mode of intercellular com-
munication for both short and longer-range signaling events (Simons 
& Raposo, 2009). EVs are taken up by recipient cells via receptor-li-
gand interaction (Hoshino et al., 2015), directly by fusion with the 
plasma membrane (Mathieu et al., 2019; Montecalvo et al., 2012), or 
endocytosis (Chivet et al., 2014; Mulcahy et al., 2014). EVs carry a 
rich cargo of DNA, RNA, enzymes, proteins, lipids, and metabolites 
(de Hornung et al., 2020; Doyle & Wang, 2019; Dutta et al., 2015; 
Théry et al., 2002, 2018; Thompson et al., 2016). In addition, circu-
latory EVs can carry coding and non-coding RNAs such as microR-
NAs (miRNAs), long-noncoding RNAs (ln cRNAs), small-interfering 
RNAs (siRNAs), and circular RNAs (circRNAs), captured by EVs in a 
differential, controlled manner with further active influence upon 
recipient cells. Some of these non-coding RNAs can regulate gene 
transcription at the post-transcriptional level by cleaving or block-
ing mRNAs for further translation (Zimta et al., 2020). Therefore, 
they can regulate processes such as development, cell fate, apopto-
sis, metabolisms, and responses to physiological and environmental 
changes (Ambros & Ruvkun, 2018).

2.2  |  EV sources

There are multiple sources of EVs in the CNS, as they are secreted by 
both neuronal and glial cells. Therefore, circulating EVs in the blood-
stream and other peripheral biofluids constitute a non-invasive and 
rapid alternative to studying brain-related disorders. The charac-
terization of EVs isolated from human and mice serum and plasma 
has demonstrated similarities in vesicle size, shape, concentration, 
and presence of exosomal markers, which suggests that serum and 
plasma are equally helpful for EV isolation (Mattera et al., 2020; 
Soares Martins et al., 2018). EVs obtained from other biofluids, such 
as cerebrospinal fluid and saliva, have also been used for diagnostic 
purposes (Cao et al., 2019; Yoo et al., 2018). Although obtaining sa-
liva from patients is less invasive than obtaining blood as a source 
of biomarkers in neurological diseases, saliva has been less widely 
studied than plasma or serum (Cao et al., 2019; Han et al., 2018). 
By contrast, biomarkers measured in CNS-derived serum or plasma 
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EVs representing CNS diseases are similar to those of cerebrospinal 
fluid, which indicates that the same confidence level can be achieved 
using a less invasive procedure. Another advantage of blood-derived 
EVs as compared to those of cerebrospinal fluid is that they allow 
marker comparison across different cell populations. MG repre-
sent a challenge, however, as they share surface markers with mac-
rophages and peripheral monocytes and lack a specific EVs marker 
(de Hornung et al., 2020).

Much like saliva, tears may be a valuable non-invasive source 
of biomarkers thanks to the smaller protein dynamic range of 
these biological fluids with respect to serum and plasma (Ruhen & 
Meehan, 2019). Actually, tear EVs represent an attractive tool for 
disease diagnosis and monitoring using proteomics analysis. Indeed, 
the presence of EVs of both neuronal and microglial origin has been 
demonstrated in tears (Pieragostino et al., 2019).

3  |  METHODS FOR ISOL ATION OF 
E X TR ACELLUL AR VESICLES,  THEIR 
LIMITATIONS, AND MOLECUL AR MARKERS

The methodology used to obtain EVs essentially depends on the 
source. Théry et al. (2006) published a basic differential centrifu-
gation protocol which for many years was the most widely used 
method to obtain EVs from culture media and body fluids. However, 
several studies have reported that ultracentrifugation at 100 000× g 
may cause aggregation or morphological changes which could cause 
artifacts and lead to erroneous conclusions on EV composition or 
phenotype (Issman et al., 2013; Linares et al., 2015). This method 
allows EVs to be separated by their size and density but not by their 
subcellular origin. To isolate EVs from tissue samples, such as mouse 
brain tissue, this basic protocol is followed by a sucrose density 
gradient purification step (Muraoka et al., 2020; Perez-Gonzalez 
et al., 2012; Vella et al., 2017) or commercial gradients such as 
Optiprep Iodixanol (Crescitelli et al., 2021; Hurwitz et al., 2019). 
Alternative methods for obtaining EVs are size exclusion chromatog-
raphy or ultrafiltration (Benedikter et al., 2017).

EVs can be detected through their specific markers using Western 
blot assays, immunohistochemistry, and flow cytometry. They can 
also be observed through transmission electron microscopy (Alberro 
et al., 2019; Santiago et al., 2023; Soares Martins et al., 2018; Vinuesa 
et al., 2019; Wang et al., 2020; Wei et al., 2021) and scanning micros-
copy (Barranco et al., 2019; Du et al., 2021; Mattera et al., 2020; Sung 
et al., 2019), while their size distribution and number can be deter-
mined by Dynamic Light Scattering (DLS; Mattera et al., 2020) and 
nanoparticle tracking analysis (NTA) (Alberro et al., 2019; Almansa 
et al., 2022; Santiago et al., 2023; Soares Martins et al., 2018; Zhu 
et al., 2020). Classic markers used for EV detection by Western blot 
and immunohistochemistry include flotilin-1, tetraspanins CD9, 
CD63, and CD81, ALIX, HSP70 and TSG101 (Casella et al., 2018; 
Lombardi et al., 2019; Mattera et al., 2020; Muraoka et al., 2021; 
Santiago et al., 2023; Soares Martins et al., 2018; Wang et al., 2020; 
Wei et al., 2021; Zhu et al., 2020). For detection by flow cytometry, 

different authors have reported the use of anti-CD63 FITC, an-
ti-CD81 APC, and anti-CD9PE antibodies (Alberro et al., 2019; Wang 
et al., 2020).

4  |  PHYSIOLOGIC AL FUNC TIONS, 
CELL–CELL COMMUNIC ATION, AND 
E V-MEDIATED CROSSTALK

The coordination and orchestration of cellular events in multicel-
lular systems depend on cell–cell communication. In the CNS, cells 
communicate via gap junctions, cell adhesion, and EVs, which are 
loaded with proteins, transcription factors, and nucleic acids, and 
carry carbohydrates and lipids in their membranes (Caruso Bavisotto 
et al., 2019; Zhang & Yang, 2018). EVs serve as vehicles for this com-
munication in the brain by transferring molecules from diverse ori-
gins. In the CNS, each cell type is capable of secreting and taking up 
EVs, which gives them a key role in both health and during disease. 
EVs also possess versatile biological activity and can modulate dif-
ferent target cells. Physiological processes include the maintenance 
of myelination, synaptic plasticity, neuronal trophic support, and 
antigen presentation, among others. EVs have also been found to 
promote pathogenesis in neurological diseases such as Alzheimer's 
disease, Parkinson's disease, and prion diseases, by carrying mis-
folded proteins or their coding material between neurons (Brenna 
et al., 2020; Hill, 2019; Takeuchi, 2021; You et al., 2022). Successful 
intercellular communication entails the maintenance of EVs integrity, 
EVs contact with target cells, EVs internalization, and the activation 
of signaling cascades or the release of EVs content into the extracel-
lular space (Antonucci et al., 2012; Budnik et al., 2016; Domingues 
et al., 2020; Goetzl et al., 2016; Krämer-Albers et al., 2007; Lee 
et al., 2012; Thompson et al., 2016).

4.1  |  Specific physiological functions of 
MG-derived EVs

MG are both sources and recipients of EVs. EVs released by MG 
mirror the dynamic nature of their donor cells, exhibiting impor-
tant and versatile functions in the CNS. In basal conditions, MG 
play key roles in modulating neuronal activity by pruning excessive 
or dysfunctional synapses, distributing supportive growth fac-
tors to active neurons and AST, and regulating synaptic function 
(Wang et al., 2011). While MG indeed modulate neuronal activ-
ity, accumulating evidence shows that neurons inform MG of their 
status and are thus capable of controlling microglial activation and 
motility (Kierdorf & Prinz, 2019). Studies have recently demon-
strated that MG-derived EVs can regulate synapse development 
and homeostasis through their miRNA content (e.g., miRNA146a-
5p) and the transport of bioactive lipids exerting their function on 
neuronal activation (Prada et al., 2018). Furthermore, MG-derived 
EVs play a role in excitatory neurotransmission, as their release 
stimulates the neuronal production of ceramide and sphingosine 
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8  |    WIES MANCINI et al.

both in vitro and in vivo (Augusto-Oliveira et al., 2019). EVs re-
leased by MG also have a direct effect on AST. MG stimulation 
with ATP through the activation of the P2X7 receptor massively 
increases EV release and modifies their proteomics and their ef-
fect on AST, as evidenced by a significant increase in the release 
of IL-1β, IL-6, and TNF-α, which induces a robust inflammatory re-
sponse (Bianco et al., 2009; Drago et al., 2017). On the other hand, 
MG exposed to ATP release EVs containing proteins promoting 
neurite outgrowth and synaptogenesis—that is, thrombospondin 
1 and 4 (Arber & Caroni, 1995; Eroglu et al., 2009) together with 
proteins that negatively regulate neuron apoptosis. Moreover, 
MG-derived EVs contain lactate, which serves as an energy source 
for neurons, isoform-1 of lactate DH, required for lactate synthe-
sis, and lactate transporter MCT-1 (Potolicchio et al., 2005). These 
findings suggest that MG-derived EVs may have a direct, protec-
tive action toward neurons.

The prevention of myelin damage and the regeneration of oli-
godendrocytes capable of remyelination represent challenges to 
new therapies for functional brain recovery. Using an MG depletion 
model, Raffaele et al. (2020) showed that the intracranial injection 
of regenerative MG-derived EVs restores early MG/macrophage 
protective functions, rescues dystrophic, senescence-like traits in 
resident immune cells, and leads to oligodendroglial progenitor cell 
differentiation and functional recovery. Supporting these findings, 
the number of MG-derived EVs is significantly larger in EAE mice 
at the peak of the disease, which reflects disease course and sever-
ity. Likewise, the number of MG-derived EVs is also higher in pa-
tients with active MS as compared to patients with stable disease or 
healthy controls (Verderio, Muzio, et al., 2012).

Heterogenous microglial EV composition and function reflect 
MG multiplicity and a variety of activation phenotypes. Microglial 
EV release is induced by environmental stimuli, such as ATP (Asai 
et al., 2015; Drago et al., 2017; Lombardi et al., 2021; Takeuchi 
et al., 2015), pro-inflammatory cytokines (Casella et al., 2018; Prada 
et al., 2018), IL-4 (Casella et al., 2018; Lombardi et al., 2019; Prada 
et al., 2018; Raffaele et al., 2021), and lipopolysaccharide (Yang 
et al., 2018). In addition, EV production and content in MG and mac-
rophages in vivo are affected by pathological conditions such as MS, 
Alzheimer's disease, and traumatic brain injury (Agosta et al., 2014; 
Dalla Costa et al., 2021; Gelibter et al., 2021; Joshi et al., 2014; 
Kumar et al., 2017; Liu et al., 2017; Verderio, Cagnoli, et al., 2012; 
Verderio, Muzio, et al., 2012). On the basis of this evidence, microg-
lial EVs in body fluids emerge as a valuable parameter for diagnosing 
and monitoring disease progression and treatment efficacy.

4.2  |  MG regulation by EVs from different cell 
populations

MG can act as target cells for EVs secreted by OLG, AST, and neu-
rons, and are thus part of a complex cell–cell communication sys-
tem. OLG-secreted EVs are transferred to MG by macropinocytosis 

and then functionally degraded by lysosomal trafficking (Fitzner 
et al., 2011; Frühbeis et al., 2020). In healthy conditions, this process 
does not affect cytokine expression, which indicates that MG are 
specialized in the elimination of excessive OLG membrane (Fitzner 
et al., 2011), a clearance mechanism for myelin maintenance in ho-
meostatic conditions (Domingues et al., 2016). Several reports have 
shown that this action occurs through the CX3CR1 or IFN-β path-
ways (Delpech et al., 2019; Fröhlich et al., 2014; Kocur et al., 2015). 
Extracellular release, rather than lysosomal processing in OLG, might 
constitute an advantage for cells with poor degradation capacity. 
OLG have, in fact, a high capacity for membrane synthesis (Pfeiffer 
et al., 1993) but probably a low capacity for excess membrane deg-
radation. Therefore, membrane synthesis and degradation tasks 
can be divided among different cell types (Fitzner et al., 2011). If 
permanently ongoing, however, this process may trigger an immune 
response by MG, regulated by the levels of MHC Class II expression. 
The role of EVs derived from OLG (OLG-EVs) in regulating chronic 
inflammation must be better understood. In this context, Van den 
Broek et al. (2022) demonstrate that OL-EVs are internalized by acti-
vated MG and play a pivotal role in maintaining cellular homeostasis 
during chronic inflammation. They achieve this by enhancing the for-
mation of autophagic vesicles and reducing oxidative stress-induced 
apoptotic cell death.

EV secretion by neurons is enhanced by potassium-induced 
depolarization and facilitates microglial neurite shedding (Bahrini 
et al., 2015). In a neuronal context, in particular, EVs play a key 
role in the regulation of MG phenotypes in neurological diseases. 
Indeed, EVs derived from motor neurons of the NSC-34 lineage 
transfer inflammation by miR-124 to their neighboring cells sub-
stantially affecting the MG phenotype, reducing its phagocytic ca-
pacity, and inducing a pro-inflammatory phenotype characterized 
by an increase in the release of IL-1β, TNF-α, NO, and iNOS, and in 
the expression of MMP-2, MMP-9, and MHC-II (Pinto et al., 2017). 
Similarly, EVs derived from glioblastoma modulate human MG by 
inducing the expression of membrane type 1 MMP through EV-
secreted miR-451 and miR-21 (de Vrij et al., 2015). In the same line, 
in vivo studies have demonstrated that MG capture glioma-derived 
EVs, which hints at a mechanism by which tumor cells communicate 
over long distances to evade the host's immune response (van der 
Vos et al., 2016). Table 2 summarizes MG regulation by EVs from 
different cell populations.

Intravenous treatment with EVs derived from mesenchymal 
stem cells (MSC) from adipose tissue in Theiler's murine encephalitis 
might mediate protection and/or recovery. This treatment modulates 
neuroinflammation by reducing GFAP and Iba-1 staining in the brain 
and increasing myelin protein expression. Furthermore, changes in 
MG morphology in the spinal cord suggest that EVs also modulate 
the MG activation state. These findings indicate that EVs can mod-
ulate neuroinflammation and increase myelin protein synthesis. The 
immunomodulatory, neuroprotective, and neurodegenerative prop-
erties of MSC make them promising candidates with therapeutic po-
tential for different diseases, including MS (Laso-García et al., 2018).
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4.3  |  Regulation of other cells by MG-derived EVs

The main effects of MG-derived EVs on other CNS cells are sum-
marized in Table 3. It has been well established that, when activated, 
MG can increase EV secretion. These vesicles activate signaling 
pathways mediated by contact or by the delivery of genetic material, 
which has a key role in the functions and molecular processes of tar-
get cells. The molecular composition and function of microglial EVs 
reflect the activation state of donor cells (Drago et al., 2017). Indeed, 
whereas EVs derived from inflammatory MG have been shown to 
block remyelination, EVs produced by pro-regenerative MG ef-
ficiently promote myelin repair. AST and neighboring MG are the 
main target cells of MG-derived EVs. Notably, EVs have differential 
effects on neurotoxicity depending on the source of MG activation 
(Beneventano et al., 2017; Horn & MacLean, 2021). EVs produced 
by MG co-cultured with immunosuppressive MSC promote OPCs 
recruitment and myelin repair. On the other hand, exposure of OPCs 
in the presence of AST to EVs derived from pro-inflammatory MG 
produces a blockage in progenitor maturation, implying a failure in 
the remyelination process. By contrast, lipid components (particu-
larly sphingosine 1 phosphate) on the surface of EVs promote OPCs 
migration and/or differentiation, linking EV lipids to myelin repair. 
Thus, microglial EVs emerge as multimodal signaling mediators 
capable of influencing both OPCs and AST around myelin lesions 
(Lombardi et al., 2019).

Primary MG incubated with saturated fatty acid palmitate ac-
quire a pro-inflammatory profile. The EVs isolated from these MG 
induce an immature dendritic spine phenotype in hippocampal 
neurons, which suggests MG-neuron communication (Vinuesa 
et al., 2019). In a physiological setting, MG-derived EVs regulate 
synaptic transmission by different mechanisms, including a dose-de-
pendent increase in the spontaneous release of glutamate and 
miniature excitatory postsynaptic currents in cultured neurons. 
Likewise, in vivo experiments have demonstrated that the injection 

of MG-derived EVs increases excitatory synaptic transmission 
through the enhancement of ceramide and sphingosine production 
(Antonucci et al., 2012). On the other hand, MG-derived EVs can 
deliver N-arachidonoyl ethanolamine, suppressing the spontaneous 
inhibition of presynaptic transmission in GABAergic neurons via the 
stimulation of type 1 cannabinoid receptors (Gabrielli et al., 2015; 
Paolicelli et al., 2019). However, in inflammatory brain conditions, 
MG respond by releasing EVs into the cerebrospinal fluid of MS pa-
tients (Verderio, Cagnoli, et al., 2012; Verderio, Muzio, et al., 2012) 
and can propagate inflammatory responses across distant brain re-
gions, contributing to disease pathogenesis (Takeuchi et al., 2015). 
Depending on the stimulus, EVs can differentially influence syn-
apses, with extracellular ATP being an important stimulant for the 
release of EVs in MG. In addition, EVs derived from inflammatory 
MG are enriched in miRNAs capable of regulating pre- and post-syn-
aptic proteins. Among them, miR-146a-5p controls the expression 
of presynaptic protein synaptotagmin 1 and post-synaptic neuroli-
gin 1, a protein important in dendritic spine formation and synaptic 
stability (Prada et al., 2018). In addition, MG-derived miR-146a-5p 
can suppress neurogenesis by directly repressing neurogenic factors 
KLF4 and CDKL5 (Fan et al., 2022).

MG-derived EVs can also have protective effects on neurons 
(Figure 2). Indeed, miRNA analysis of EVs from MG activated after 
brain injury have shown a significant increase in the expression of 
miR-124-3p and miR-9-5p, which promotes anti-inflammatory M2 
polarization in MG and inhibits inflammation in injured neurons 
(Huang, Ge, et al., 2018; Huang, Xu, et al., 2018) miR-124-3 is a well-
known neuron-enriched miRNA, and ex vivo isolated MG show a de-
crease in miR-124-3p after some weeks in culture. Therefore, adult 
MG can only express miR-124-3 in the CNS microenvironment, 
which suggests that miR-124-3 expression in MG depends on para-
crine action with, or transfer from, neurons (Ponomarev et al., 2011; 
Veremeyko et al., 2019). Likewise, M2 MG induced by IL-4 can fos-
ter an anti-inflammatory phenotype. EVs derived from these polar-
ized MG acquire the ability to protect neurons from apoptosis, a 

TA B L E  2  MG regulation by EVs secreted by different cell types in homeostasis and disease.

Cells Effects Mediators Reference

Neurons Facilitate MG neurite shedding Potassium-induced depolarization Bahrini et al., (2015)

Motor neurons Affect the MG phenotype, reducing 
phagocytic capacity and inducing a 
pro-inflammatory phenotype

Transfer inflammation by miR-124 Pinto et al. (2017)

Glioblastoma Induce the expression of membrane type 
1 MMP

miR-451 and miR-21 de Vrij et al. (2015)

Oligodendrocytes Degradation of OLG membrane Macropinocytosis Fitzner et al. (2011)

Control chronic inflammation, increasing 
the formation of autophagic vesicles

HSPB8 conveying LC3B II and BAG 3. 
LC3B is involved in the formation of 
autophagosomes, playing a role in 
mitophagy and preventing excess ROS 
production

Van den Brock et al. (2022)

Astrocytes Attenuate MG-mediated 
neuroinflammation

miR-873a-5p Long et al. (2020)

Abbreviations: BAG 3, Bcl2-associated athanogene 3; HSPB8, heat-shock protein beta-8; LC3B II, microtubule-associated protein 1A/1B-light chain 
3; MG, microglia; miR, micro-RNA; MMP, matrix metalloproteinases; OLG, oligodendrocytes; ROS, reactive oxygen species.
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mechanism mediated by miR-124 which blocks the expression of 
protease 14. Furthermore, EVs derived from M2 MG may inhibit 
AST proliferation and glial scar formation (Casella et al., 2018).

MG infiltrating demyelinated lesions secrete a large number of 
EVs, which suggests that EVs play an essential role in the commu-
nication between MG and OLG. In mice with demyelinated lesions 
caused by lysolecithin injection in the corpus callosum, the infusion 
of pro-regenerative MG polarized with IL-4 promotes OPC migra-
tion and differentiation, improving remyelination. Conversely, in the 
same setting, EVs released by pro-inflammatory MG inhibit remyelin-
ation (Lombardi et al., 2019). These effects are produced mainly on 
GPR17-expressing progenitors, a group of cells considered sensors of 
local damage to the myelin sheath (Lecca et al., 2020). Interestingly, 
further analysis has revealed that the blockage of remyelination by 
pro-inflammatory MG-derived EVs depends on AST transformation 
into deleterious cells rather than a direct effect on OLG (Lombardi 
et al., 2019). Broken EVs retain the capacity to promote OPC mat-
uration, which suggests the primary involvement of surface mole-
cules, particularly lipid components such as sphingosine-1 phosphate 
–whose inhibition abolishes the chemoatracttant effect of MG-
derived EVs on OPCs and transmembrane TNF, which drives OPC 
migration and differentiation through the activation of oligoden-
droglial TNFR2 (Lombardi et al., 2019; Madsen et al., 2016). However, 
the pro-differentiating effect of EVs derived from M2 cells can also 
be mediated by their miRNA cargo. M2-EV treatment after experi-
mental ischemia can promote OPC survival and differentiation and 
functional recovery via EV miR-23a-5p, miR-221-3p, miR129-5p, and 
miR-155-5p. In particular, M2-EV miRNA-23a-5pmay promote OPC 
differentiation by inhibiting Olig3 expression. Supporting this notion, 
the knockdown of miR-23a-5p in M2-EVs abolishes the effects on 
OPC differentiation and oligodendrogenesis (Li et al., 2022). In addi-
tion, M2-EVs can protect neurons against apoptosis and inhibit the 
proliferation of AST and glia scar formation through miR-124. These 
findings suggest that the beneficial effects of MG-derived EVs on 
OPC differentiation and remyelination are mediated by a combina-
tion of molecules rather than a single one. Overall, EVs derived from 
MG can exert both detrimental and protective effects on neighbor-
ing or distant cells depending on their contents and their surface 
structure, which are partly determined by their surrounding milieu 
and, consequently, their polarization state.

5  |  E VS A S THER APEUTIC TOOL S 
TARGETING MG

EVs regulate different signaling pathways in the CNS and, as men-
tioned above, can cross the BBB either by paracellular or transcel-
lular transportation. For transcellular transportation, EVs need to be 
previously internalized by brain microvascular endothelial cells. In 
addition, EVs can increase BBB permeability by dysregulating tight 
junction proteins.

The selection of cell sources for the production of EVs as thera-
peutic tools is critical. In this regard, two primary sources have been 

investigated: (i) MSC-derived EVs isolated from unmodified cells, and 
(ii) MSC-derived EVs isolated from modified cells whose composition 
has been modified to expand their targeting and therapeutic capac-
ity. Pre-isolated EVs load drugs or genetic material into the lumen 
or display targeting ligands. Thus, targeted EVs as drug carriers may 
be a promising therapeutic strategy to reach the compartmentalized 
CNS immune system, which drives neurodegeneration and demye-
lination failure (Hickman et al., 2018).

EVs can be designed to carry specific cargos to be released 
to a particular target cell. In this context, the murine MG cell line 
Bv2 has been recently engineered to release EVs with surface 
marker lactadherin (Mfge8) to target phagocytes and containing 
the specific cargo IL-4. After inoculation into the cisterna magna 
of EAE animals, these EVs are internalized by myeloid cells in the 
meningeal compartment and choroid plexus, reducing neuroin-
flammation and clinical signals (Casella et al., 2018). Likewise, EVs 
loaded with PKC agonists provide marked benefits in EAE ani-
mals and CPZ-fed mice by acting on MG, favoring the transition 
of myeloid cells from a pro-inflammatory to an anti-inflammatory 
phenotype (Kornberg et al., 2018; Wu et al., 2022). Similarly, EVs 
derived from bone marrow MSC (BMSC) administered intrave-
nously may affect the MG polarization, attenuating both demy-
elination and inflammation and restoring neurological function in 
EAE rats. Pro-inflammatory MG treated with BMSC-derived EVs 
undergo a decrease in TNF-α secretion and an increase in TGF-β 
and IL-10 release. These in vivo results indicate a shift of MG from 
a pro-inflammatory to an anti-inflammatory phenotype, which 
suggests the protective effects of treatment. Part of these effects 
are mediated by the release of EV miR-467f and miR-466q, which 
can modify the pro-inflammatory phenotype of activated MG, 
downregulating Tnf and Il1b expression by modulating p38MAPK 
signaling pathway (Giunti et al., 2021). These findings suggest 
that MSC-derived EVs could reduce neuroinflammation in the 
CNS through specific immunomodulatory miRNAs acting on MG 
(Giunti et al., 2021; Zhang et al., 2022). In addition, treatment is 
followed by a decrease in the expression of CD68, a marker of M1 
MG, and an increase in CD206, an indicator of M2 MG, in both 
brain and spinal cord (Li, Cheng, et al., 2019; Li, Liu, et al., 2019; Li, 
Tong, et al., 2019).

Despite these findings, obstacles remain for the clinical applica-
tion of EV-based therapies, including lack of data on EVs trafficking 
and biodistribution. In addition, EV membrane structure and core 
content are highly influenced by the origin and physiologic state 
of cells. Therefore, thorough analysis should be conducted on EV 
structure, particularly their lipid composition, and the permeability 
status of the BBB (Jakubec et al., 2020).

5.1  |  EVs as biomarkers for MS

To be applied in a therapeutic context with potential for success, 
MS biomarkers should (1) be cost-effective, (2) correlate with 
disease biology or pathogenesis, such as inflammatory activity, 
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TA B L E  3  Effects of MG-derived EVs on CNS cells in homeostasis and disease.

Cells Effects Mediators Reference

Neurons Neurite outgrowth support and 
synaptogenesis

Neurotrophic factors nGDF, TGF-β, 
Thrombospondin 1 and 4

Lemaire et al. (2019)
Raffo-Romero et al. (2019)
Eroglu et al. (2009)

Conveyance of energy substrates Metabolic enzymes for anaerobic glycolysis 
and lactate production

Potolicchio et al. (2005)

Detrimental effects on dendritic spines miR-146-5p Prada et al. (2018)

Stimulation of Glu release; down-regulation of 
GABAergic transmission

Sphingosine and sphingosine-1 phosphate, 
ceramide

Endocannabinoids (anandamide, 
arachidonoyl- ethanolamine)

Antonucci et al. (2012)
Riganti et al. (2016)
Gabrielli et al. (2015)

Silencing of post-synaptic protein neuroligin-1 
and pre-synaptic protein synaptotagmin-1

miR-146-5p Prada et al. (2018)
Jovičić et al. (2013)

Decrease in synapse density Fatty acid palmitate Vinuesa et al. (2019)

Decrease in neurogenesis miR-146-5p acting on KLF-4 and CDKL5 Fan et al. (2022)

Induction of oxidative stress Glutaminase Chen et al. (2020)

Induction of neurodegeneration mediated by 
TLR-7

miR let-7b and HMGB Coleman et al. (2017)

Synaptic pruning ROS and complement factor C1q Lombardi et al. (2019)

Packaging and propagation of misfolded 
proteins

EVs containing misfolded proteins transfer 
them to other neurons in a trans-
synaptic manner and contribute to 
neurodegenerative diseases

Gabrielli et al. (2022)

Protection from apoptosis after oxygen–
glucose deprivation and protection from 
neurodegeneration

miR-124-3p and suppression of PDE4B, 
miR-711, miR-135a-5p

Ge et al. (2020)
Zhang et al. (2020)
Liu et al. (2021)

Astrocytes Transformation of astrocytes into harmful A1 
cells

IL-1a, C1q, and TNF Liddelow et al. (2017)

Increase in the release of IL-1β, IL-6, and 
TNF-α

ATP stimulation of receptor P2X7 Bianco et al. (2009)

Attenuation of glial scar formation miR-124 targeting STAT3 Li et al. (2021)

Increase in the expression of glutamate 
transporters Glt1 and Glast, enhancing Glu 
uptake

miR-124 Huang, Ge, et al. (2018); 
Huang, Xu, et al. (2018)

Oligodendrocytes Promotion of OPC migration and 
differentiation

IL-4 polarization Lombardi et al. (2019)

Inhibition of remyelination Pro-inflammatory cytokines Lombardi et al. (2019)

Increase in the number of GPR17-expressing 
OPCs at lesion boundaries and 
enhancement in maturation

IL-4 polarization Raffaele et al. (2021)

Chemoattractant effect on OPCs Sphingosine-1-phosphate Lombardi et al. (2019)

Impairment of oligodendrocyte maturation Pro-inflammatory cytokines, indirect effect 
mediated primarily by astrocytes

Lombardi et al. (2019)

Promotion of OPC survival and differentiation Transmembrane TNF and purified lipid 
fraction of EVs (endocannabinoids and 
sterols), miR-23a-5p, miR-221-3p, miR-
129-5p, and miR-155-5p. miR-23a-5p 
could promote OPC differentiation by 
inhibiting Olig3 expression

Madsen et al. (2016)
Lombardi et al. (2019)
Gualerzi et al. (2021)
Li et al. (2022)

(Continues)
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12  |    WIES MANCINI et al.

the degree of neurodegeneration, demyelination, or remyelina-
tion, (3) be easy to access, primarily when used sequentially, and 
(4) be easily measured using precise and robust tests (Mathur 
et al., 2021; Paul et al., 2019). In this context, EVs secreted 
from different types of neural cells such as neurons, astrocytes, 

microglia, and oligodendrocytes reflect parental cells through 
cell-specific receptors on their surface and with their cargo, be-
coming a reservoir of potential biomarkers (Ramirez et al., 2018), 
EVs could serve as valuable biomarkers for MS diagnosis and 
monitoring of disease progression. The origin of these EVs has 

Cells Effects Mediators Reference

Endothelial cells Reduction in intracellular oxidative stress 
levels

Increase in survival and cell migration

Activation of keap1/Nrf2/HO-1 pathway Peng et al. (2021)

Increase in the viability, migration, and tube-
formation capacity of endothelial cells 
exposed to oxygen–glucose deprivation

TGF-β1/Smad2/3 pathway Zhang, Zou, et al. (2021); 
Zhang, Wei, 
et al. (2021)

Pro-angiogenic properties miR-26a Tian et al. (2019)

Microglial cells Modulation of protective activities such as 
cellular movement, cell death and survival, 
cellular growth and proliferation of other 
MG

Surface phagocytic receptor TREM2 Huang, Ge, et al. (2018); 
Huang, Xu, et al. (2018); 
Huang et al. (2022)

Modulation of protective activities of MG 
upon inflammatory stress

Downregulation of FAS, TNFSF10 (TRAIL), 
CXCL8, caspase 8, IL-6, and IL-1β 
transcripts

Van den Broek et al. (2020)

Increase in the activation of NLRP3 
inflammasome and induction of cell-to-cell 
communication

Transfer of the inflammasome adaptor 
protein ASC, increase in IL-1β 
production

Sarkar et al. (2019)

Increase in pro-regenerative MG (higher 
expression of CD206)

TGF-β1 Zhang, Zou, et al. (2021); 
Zhang, Wei, 
et al. (2021)

Facilitation of EV-mediated autophagy Complement molecule C3 and MYD88 Van den Broek et al. (2020)

Increase in pro-inflammatory miR-130, miR-
145a, miR-23b, miR-146a, and decrease in 
anti-inflammatory miR-124 and let-7b

Glutaminase C Gao et al. (2019)

Induction of neuropeptide catabolism Transmembrane aminopeptidase CD13 Potolicchio et al. (2005)

Increase in neuronal survival FGF, NGF and BDNF, miR-124 Song et al. (2019)
Ponomarev et al. (2011)

Inhibition of MG autophagy by targeting 
PTEN/AKT/mTOR

miR-19a-3p Zhou et al. (2019)

Inhibition of inflammation by targeting the 
TLR/NFĸB pathway

miR-146a, miR-125b, miR-182, miR-17- 
5p, miR-140-5p, miR-9, miR-let7, and 
miR-181c

Vaz et al. (2019)
Wang et al. (2018)
Guo et al. (2019)
Yang et al. (2020)
Yin et al. (2017)

MG migration miR-9 Yang et al. (2018)

Suppression of neurodegeneration by the 
decreased expression of TNF-α, IL-1β, and 
IL-6, and inhibition of neuronal autophagy

miR-124-3p Li, Cheng, et al. (2019); Li, 
Liu, et al. (2019); Li, 
Tong, et al. (2019)

Regulation of MG polarization toward an M2 
phenotype

mi-R-223 Lo Sicco et al. (2017)

Abbreviations: AKT, protein kinase B; ASC, apoptosis-associated speck-like protein containing a CARD; BDNF, brain-derived neurotrophic factor; 
CDKL5, cyclin-dependent kinase-like 5; CXCL, C-X-C motif chemokine ligand; FAS, Fas cell surface death receptor; FGF, fibroblast growth factor; 
GABA, Gamma-aminobutyric acid; Glast, glutamate–aspartate transporter; Glt-1, glutamate transporter-1; Glu, glutamic acid; GPR17, G protein-
coupled receptor 17; HMGB, High mobility group box; HO-1, Heme oxygenase 1; IL, interleukin; keap1, Kelch-like-associated protein 1; KLF4, 
Krüppel-like factor 4; miRNA, micro RNA; mTOR, mammalian target of rapamycin; MYD88, myeloid differentiation factor 88; nGDF, nervous growth 
and differentiation factor; NGF, nerve growth factor; Nrf2, nuclear factor-erythroid factor 2-related factor 2; OPC, oligodendrocyte progenitor 
cells; PDE4B, Phosphodiesterase 4B; PTEN, phosphatase and tensin homolog; ROS, radical oxygen species; SMAD, suppressor of mothers against 
decapentaplegic; STAT, signal transducer and activator of transcription; TGF-β, transforming growth factor-β; TNF, tumor necrosis factor; TNFR2, 
tumor necrosis factor receptor 2; TNFSF, tumor necrosis factor superfamily; TREM2, triggering receptor expressed on myeloid cells 2.

TA B L E  3  (Continued)
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    |  13WIES MANCINI et al.

been verified through immunogold electron microscopy using 
CD11b/c antibodies, which has demonstrated an elevation in 
microglia/macrophage-derived EVs in cerebrospinal fluid during 
periods of inflammation. Additionally, IB4 has been employed 

as an additional marker for isolating microglial EVs from plasma, 
able to distinguish patients in the acute phase from the remis-
sion phase (Geraci et al., 2018; Verderio, Muzio, et al., 2012). 
Similarly, EVs originating from CNS endothelial cells could serve 

F I G U R E  2  Pro-regenerative MG (M2) secrete TGF-β, which increases the expression of CD206 and complement molecules C3 and 
MYD88 in neighboring MG, facilitating autophagy (1). Furthermore, their cargos miR-124, MMPS, and transglutaminase-2 attenuate glial 
scar formation and increase the expression of Glu transporters, enhancing Glu uptake (2) and (3). MG-derived EVs also exert several effects 
on the recruitment, migration, and differentiation of oligodendroglial progenitors by releasing IL-4 and mi-RNA 23a 5p, activating TNFR2, 
and lipid-secreting fractions, including endocannabinoids and sterols (4). In addition, MG-derived EVs increase neuronal survival by secreting 
growth factors FGF, NGF, IGF-1 and BDNF, and miRNA-124, simultaneously transporting metabolic enzymes for anaerobic glycolysis and 
lactate production. Furthermore, several miRNAs released by MG-derived EVs inhibit the inflammatory process targeting the TLR/NFκB 
pathway (5). Some of these EVs also support neurite outgrowth and synaptogenesis through nGDNF, TGF-β, and thrombospondin 1 and 4 
(6). For further details on these effects, see Table 1. BDNF, brain-derived neurotrophic factor; EVs, extracellular vesicles; FGF, fibroblast 
growth factor; Glast, glutamate transporter (EET1); Glt1, presynaptic glutamate transporter (EET2); Glu, glutamic acid; IGF, insulin growth 
factor; IL, interleukin; MMPS, metalloproteinases; MYD88, myeloid differentiation primary response 88; NFκB, nuclear factor Kappa B; nGDF, 
nervous growth/differentiation factor; NGF, nerve growth factor; OLG, oligodendrocytes, OPC, oligodendrocyte progenitor cells; TGF-β, 
transforming growth factor-β; TLR, toll-like receptor; TNFR, tumor necrosis factor receptor.
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14  |    WIES MANCINI et al.

as biomarkers indicative of BBB permeability and active MS 
(Mazzucco et al., 2022).

6  |  CONCLUSIONS AND FUTURE 
PERSPEC TIVES

Microglial activation is a common feature of MS. Although this ac-
tivation can be harmful in some instances, the protective and re-
generative functions of MG have also been documented (Figures 1 
and 2). In particular, MG play a vital role in remyelination, a critical 
process for axonal health. Several cellular events involved in this 
process depend on cell–cell communication. EVs serve as com-
munication vehicles in the brain, transferring different molecules 
in physiological and pathological conditions. EVs characterization 
remains challenging, as their populations are highly heterogene-
ous regarding content, size, and composition. Recent progress in 
high throughput transcriptome techniques has shown that EVs 
do not contain a random sampling of parent cell components but 
rather reflect parent cell state of activation and can be influenced 
by the pathological process of origin (Jeppesen et al., 2019). EVs 
can be found in body fluids of patients with different neurodegen-
erative diseases, which makes them attractive diagnostic tools and 
biomarkers.

Furthermore, EVs may have the appropriate capacity for loading 
and releasing molecules in controlled conditions. Due to their small 
size and lipophilic nature, EVs can cross the BBB and could there-
fore be used as nano-delivery vehicles for therapeutic molecules of 
choice. In this scenario, different approaches have been used for EVs 
to target MG-regulating diseases in animal models of demyelination. 
Despite EVs ability to cross the BBB, questions remain as to what 
the pathways are by which EVs can be taken up by the brain mi-
crovascular endothelial cells of the neurovascular unit to reach the 
CNS. Information is also still scarce about EV trafficking and biodis-
tribution. Glucose-coated gold nanoparticles have been widely used 
to track EVs in the CNS and studied in vivo using computerized to-
mography (Betzer et al., 2017). Although intravenously administered 
EVs can reach the CNS, biodistribution studies have shown system-
ically administered EVs trapped in the liver, lungs, spleen, kidney, 
and gastrointestinal tract (Wiklander et al., 2018). Therefore, local 
administration routes that bypass the BBB may prove attractive for 
targeted CNS delivery. Due to non-invasiveness, the intranasal route 
is the most promising approach for preclinical and clinical applica-
tions (Mattera et al., 2023). EV composition also poses the problem 
of transferring undesirable immunogenic content derived from par-
ent cells (Rufino-Ramos et al., 2017). Furthermore, the MG lines and 
mouse models that have been used to characterize EV cargos have 
limitations and fail to fully recapitulate the pathological hallmarks 
observed in humans. Currently, research on EV focuses on their abil-
ity to mediate cell–cell communication and their characteristics as 
biomarkers. Because EVs can be isolated from blood and other bio-
logical fluids, they are potentially non-invasive biomarkers for early 
diagnosis and prognosis. The profile of EVs has been referred to as a 

“liquid biopsy,” as EVs may provide information about tissues with-
out the need for an invasive approach (Poudineh et al., 2018). More 
research is needed to understand the mechanisms of bidirectional 
communication of EVs through the BBB and potential changes in 
cargo secretion. In addition, further studies should determine the 
type of cells to be used for EV production and the scale and methods 
of production which may yield high-purity EVs.
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