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Abstract: Alzheimer disease (AD) is the most prevalent form of dementia among elderly people.
Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse.
Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their
progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to
modify its structure in response to external stimulation or damage, has received growing attention
as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to
correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical
and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for exam-
ple, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or
addressing neuroinflammation. In this review, we first describe several structural and functional
aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD
stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed
by an analysis of analogous pharmacological interventions in animal models, according to their
mechanisms of action.

Keywords: Alzheimer disease; cognition; neuroplasticity; neurotransmitters; long-term potentiation;
cognitive impairment: animal models; dementias; neurodegenerative diseases; neuroinflammation;
therapeutics

1. Introduction

One of the characteristics of aging is the change in cognitive performance in a contin-
uum that spans a wide range of severities, from subtle changes along “normal” aging to
the more profound decline associated with neurodegenerative diseases. Some older adults
present no apparent changes in cognition, while others exhibit so-called mild cognitive
impairment (MCI), a condition that can be described as a minor decline in cognition, greater
than that normally expected at the individual’s age but not sufficient to interfere greatly
with their normal daily activities. A third set of individuals presents clear signs of severe
cognitive compromise. MCI can, but does not always, develop into a more profound
disorder, limiting normal daily functioning, at which stage the patient may present other
symptoms that categorize the status known as dementia [1].

AD is the most common form of cognitive disorder in the elderly and frequently
develops into full dementia. The disease significantly affects one or more cognitive domains
of the patient, memory being the most impaired brain function [2]. This is the typical
manifestation in most cases of AD, though the clinical phenotype and etiology may differ
in individual presentations. There are two main categories of AD: sporadic and familial.
Whilst to date no causative genes have been conclusively connected with the sporadic or late
onset form of the disease (LOAD), several mutations have been identified in specific genes
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associated with the development of familial or inherited AD: amyloid precursor protein,
presenilin-1, presenilin-2, and apolipoprotein E. Familial AD frequently manifests at earlier
ages and is therefore referred to as early onset AD (EOAD); its clinical manifestations and
progression are typically more aggressive than those of sporadic AD [3,4].

The most widely used experimental models of AD in studies on therapeutic strategies
are transgenic rodent models that carry the mutations characteristically found in LOAD.
In contrast, clinical trials usually address the EOAD form rather than LOAD, as the latter
represents less than 5% of all cases [5]. There are, however, clinical trials involving patients
at preclinical and clinical stages of familial AD to test for instance monoclonal antibody
therapy, such as that involving solanezumab [6,7].

Neurofibrillary tangles and amyloid deposits are the two hallmarks of AD. These
two postmortem neuropathological findings are believed to be preceded by more subtle
subcellular and biochemical processes involving the constituent molecules: (i) tau, the
microtubule-associated protein involved in axonal transport under physiological condi-
tions, is translocated to the somatodendritic space and undergoes hyperphosphorylation,
misfolding, and aggregation in AD, leading to the formation of neurofibrillary tangles;
(ii) amyloid β (Aβ), a protein resulting from the hydrolytic cleavage of the amyloid pre-
cursor protein (APP), normally helps protect against infections and injuries, repairs leaks
to the blood-brain barrier, and mediates synaptic transmission and plasticity. In AD, Aβ
forms soluble oligomers that have a synaptotoxic effect, later forming extracellular deposits
of amyloid plaques, found to be abundant in the brain cortex of AD patients [8]. In addition
to the hyperphosphorylated tau and amyloid burden observed in most AD patients, there
are other mechanisms that may be partly responsible for the observed decline in cognition.
Of particular importance are alterations in neurotrophic signaling, cell survival, neuro-
genesis, and synaptic function, all of which are subjacent neuroplastic phenomena that
can be significantly reduced or lost in AD [9], as discussed in this review. It has been hy-
pothesized that functional alterations in neuroplasticity rather than epiphenomenological
neuronal degeneration and death—reflected in the postmortem neurofibrillary tangles and
hyperphosphorylated tau protein deposits—could be responsible for some of the cognitive
impairments in AD, as well as in other neurodegenerative diseases [10–12]. Despite the
strong correlation between plastic alterations and cognitive decline in AD, no effective
treatments towards slowing down neuronal degeneration, stopping neuronal death, or
enhancing the activity of surviving neurons have been found to date. Growing evidence
points to the evaluation of dysfunctional neuroplasticity in experimental and clinical scenar-
ios, as this general set of manifestations is increasingly considered a strong clinical correlate
of the disease [13,14]. Pharmacological therapeutic strategies aimed at enhancing neuronal
plasticity in AD are discussed in this review, with particular focus on studies that measure
mechanisms of plasticity in AD patients or animal models of AD following pharmacological
interventions. Articles were searched using the PubMed database and clinicaltrials.gov,
selecting only those reporting experimental measurements of neuroplasticity.

2. The Multiple Facets of Neuroplasticity

Neuroplasticity, also called brain plasticity or simply plasticity, refers to the combina-
tion of processes that generate adaptive changes in the brain following acquired experience
or damage [15]. In adulthood, neuroplastic mechanisms tend to diminish. The ability
to preserve plasticity is considered essential for healthy ageing, as it may constitute a
protective factor against age-related conditions and even neurodegenerative diseases such
as AD [16,17]. The reorganization of the brain that is inherent to neuroplasticity comprises
various mechanisms, operationally classified as functional or structural [18], though this is
in fact a misleading dichotomy since the two operate jointly. At the crossroad of behavioral
and functional neuroplastic parameters we find mechanisms such as homologous area
adaptation (a cognitive function is overtaken by a brain structure from the opposite hemi-
sphere), cross-modal reassignment (brain areas accustomed to processing a specific kind of
sensory input develop the ability to respond to an additional sensory input), compensatory
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masquerade (a cognitive function is allocated to a new area), and map expansion (a given
functional brain region is expanded following repetitive stimulation) [19–21].

Structural plasticity usually refers to the morphological and developmental changes
in neurons and synapses along neurodevelopment, i.e., the remodeling of neuronal circuits
or synapses (e.g., synaptic pruning) or the generation of new nerve cells (i.e., neurogenesis)
or synapses (i.e., synaptogenesis) either in developmental stages or in neuronal repair
mechanisms [22,23]. Parameters such as number of new neurons, axon and dendritic
length, number and stability of dendritic arborizations, and number and morphology of
synaptic boutons, can be measured in post-mortem human or animal brain tissue [24]. The
activity of neurons can be assessed at the level of networks in the resting state and under
conditions of hypo- or hyper-connectivity. The latter can be studied indirectly in humans
through nuclear magnetic resonance (NMR) imaging (MRI) or functional MRI (fMRI) [25].

At the cellular level, electrophysiological measurements can provide information
on the functional state of the individual neuron, e.g., whether it is in a status of long-
term potentiation (LTP) or long-term depression (LTD), these measurements generally
being obtained ex vivo or in vitro [26]. LTP refers to the long-lasting strengthening of
connections between neurons after repetitive stimulation, a phenomenon that is strongly
correlated with learning mechanisms and the consolidation of long-term memory [27]. It is
generally accepted that continuous stimulation and strengthening through LTP can reach a
ceiling effect, requiring a mechanism of synaptic weakening to be adopted: LTD enhances
neuroplasticity by preventing synaptic connections from reaching this ceiling effect [28,29].
These measurements at the structural and functional level are summarized in Figure 1.
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Figure 1. Schematic representation of different experimental measurements of neuroplasticity.

Measuring neuroplasticity in human subjects is obviously precluded by ethical and
methodological considerations, calling for the use of proxy measures. Thus, measuring
neuroplasticity was for many years restricted to the use of neuropsychological tests [30],
such as the Battery of Learning Potential for Assessing Dementia [31] or the re-adapted
Auditory Verbal Learning Test [32], and indirect biomarkers in serum and cerebrospinal
fluid (CSF) [33–36]. CSF biomarkers of plasticity include: neurogranin, a postsynaptic
protein involved in synaptic plasticity and LTP [37], whose levels are usually higher in
AD patients [38]; synaptosome-associated protein-25 (SNAP-25), which participates in the
control of synaptic plasticity [39] and is usually higher in AD patients [40]; brain-derived
neurotrophic factor (BDNF), essential for memory formation and structural plasticity [41]
and which is lower in MCI and AD patients [42,43]; and vascular endothelial growth factor
(VEGF), a protein involved in the growth of blood vessels and delivery of glucose that
has a role in enhancing neurogenesis and synaptic plasticity [33] (see Table 1). Functional
MRI (fMRI) has revolutionized this field, making it possible to obtain information on the
involvement of certain brain areas in, e.g., mnemonic, cognitive, and/or fear processing.
The spatial- and time-resolution of this technique, however, still falls short of addressing
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the cell (neuron) or subcellular (synapse) levels, that is, measuring the neuronal and/or
synaptic integrity of patients in vivo. None of the above measures lead to an unequivocal
diagnostic of AD [44,45].

Table 1. CSF Markers of Altered Neuroplasticity in AD.

Protein Process in Which It Is Involved Mode of Presentation in AD

Neurogranin Promotion of synaptic plasticity and LTP Increased
SNAP-25 Control of synaptic plasticity Increased

BDNF Structural plasticity and cognitive
plasticity/learning Decreased

VEGF Neurogenesis and synaptic plasticity Decreased

AD is characterized by two main pathological findings in post-mortem tissue: the
deposition of amyloid-beta peptides (Aβ) and neurofibrillary tangles. Other features ac-
company these two necropsy findings, such as neuroinflammation, cell death, and synaptic
loss [46]. The so-called amyloid hypothesis purported that Aβ deposition and consequent
toxicity were the causative origins of the disease [47–50]. Despite its dominant influence,
there is still no conclusive proof of the original hypothesis. Some authors suggest that AD
could be primarily a disease of the synapse, whereby synaptic dysfunction leads to synaptic
loss and, in consequence, to neurodegeneration [51]. Synaptic aberration occurs at early
phases of AD, mainly in the mesotemporal regions of the brain [52]. These abnormalities
may be caused by amyloid toxicity, though no agreement has been reached on whether
synaptic alterations occur prior to the deposition of senile plaques or as a consequence
of Aβ deposition [53,54]. Aβ is also thought to hamper LTP in the hippocampus [55] and
to disrupt LTD function by preventing glutamate uptake [56]. The inhibition of LTP and
enhancement of LTD leads to synaptic and dendritic shrinkage [57,58]. In the presence of
AD pathology, however, especially during the early stages of the disease, the brain still
possesses the ability to adapt and rewire itself, a compensatory mechanism enabling it to
respond to the increasing demands of the pathological features. For instance, decreased
activity in the hippocampus is compensated for by the higher activation of other brain areas
involved in the response to a cognitive task, such as the frontal lobe. This allows the patient
to respond adequately to the task in hand, which does not occur in control groups [59].

Despite advances in the study of neuroplasticity in AD, much remains unknown.
Understanding the mechanisms of neuroplasticity degeneration and impairment as well
as their behavioral implications and clinical manifestation are key to developing effective
pharmacological and non-pharmacological therapies to enhance neuronal plasticity, the
strongest correlate of memory and learning impairment in this disease [19,60].

3. Current Pharmacological Strategies in AD

Effective therapies for AD, either to prevent or mitigate its symptoms [61], are still
notoriously absent or scarce. The pharmacological therapies that are currently available
can be categorized according to their main aim, i.e., whether they purport to prevent/delay
disease onset and progression or to mitigate symptoms. Disease progression-modifying
drugs are only indicated for preclinical or prodromal AD, i.e., stages at which individuals at
risk of AD have no or only very slight clinical manifestations of the disease [62]. Drugs that
target the clinical stages of the disease, with manifest cognitive symptoms, are indicated for
mild to moderate AD (such as donepezil, galantamine, and rivastigmine) or for moderate
to severe AD (such as memantine) [63]. There is still insufficient evidence on the efficacy of
symptomatic treatment [64]. As therapeutics administered at clinical stages are still scarce
and their effects are at most mild, trends are shifting towards targeting the early, prodromic
phases of the disease. Further studies are thus urgently required to identify reliable risk
factors and AD trajectories in order to develop novel and effective disease-modifying
pharmacotherapies [65].
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Currently approved drugs for the symptomatic treatment of AD comprise cholinesterase
inhibitors and N-methyl-D-aspartic acid (NMDA) receptor antagonists [66], both of which
provide at best relatively short symptomatic relief; moreover, their efficacy significantly
drops as the disease progresses [67]. Of the cholinesterase inhibitors, to date only rivastig-
mine, tacrine [68], memantine [62], donepezil, and galantamine have been approved for
the treatment of AD [67]; aducanumab is the only monoclonal antibody immunotherapy so
far (2003) approved by the FDA [68–70]. The immunotherapy purportedly hampers Aβ
deposition (see recent review by [71]). Clinical trials have shown promising results with
other drugs such as Aβ and tau aggregation inhibitors, selective Aβ42 lowering agents,
and anti-inflammatory agents, though these trials are still in the initial phases and their
safety and effectiveness have not yet been proven [71–75].

Since many of the cognitive dysfunctional signatures of AD involve the cholinergic
system, it is not surprising that several of the drugs listed in the preceding paragraph
are ligands acting on brain cholinergic circuits. One purported mechanism of action of
cholinesterase inhibitors used in AD is the prevention of glutamate neurotoxicity, an effect
that is mediated by nicotinic acetylcholine receptors (nAChRs) and the phosphatidylinositol-
3-kinase/Akt metabolic cascade [76]. Like other neurodegenerative diseases, AD presents
an important chronic neuroinflammatory component [77–79]. Methyllycaconitine, an
α7-subtype nAChR antagonist, was shown to antagonize the anti-inflammatory effect
of nicotine, whereas dihydro-β-erythroidine, an α4β2-subtype nAChR antagonist, had
no effect [80]. The homomeric α7 subtype of nAChRs and this metabolic pathway (see
review in [81]) are involved in the generation of experimentally-induced neuroinflam-
mation and pro-inflammatory cytokine production [80]. Subsequent work from these
authors indicated that increased cholinergic activity in the brain by donepezil prevents
experimentally-induced neuroinflammation via the α7-nAChRs/ phosphatidylinositol-3-
kinase-Akt pathway, suggesting that this system may form the basis for the development of
novel agents for reversing neuroinflammation [82]. As a result of cholinergic dysfunction,
cognitive deterioration is also observed in Parkinson disease, another neurodegenerative
disorder. The therapeutic strategies aimed at enhancing cholinergic tone in Parkinson
disease have been critically reviewed [83].

Galantamine, initially considered an unconventional potentiating ligand of the
nAChR [84,85], was subsequently shown to be a low-efficacy agonist acting via a non-
orthosteric (agonist) binding site, i.e., an allosteric site on the receptor [86], and to inhibit
apoptosis induced by Aβ [87]. Evidence that galantamine augments dopaminergic neu-
rotransmission in the hippocampus through the allosteric potentiation of nAChRs was
provided by experiments using a mouse model of Aβ-induced cognitive impairment [88].
These authors postulated that the enhancement of dopamine release may be one of multiple
mechanisms underlying the therapeutic benefits of galantamine. Moriguchi and coworkers
further showed that galantamine modulated excitatory/inhibitory neurotransmitter equi-
librium in the cerebral cortex [89]. Pleomorphic effects of galantamine, combining actions
on hippocampal neuroinflammation, deteriorated synaptic performance, and cognitive
impairment have more recently been reported [90].

Therapeutic strategies that target secondary mechanisms other than amyloid and tau
pathologies have also been explored, such as those aimed at mitochondrial abnormali-
ties [91], microglial dysfunction [92], or cholesterol metabolic alterations (such as those
employed in the treatment of coronary disease and atherosclerosis), often combined with
classical anti-amyloid drugs [93]. A schematic categorization of the current pharmacological
strategies is shown in Figure 2.

Some preliminary though promising results have been reported for drugs purported
to target neuronal plasticity [94,95]. However, one should keep in mind that such interven-
tions are only effective when there is still an acceptable degree of plasticity in the brain,
enabling it to compensate for deficits in functional ability and cognitive status, i.e., when
the patients are in the early or even prodromal stages of the disease [96]. There is growing
evidence to suggest that interference with adult hippocampal neurogenesis contributes
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to neurodegeneration in AD [97]; the possibility that AD involves metabolopathies such
as dysfunctional brain glucose metabolism [98,99] indicates the use of anti-diabetic drugs
as an alternative therapeutic scheme. In AD, glucose uptake was shown to be dimin-
ished, thus impairing the brain’s ability to support the required neuronal activity, resulting
in cognitive decline. The pro-neurogenic potential of the combined use of the antidia-
betic drug metformin and donepezil in a mouse model of neurodegeneration has been
reported. Metformin normalized the proteome profile and expression levels of neurogen-
esis markers along with an improvement in spatial memory. As compared to donepezil,
metformin-treated mice exhibited an enhanced number of post-mitotic neurons, suggesting
that metformin-mediated adult hippocampal neurogenesis may have implications for the
treatment of AD [100]. Other alternative approaches based on plant-derived drugs have
been recently reviewed [101]; for instance, the plant extract conophylline was shown to
reduce amyloidogenesis and rescue cognitive impairment in a transgenic mouse model
of AD [102]. There are also encouraging discoveries of the beneficial effects on cognitive
performance of certain compounds found in food. For example, it has been found that
in older adults, compounds such as the flavonols found in fruits and vegetables can help
protect cognitive function and delay memory impairments in AD [103]. However, it should
be noted that most of these advances derive from animal models, and their safety and
efficacy remain to be tested in clinical trials.
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4. Clinical Trials Addressing Neuroplasticity in AD Patients

Most pharmacological agents studied today in the field of AD are aimed at biological
processes that promote neuroprotection through a variety of mechanisms [104]. The com-
plex etiopathology and disrupted mechanisms occurring in AD contribute to the failure of
recent trials to provide consistent evidence of efficacy, suggesting that a combination of
pharmacological approaches rather than monotherapies might perhaps meet with greater
success [105].

Clinical trials addressing neuroplasticity in AD are selected based on whether they
report measurements related to neuroplasticity, e.g., BDNF levels, synaptic protein levels,
changes in functional connectivity measured through MRI, or glutamatergic activity.

Glucose metabolism and insulin are being increasingly researched as possible targets
in AD therapeutics. T3D-959 is an anti-diabetic candidate drug that has been recently
studied in patients with mild to moderate AD, in a phase 2 clinical trial. T3D-959 is a
small-molecule dual agonist of the peroxisome-activated nuclear receptor delta/gamma,
also known as PPARδ/γ. The outcome related to neuroplasticity is improved functional
connectivity of the hippocampus, as evidenced through fMRI, over the course of three
weeks of treatment. Upon correcting insulin resistance in the brain, a change in glucose
metabolism was observed, suggesting that insulin signaling, which is commonly affected
in AD, is essential for neuroplasticity [106,107]. The administration of insulin itself has also
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been proposed as a therapeutic agent for AD in a clinical trial that studied its effects on
mild AD or amnesic MCI [108]. Although no effects on neuroplasticity were specifically
reported by these authors, fMRI measurements showed alterations in cerebral glutamate
concentrations upon insulin intake, and glutamate concentrations were hypothesized to
be one of the main neuroplasticity-altering mechanisms in AD. A similar study reported
changes in glutamate concentration after treatment with empagliflozin, an anti-diabetic
that prevents the reabsorption of glucose and favors its excretion [109].

Considering the involvement of glutamatergic neurons and their sensitivity to al-
terations in AD, it is not surprising many clinical trials have attempted to target the
glutamatergic system. The activation of synaptic ionotropic glutamatergic receptors is re-
quired for the initiation of plasticity. However, when extrasynaptic glutamatergic receptors
are overactivated in AD due to an abnormally high release of glutamate, they produce
excitotoxicity and ultimately cell death [110]. Riluzole, currently approved by the FDA for
the treatment of amyotrophic lateral sclerosis, is a drug that also targets the glutamatergic
system by inhibiting the presynaptic release of glutamate [111]. One phase 2 study ad-
dressed the glutamatergic activity through NMR spectroscopy to measure in vivo levels of
glutamate and reported a positive correlation between glutamate levels in the posterior
cingulate nucleus and cognitive performance, suggesting the potential neuroplastic effect
of this intervention in AD [112].

Simulifam, formerly known as PTI-125, is a drug currently studied in phase 3 clinical
trials that acts as an Aβ inhibitor and reduces tau hyperphosphorylation. Besides the classi-
cal Aβ42 and tau measurements, this study also addresses the CSF levels of neurogranin, a
protein present in dendritic spines that is involved in neurogenesis and epigenetic mecha-
nisms of neuroplasticity and is usually considered a biomarker of neurodegeneration [113].
Results of this study showed reduced (32%) levels of neurogranin, suggesting that the
protein exerts a potentially protective effect on neurodegeneration [114]. Neflamapinod, an
inhibitor of the mitogen-activated protein kinase p38α, was also reported to lower neuro-
granin levels. However, cognition was found not to be altered in this study, leading the
authors to suggest further studies at higher doses [115,116]. The effects of the drug CT1812
have also been studied on other biomarkers of synaptic plasticity such as synaptotagmin
and SNAP25 levels, two proteins positively correlated with learning and memory perfor-
mance [117,118]. CT1812 is an antagonist of the sigma2 receptor, constituting a negative
allosteric modulator that could reduce the affinity of Aβ for this receptor, thus inhibiting
synaptic toxicity [119,120]. The administration of CT1812 was shown to increase the levels
of synaptic proteins and synaptic density [119,121,122].

There are also reports in the literature on drugs that target enzymatic pathways to
promote neuroplasticity. Intravenously administered bryostatin, a protein kinase C agonist
that is considered a potential therapeutic agent, slightly improved cognitive function in
advanced AD patients when compared to placebo [94]. In patients with early-stage AD,
6–12 weeks of oral administration of neflamapinod, a p38α inhibitor, increased episodic
memory performance, considered by the authors to be a proxy measure of synaptic func-
tion [123]. In patients with mild AD, 24 weeks of treatment with orally administered
neflamapimod showed a tendency towards the conservation of episodic memory (but only
at high doses), interpreted as an indicator of mildly enhanced plasticity, with a moderate
decrease in CSF neurogranin. The authors concluded that longer treatment and higher
doses of this drug could be more effective for neuroplastic enhancement [116].

The enzyme glutaminyl cyclase promotes the formation of Aβ oligomers, which exert
a toxic effect on synapses, leading to synaptic impairment, reduced connectivity, and a
decreased spike number [49,124]. In biomarker-positive AD patients, the administration of
PQ912, an inhibitor of this enzyme, reduced neurogranin CSF levels and decreased theta-
wave activity in the brain, thus showing the ability of PQ912 to modulate neuronal activity.
The authors propose that longer treatment may lead to a more significant disease-modifying
effect [125]. Table 2 summarizes the targets.
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Table 2. Examples of neuroplastic targets, drugs, and expected outcomes in AD therapeutics.

Target Drug Outcome

Glucose metabolism T3D-959 (anti-diabetic) Improved functional connectivity of the hippocampus

Glucose metabolism empagliflozin Alleged neuroplasticity improvement through
glutamate activity regulation

Glutamatergic toxicity Riluzole Inhibition of the presynaptic release of glutamate
and associated glutamatergic toxicity

Amyloid and tau pathologies Simulifam Decrease in synaptic neurogranin levels

Mitogen-activated protein kinase p38α Neflamapinod Decrease in neurogranin levels/ Enhanced
memory performance

Sigma2 receptor CT1812
Prevention of synaptotoxicity induced by Aβ,
increased levels of synaptic proteins related to
plasticity, and synaptic density

Protein kinase C Bryostatin Enhanced cognitive performance

Glutaminyl cyclase PQ912 Decrease in neurogranin levels

5. Interventions Targeting Neuroplasticity in Animal Models of AD

Animal models provide the opportunity to address neuroplastic mechanisms directly
at the level of the cell/tissue, giving them current relevance [126]. Studies reporting phar-
macological interventions targeting different mechanisms of neuroplasticity in transgenic
or induced AD animal models are categorized according to the main mechanism of action
addressing changes in neuroplasticity (Figure 3).
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therapeutic targets [127]. Furthermore, type 2 diabetes mellitus is a known predisposing or
risk factor for AD. Both diseases share the desensitization of brain insulin receptors. The
disruption of glucose metabolism and insulin deficiency can lead to neuronal death owing
to deficits in energy metabolism, a decrease in neurotrophic factors, and the inhibition of
the expression of genes that respond to insulin [128]. The administration of liraglutide, a
drug that helps control glucose levels, reversed cognitive impairment in a mouse model
and attenuated insulin receptor in a non-human primate model [129]. The administration
of metformin was shown to rescue the decreased levels in synaptic protein SYP-1 promoted
by the injection of Streptozotocin, used to induce AD in animal models that mimic the
sporadic form of the disease [130]. One study analyzed the effect of the anti-diabetic drug
sitagliptin in a transgenic mouse model of AD. Sitagliptin increased dendritic spine density,
presumably through the BDNF-tyrosine kinase B signaling pathway, as it upregulated
the levels of BDNF and tyrosine receptor kinase B (TrkB) [131]. Another study addressed
the effects of exenatide, a synthetic analog of the glucagon-like peptide 1 currently em-
ployed for treating type 2 diabetes mellitus, on BDNF signaling, and showed a regulatory
effect on this pathway [132]. Erythropoietin exerts neuroprotective effects and prevents
neurodegeneration and toxicity in nervous cells. Its administration in a mouse model of
induced-AD regulates BDNF and PSD-95 expression and attenuates the overexpression of
NMDA receptors. Treatment with a NMDA receptor agonist abrogated the positive effects
of erythropoietin on neuroplasticity [133].

Glucose-dependent insulinotropic polypeptide (GIP) is a peptide hormone of the
incretin family that modulates insulin release and energy utilization, and could be a
potential therapeutic factor in AD, in which energy utilization is significantly lower [134]. A
novel, long-lasting GIP analog, the glucose-dependent insulinotropic polypeptide analogue
(D-Ala2GIP), was found to increase LTP [135], neurogenesis, and synaptic number and
plasticity in a transgenic mouse model [136]. GIP and (Pro3)GIP, a similar compound,
enhanced LTP and promoted neurogenesis in the hippocampal CA1 region [137].

Lastly, though not an antidiabetic drug per se, tetramethylpyrazine, a compound found
in the plant Ligusticum wallichii that exhibits powerful anti-diabetic properties, enhanced
plasticity in a mouse model of induced AD that simulated the sporadic form of the disease,
showing that these effects may not be circumscribed to the genetic, early onset form of
AD [138].

5.2. Neurotrophic Compounds

Neurotrophins such as nerve growth factor (NGF), glial cell derived-neurotrophic
factor (GDNF), and BDNF—the most important neuroplastic-inducing trophic factor—
are molecules secreted in the nervous system that are considered to oversee the growth,
survival, development, and plasticity of brain cells. It has been shown that BDNF and its
receptor, TrkB, are required to consolidate LTP in the dentate gyrus [139]. BDNF increases
the trafficking of AMPA receptors in the membrane [140], and is also related to an increase
in synaptic density when administered exogenously [141]. The exogenous administration
of BDNF has also been related to a novel form of synaptic plasticity in field CA3 of the
hippocampus [142].

An alteration in neurotrophic activity is present in the pathogenesis of several neurode-
generative and psychiatric disorders, such as AD, Parkinson disease, Huntington disease,
and schizophrenia spectrum disorders [84,142,143]. In AD, a disruption in neurotrophic
metabolism leads to impaired neuroplasticity [144,145]. Pharmacological strategies aimed
at improving neurotrophic potential have received increased attention of late [145,146].
Several such molecules have been studied in the context of brain aging, such as resveratrol,
BDNF, and neurotrophic-type compounds such as rapamycin [146]. BDNF-targeting thera-
pies require further investigation in the context of AD [147]. Studies on the administration
of neurotrophic-type compounds include the neurotrophic-derived peptidergic compound
(P021) used in a triple transgenic mouse model of AD. The authors reported a marked
reduction in the abnormal hyperphosphorylation and accumulation of tau at known major
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AD neurofibrillary pathology-associated sites. P021 promoted a significant decrease in
soluble Aβ levels and a mild tendency towards reduction in Aβ plaque load in the hip-
pocampus, suggesting a reduction in Aβ generation but not its clearance [148]. P021 also
had a positive effect on plasticity, but only when administered in the early stages of devel-
opment (from birth to postnatal day 120): the treatment increased BDNF and ameliorated
synaptic protein deficits in a triple transgenic mouse model at up to 4 months of age [149].
It also restored neurogenesis and increased BDNF in the cortex and hippocampus of aged
rats, proving to be a potential therapeutic approach in AD as well as in cognitive decline
related to aging [150]. Cerebrolysin is a peptide mixture that has neurotrophic effects and
has been shown to improve neuroplasticity. Using an amyloid precursor protein transgenic
mouse model, cerebrolysin was found to mildly restore neurogenesis by protecting NPC
and decreasing the rate of apoptosis [151,152].

A positive allosteric modulator or Trk receptor, ACD856, increased the levels of
BDNF in aged mice, adding to the results obtained in vitro demonstrating enhanced nerve
growth factor activity and neurite outgrowth and increased levels of the synaptic protein
SNAP25 [153].

5.3. Glutamatergic System

The activity of neurotransmitters and their receptors is essential to neuroplasticity [154].
To date, the only two families of approved drugs that target neurotransmitters are acetyl-
cholinesterase inhibitors (including donepezil, galantamine, and rivastigmine) and an
NMDA antagonist (memantine) [155]. Even though a vast amount of mechanistic knowl-
edge is available on neurotransmitter activity deficits in AD in general, there are still no
therapeutic drugs associated with neurotransmitter activity aimed at promoting plastic
mechanisms [156].

Aβ exhibits glutamatergic excitotoxic effects: it enhances glutamate release and/or
inhibits glutamate uptake by NMDA receptors in neurons and glial cells and increases the
influx of Ca2+ into the neuron, thus promoting intracellular toxic events. This overstimula-
tion constitutes one of the proposed etiopathogenic mechanisms for AD neurodegenera-
tion [157]. Memantine targets this toxic effect by acting as a moderate affinity open-channel
non-competitive inhibitor of NMDA receptors [158], though its efficacy has been ques-
tioned as it is not clear whether its therapeutic effects on neurotoxicity can be achieved
without affecting cognition. Studies on this topic using animal models report contradicting
results [159,160]. These receptors are crucial in LTP mechanisms, raising the question of
whether memantine, currently approved for AD treatment, impairs or enhances NMDA
receptor-dependent neuroplasticity. Memantine has been reported to rescue LTP impair-
ment induced by soluble Aβ in the dentate gyrus without impairing cognitive performance,
though over a certain dose-range it showed disruptive effects on synaptic plasticity and
behavior, perhaps because of an excessive blockade of NMDA receptors [161]. Subtype-
preferring NMDA receptor antagonists could provide a better and more specific strategy:
one study showed that targeting NMDA receptors that contain the GluN2B subunit could
prevent the inhibition of plasticity induced by Aβ toxicity [162].

5.4. Cholinergic System

Historically, cholinesterase inhibitors, which operate by rapidly degrading the en-
dogenous neurotransmitter acetylcholine, were among the first drugs to be assayed in the
context of AD. Today we know that galantamine also acts as a positive allosteric modu-
lator of nAChRs, enhancing neurotransmitter release and Ca2+ signaling in neurons [84].
Besides their main effect on the brain, acetylcholinesterase agents can upregulate nAChR
biosynthesis in cerebral cortex neurons [163]. This multi-target pharmacological effect
is also shared by donepezil-related compounds [164]. The cholinergic hypothesis is a
theoretical construct that provided the basis for employing anticholinesterase drugs in
AD [165,166], the efficacy of which is still under debate [167]. Despite Tacrine being with-
drawn from the market owing to its hepatotoxicity, the drug appears to improve cognitive
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performance in an AD transgenic animal model. Tacrine also increased the levels of NMDA
receptor subunits NMDAR2A, NMDAR2B, and the synaptic-associated proteins PSD-95
and SYP [168]. Donepezil together with cerebrolysin showed a synergistic and protective
effect on plasticity, promoting a wider dendritic arborization in pyramidal neurons of the
prefrontal cortex, dorsal hippocampus, nucleus accumbens, and dentate gyrus [169].

Chronic nicotine administration has been shown to prevent Aβ-induced inhibition of
synaptic transmission and LTP in the hippocampus; to downregulate α7 and α4 nAChRs,
presumably by increasing BDNF levels [170]; and to increase dendritic density in the
CA1 area of the hippocampus when administered chronically [171]. α7 nAChRs are
considered a potential target owing to their essential role in different mechanisms of
synaptic plasticity [172,173] (Figure 4).
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5.5. Serotoninergic System

The serotonin 5-HT4 receptor participates in memory and learning processes and
mechanisms of plasticity such as LTP. One study reported that in transgenic rats, the admin-
istration of BIMU8, an agonist of this receptor, not only improved cognitive deficits but also
increased LTP in the hippocampus [174]. Fluoxetine is an antidepressant drug currently
available on the market that has been found to exert neuroprotective and neuroplastic
effects [175], but its effects on AD have not been sufficiently studied to date. In transgenic
AD mice, the administration of Fluoxetine in early stages (adolescence) attenuates cognitive
and synaptic deficits in the adult animals [176].

Citalopram is another antidepressant that can ameliorate Aβ production and deposi-
tion in AD mice and human brains. Additionally, the administration of citalopram in an
animal AD model was shown to reverse Aβ-induced LTP impairment in the hippocampus.
Its effect on LTP was explained by two mechanisms: (1) a restoration of the number of
5-HT receptors, which increases serotonin levels and restores LTP, and (2) a decrease in the
levels of Aβ accumulation in the hippocampus, which is known to inhibit LTP [177]. LTP
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was also rescued by the chronic administration of the serotonin type 6 receptor (5-HT6R)
antagonist [178] and by the chronic administration of a serotonin type 7 receptor (5-HT7R)
agonist [179], in a rat model.

5.6. Dopaminergic System

The dopaminergic system is also involved in the regulation of plasticity, though its
role in AD is still not clear. It has been reported that the malfunction of dopaminergic
activity induces LTD and suppresses LTP, generating memory impairment [180]. Studies
on therapeutic pharmacological strategies addressing the dopaminergic system in AD are
scarce; it has been reported that an agonist of the D1-type dopamine receptor that also
acts as a D2-type receptor antagonist improved hippocampal-dependent learning and
memory and increased LTP in the hippocampus by improving the surface expression of
GluA1-containing AMPA receptors [181]. Other studies have addressed the dopaminergic
system in aged animals, but not specifically in AD [182].

5.7. Adenosine System

Adenosine is a homeostatic modulator of various physiological processes, including
sleep and cardiac and cognitive functions [183]. Adenosine interacts with G-protein cou-
pled receptors throughout the brain, thus contributing to neuronal signaling and cognition.
Dysregulation of A2A adenosine receptors is observed in some AD patients. When com-
pared to healthy controls, these receptors are significantly upregulated in the hippocampus
and cortex, impairing the regulation of pro-inflammatory cytokine secretion associated
with neuroinflammation [184,185]. The activation of hippocampal A2A regulates plasticity,
especially glutamate release and NMDA receptor activation [186]. A2A antagonists have
been studied in animal models and are reported to normalize the upregulation of A2A re-
ceptors, increase the expression of the synaptic markers syntaxin-1 and vGluT1, restore LTP
amplitude, and improve cognitive performance [187]. Blocking these receptors inhibited
the facilitation of LTP in hippocampus through BDNF [188].

Adenosine levels can also be increased by inhibiting the adenosine equilibrative
nucleoside transporter 1 (ENT1), which oversees adenosine recycling from the extracellular
space. In a transgenic mouse model of AD, an inhibitor of ENT1 was able to restore LTP
and the levels of the glutamate receptor subunits NR2A and NR2B [189].

5.8. Enzymatic Pathways

In the brain, the enzyme protein kinase C (PKC) participates in the regulation of neu-
rotransmitter release, cell proliferation and differentiation, gene expression, and neuroplas-
ticity. PKC is involved in the development of AD pathophysiology through the alteration
of its signaling pathways, which are associated with a decline in episodic memory [190].
Bryostatin, an activator of the PKC epsilon (PKCε) isozyme, has been demonstrated to
restore synaptic and neuronal loss in transgenic mice at a stage akin to pre-clinical AD [191].

The presence of the α isoform of the p38 mitogen-activated-protein kinase (p38α) in
neurons promotes inflammation, Aβ formation, and synaptic dysfunction, thus mediating
age-related cognitive decline [192,193]. The inhibition of this protein serves to protect
synapses and cognition in transgenic animal models of AD, thus constituting an additional
target for synaptic pathology in this disease [194–197]. Another enzyme that has been
targeted for AD treatment is glycogen synthase kinase-3β (GSK-3β). Inhibiting this enzyme
could lead to the prevention of tau phosphorylation, a typical occurrence in postmortem
AD brains. AZD1080 has been proposed as a selective GSK-3β inhibitor, which has been
studied both in vitro and in vivo. AZD1080 inhibited tau phosphorylation in fibroblasts
in culture, while in mice it reversed memory impairment and prevented LTP disruption
when administered sub-chronically, but not acutely [198].

Berberine, the main active component of several herbs used in traditional Chinese
medicine, has recently been proposed as a therapeutic strategy in AD. Berberine regulates
the GSK-3β/PGC-1α signaling pathway by inhibiting GSK-3β activity [199], showing
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potential neuroprotective effects against oxidation, neuroinflammation [200], Aβ pathology,
and tau hyperphosphorylation [200,201]. It has also been suggested that berberine mod-
ulates the extracellular signal-regulated kinase and protein kinase B signaling pathways
in a transgenic model of AD, thus regulating plasticity, as the activation of this signaling
pathway is related to the mechanism of neuroplasticity [202]. Another signaling pathway
that is altered in AD is phosphoinositide dependent kinase 1 (PDK1)/AKT, which is in-
volved in AB production and tau phosphorylation, as well as in cell survival and synaptic
health [199]. Therapeutic strategies attempting to activate this signaling pathway include
Salvia officinalis [203], curcumin [204], and trypchloride [205]. All these compounds have
been reported to produce a certain degree of cognitive enhancement in animal models of
AD and reduce neuropathology [202,206]. However, safety factors and bioavailability need
to be further investigated [207].

5.9. Neuroinflammation

Metabolic pathologies constitute risk factors for AD, and it has been proposed that
metabolic dysregulation, like insulin resistance, is a precursor to AD (especially the sporadic
form, late onset AD). Several metabolopathies are comorbidities of AD. Metabolic diseases
are intimately linked to the production of inflammatory cytokines and the accumulation of
AD pathological byproducts in the brain, which is why compounds with anti-inflammatory
action are being currently considered as possible therapeutic strategies [208]. Chronic
metabolic stress and dysregulated AMP-activated protein kinase have been associated
with the development of neurological diseases and aberrant neurogenesis [209,210]. A
proinflammatory cytokine that has been targeted in AD is tumor necrosis factor-α (TNF-α),
which is typically elevated in patients and animal models of AD. One such drug, 3,6’-
dithiothalidomide, was studied in a transgenic AD model. It was demonstrated that this
compound was able to increase the levels of synaptic protein SNAP25 and synaptophysin,
which indicates a preserved synaptic function, and to enhance cognitive impairment [211].

Interleukin-1β is another pro-inflammatory cytokine whose expression is higher in
AD patients. An inhibitor of the nucleotide-binding oligomerization domain-like receptor
family, pyrin domain containing 3, dapansutrile, was shown to rescue LTP, though only at
high doses [212]. Another cytokine that regulates inflammation, interleukin-2 (IL-2), was
found to increase synaptic density in a transgenic mouse model of AD [213].

Sodium butyrate is an inhibitor of histone deacetylase and reduces the secretion of pro-
inflammatory cytokines. A study investigating its effect after two weeks of administration
reported improved plasticity as shown by increased LTP, higher dendritic density, and
preserved levels of synaptic-related proteins PSD-95, SYP, and NR2B [214].

5.10. Lipid Metabolism

The strongest genetic risk factor for AD is the presence of the apolipoprotein E (ApoE)
allele epsilon 4 (APOE4), which is present in roughly 50% of all cases, albeit with important
ethnic variability [215]. ApoE4 is involved in lipid metabolism, most importantly in
cholesterol transport, and cholesterol dyslipidemias are thought to be involved in AD
pathogenesis [216]. It is believed that ApoE has a crucial role in generating Aβ protein,
which in turn leads to defective neuronal sprouting and dysfunctional plasticity, synaptic
loss, and ultimately, neurodegeneration [217,218]. ApoE4 impairs the function of NMDA
glutamatergic receptors, and is involved in the metabolism, aggregation, and toxicity of Aβ
peptide, tauopathy, synaptic plasticity, lipid transport, glucose metabolism, mitochondrial
function, vascular integrity, and neuroinflammation, although the underlying processes
are not well understood [219]. Therapeutic drugs that focus on modulating ApoE activity
include statins, estrogen, anti-inflammatory drugs, and antioxidants [220,221]. Probucol,
a cholesterol-lowering drug which induces ApoE production and peripheral circulation
of this lipoprotein and one of its main receptors, LRP, increases the synthesis of the rate-
limiting enzyme in cholesterol synthesis, reduces age-related glial activation, and induces
the production of the synaptic marker SNAP-25, suggesting a potential role in supporting
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plasticity [222]. Another therapeutic strategy is to activate phospholipases, a group of
enzymes that hydrolyze phospholipid substrates and protect from synaptic dysfunction
and cognitive deficits [223–225]. Gene therapy has been proposed as a strategy to regulate
cholesterol homeostasis by targeting 24-dehydrocholesterol reductase, which is usually
downregulated in AD. This approach was tested in animal models. No outcomes related to
neuroplasticity have been reported as yet [226].

Cholesterol is crucial for the regulation of nicotinic receptors in neuronal membranes,
especially the α7 and α4 nAChR subtypes, which, as mentioned previously, are funda-
mental regulators of neuroplasticity and cognitive function, and their expression at the
surface is essential for the correct functioning of the cholinergic neuron [216]. In cultured rat
neurons, the statin-lowering drug lovastatin showed a regulatory function by modulating
protein receptor levels at the cell surface [227]. Statins have pleiotropic actions, including
immunomodulatory, anti-inflammatory and antioxidant effects that could also protect
neurons in AD [228,229].

Adiponectin is an adipokine that regulates lipid metabolism, among other functions;
it has recently been proposed that changes in its expression could be related to an increased
risk of developing AD [230,231]. Adiponectin has been tested in a transgenic model of AD
and been shown to rescue LTP [232,233].

6. Conclusions

Therapeutic strategies for AD are highly diverse, as are their putative mechanisms
of action and the presumed etiopathogenic mechanisms they address. Here we have
summarized the pharmacological strategies aimed at improving neuroplasticity and their
reported outcomes in both clinical settings and animal model studies. The enhancement
of LTP reported in several of these studies provides a positive scenario for future research
addressing the correlation between neuroplasticity and improvements in the cognitive per-
formance of AD patients. Whilst several studies in animal models show promising results,
clinical trials are more discouraging, many reaching the conclusion that the efficacy of the
therapeutic treatments is at best mild to moderate and suggesting that longer treatment
or higher doses would be required to achieve significant changes in neuroplastic markers.
Intervention in the early stages of the disease would therefore appear to be determinant,
thus taking advantage of the fact that the brain still retains some plasticity despite the initial
development of pathological hallmarks. It should also be taken into account that most of
the experimental models providing encouraging results are carried out using transgenic
animal models of AD, which are closer to the model of familial AD, whereas clinical trials
mostly consider cases of sporadic AD, without the genetic alterations addressed in trans-
genic models. This could explain the differences between the two scenarios and should be
addressed in future studies.
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