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Hairy cell leukemia (HCL) is an incurable, rare lymphoproliferative hematological

malignancy of mature B cAlthough first line therapy with purine analogues leads to

positive results, almost half of HCL patients relapse after 5-10 years, and standard

treatment may not be an option due to intolerance or refractoriness. Proliferation

and survival of HCL cells is regulated by surrounding accessory cells and soluble

signals present in the tumor microenvironment, which actively contributes to

disease progression. In vitro studies show that different therapeutic approaches

tested in HCL impact the tumor microenvironment, and that this milieu offers a

protection affecting treatment efficacy. Herein we explore the effects of the tumor

microenvironment to different approved and experimental therapeutic options for

HCL. Dissecting the complex interactions between leukemia cells and their milieu

will be essential to develop new targeted therapies for HCL patients.

KEYWORDS

HCL, leukemia microenvironment, treatment resistance, microenvironment targeting,
novel therapies
1 Introduction

1.1 Hairy cell leukemia

Representing approximately 2% of all leukemia cases worldwide, hairy cell leukemia (HCL) is

an incurable lymphoproliferative B cell malignancy with an incidence rate of 0.3/100 000 in men

and 0.1/100 000 in women (1, 2). Themedian age of HCL patients at diagnosis is close to 54 years

(3, 4). The disease is characterized by the presence of abnormal B cells with hairy projections,

which progressively accumulate in bone marrow (BM), spleen (causing splenomegaly) and other
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organs (e.g. liver) leading to a reduction of circulating erythrocytes, white

blood cells, and platelets (known as pancytopenia) (5, 6). In contrast to

chronic lymphocytic leukemia (CLL), HCL cells (HC) rarely infiltrate

lymph nodes (3, 7). Patients affected by HCL can experience fatigue,

increased risk of infections and bleeding due to anemia, leukopenia, and

thrombocytopenia, respectively. Furthermore, HC infiltration in BM and

other organs can lead to increased probability of fractures and impaired

organ functions (3).

At diagnosis, HC are present at low frequency in peripheral blood

(PB) and are characterized by the expression of typical B cell markers

(like CD19, CD20, or CD22), as well as CD25, CD11c, CD103 and

CD123, and by the mutation of the B-Raf proto-oncogene (BRAF,

BRAFV600E) (8, 9). The latter, in particular, has been identified as a key

mutation for the classic HCL subgroup (HCLc), while it is undetected

in the variant form of HCL (HCLv) and in patients with IGHV4-34+.

HCLv represents nearly 10% of all HCL cases, and up to 20% of

patients belong to the IGHV4-34 molecular variant subgroup (10).

BRAFV600E mutation has been identified within the hematopoietic

stem cell compartment, suggesting an early transformation stage

leading to HCLc (11). HCLv (12) and IGHV4-34 (13) groups display

a distinct molecular pathogenesis (14). Beyond BRAFV600E mutation,

HC express the anti-apoptotic B-cell lymphoma 2 (BCL-2) protein, a

well-studied inhibitor of cell death that sustains cell survival, tumor

growth and cancer disease progression (15–17). Standard treatment of

HCL with cladribine (CDA) or pentostatin (2’-deoxycoformycin,

DCF), alone or in combination with anti-CD20 (rituximab)

immunotherapy, leads to remission in the vast majority of patients

with certain subgroups of HCL patients can have a life expectation

close to healthy individuals (18). However, no plateau on progression-

free survival (PFS) curves has been achieved, thus most patients

eventually relapse (19). Furthermore, the combined immune

deficiencies due to HCL itself and to the treatments lead to high risk

of infections during the first months after initiating therapy with CDA

or DCF (20). This opens up to novel therapy strategies (21–24), clinical

trials (detailed in Table 1), and basic research studies (25).
1.2 Characteristics of the tumor
microenvironment in HCL

Over the last decades, there has been an evident broadening in the

research interests and in the design of treatment strategies from studying

exclusively tumor cells, to also consider components of the surrounding

microenvironment. This includes deep characterization of different

cellular subsets and soluble components, as well as understanding the

complex communicational network within the tumor

microenvironment (TME) (26, 27). CLL represents one clear case of

such shift to this new wider understanding and design in therapies (28).

In HCL, the BM represents a key anatomical site for the disease,

where malignant cells proliferate and survive thanks to physical

protection and constitutive signals provided from the different

microenvironment cells. Sinusoidal endothelial cells, mesenchymal

stromal cells (BMSCs) and osteoclasts, express high amounts of

CXCL12. This allows hematopoietic stem cells (HSCs) to migrate

from the endosteal to the vascular niche replenishing the pool of

mature circulating blood cells (29). Given their high expression of
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CXCR4, HC are strongly attracted to the BM, as well as to the splenic

and hepatic niches, where they physically interact with sinusoid cells

expressing vascular cell adhesion molecule 1 (VCAM-1) (30). The

absence of HC in lymph nodes is due to the lack of expression of the

chemokine receptors CXCR5 and CCR7 (31). HC release tumor

necrosis factor alpha (TNF-a), which stimulates VCAM-1 expression

on surrounding endothelial cells, increasing tumor cell migration in

situ (32). Beyond stimulating malignant B cell migration, BMSCs

sustain HC survival and proliferation by interacting with the integrin

a4b1 (very late antigen-4, VLA-4), expressed on malignant cells,

triggering mitogen activated protein (MAP) kinases and the nuclear

factor kappa-light-chain-enhancer of activated B cells (NF-kB)
downstream pathway (33). To further sustain HC interaction with

the extracellular matrix and sinusoidal endothelial cells in the

microenvironment, tumor cells express CD44 that binds to

hyaluronic acid, present in both BM and hepatic niches, and the

integrin aVb3 binding the platelet/endothelial cell adhesion molecule 1

(PECAM-1) (34). Interactions between laminin and the basement

membrane causes endothelial cell replacement by HC in the

microenvironment (35). This represent a unique HCL vascular

feature, taking place mainly in spleen (splenic pseudosinuses) and

liver (hepatic hemangiomatous lesions) (36).

The T cell compartment is also altered in HCL (37). Thus, the

expansion of T cells characterized by redundant T-cell receptor b
variable region and high reactivity towards HC-surface CD40

results in a skewed T repertoire (38, 39). Given that CD40

downstream signals (MAPK and NF-kB pathways) are essential

for HC proliferation (40), the expanded CD40L+ T cells in HCL are

thought to have a tumor supportive function rather than being

involved in disease suppression (37).

Furthermore, engagement of the B cell receptor (BCR)

represents an important event during HCL pathogenesis. The vast

majority of HCL patients show HC characterized by mutated

immunoglobulin variable region genes (M-IGHV) (41, 42). The

minor fraction of HCL cases with unmutated IGHV (UM-IGHV)

display higher response to BCR stimulation compared with M-

IGHV (43). Within the HCL microenvironment, BCR signaling

could be potentially triggered by classical ligand interaction (e.g.

auto-antigen) or through a ligand-independent fashion (tonic

signaling). In both cases, BCR downstream signaling activates key

kinases (SYK, BTK and PI3Kd), leading to HC proliferation and

survival. Moreover, BCR engagement also triggers the release of the

chemokines CCL3 and CCL4, used to coordinate monocytes and T

cell recruitment to the microenvironment (44–46).
2 Therapeutic options in HCL and the
impact of the tumor
microenvironment

2.1 Non-targeted agents for HCL: Cytokine
alpha-interferon and purine analogs

Before the significant improvement in cancer therapy that

occurred with the advent of purine analogs, HCL was mainly
frontiersin.org
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TABLE 1 Current clinical trials in HCL.

NCT
CodeAA3:

F25
Status Clinical

phases Conditions Interventions

NCT02131753 Recruiting
Phase 2|
Phase 3

HCL Cladribine

NCT05388123 Recruiting Phase 2 HCL Low dose vemurafenib and Rituximab

NCT04322383 Recruiting Phase 2 HCL Binimetinib

NCT03805932 Recruiting Phase 1 HCL Moxetumomab Pasudotox-tdfk, Rituximab and Ruxience

NCT04815356 Recruiting Phase 1 c, v and r HCL aCD22 CAR-T cells

NCT00923013 Recruiting Phase 2 HCL Cladribine and Rituximab

NCT01711632 Active, nr Phase 2 HCL Vemurafenib

NCT00321555 Active, nr Phase 2 HCL Anti-Tac(Fv)-PE38 (LMB-2) Immunotoxin

NCT01059786 Recruiting Phase 2 HCL Pentostatin, Rituximab and Bendamustine

NCT00412594 Recruiting Phase 2 c and r HCL Cladribine, rituximab and laboratory biomarker analysis

NCT01841723 Active, nr Phase 2 c, v and r HCL Ibrutinib

NCT03410875 Active, nr Phase 2 HCL* Vemurafenib and Obinutuzumab

NCT04324112 Recruiting Phase 2 HCL Binimetinib and Encorafenib

NCT04125290 Recruiting Phase 3
Relapsed or

refractory HCL
Moxetumomab Pasudotox-tdfk

NCT02560883 Recruiting
Not

Applicable
HCL* Clinical data collection

NCT05537766
Not yet
recruiting

Phase 2
Relapsed/

Refractory HCL*
Cyclophosphamide, Fludarabine and aCD19 CART cells

NCT01087333 Recruiting
Not

Applicable
HCL* Clinical sample collection

NCT04578600 Recruiting Phase 1
r and refractory

HCL*
Lenalidomide, Obinutuzumab and Azacitidine

NCT04681105 Recruiting Phase 1
r and refractory

HCL*
Acetaminophen, Dexamethasone, Diphenhydramine, Flotetuzumab, Ibuprofen and Ranitidine

NCT02362035 Active, nr
Phase 1|
Phase 2

HCL* Acalabrutinib and Pembrolizumab

NCT02213913 Active, nr
Phase 1|
Phase 2

HCL and
progressive HCL*

Lenalidomide, Etoposide, Prednisone, Vincristine sulfate, Doxorubicin Hydrochloride,
Cyclophosphamide, Rituximab, quality-of-life assessment and laboratory biomarker analysis

NCT04952974 Recruiting HCL* Laboratory biomarker analysis

NCT04775745 Recruiting Phase 1 HCL* LP-168

NCT02153580 Active, nr Phase 1 r HCL*
Bendamustine Hydrochloride, Cyclophosphamide, Etoposide, Fludarabine Phosphate and aCD19

CART cells

NCT01760655 Recruiting Phase 2
HCL and

refractory HCL*
Fludarabine Phosphate, Thiotepa, Cyclophosphamide, Tacrolimus, Mycophenolate mofetil, allogeneic

lymphocytes, total body irradiation, HSCT and peripheral blood stem cell transplantation

NCT01815749 Active, nr Phase 1
Post-transplant
Refractory HCL*

aCD19 CAR-T cells, HSCT and laboratory biomarker analysis

NCT02924402 Recruiting Phase 1 HCL* XmAb13676

NCT01137643 Recruiting
Not

Applicable
HCL* Biologic sample preservation procedure and cytology specimen collection procedure

NCT01137825 Recruiting
Not

Applicable
HCL*,** Clinical data collection

NCT00935090 Recruiting
Not

Applicable
HCL*,** 3’-deoxy-3’-[18F]fluorothymidine
nr, not recruiting; HCL, hairy cell leukemia; c, classic; v, variant; r, recurrent; HSCT, hematopoietic stem cell transplantation; CAR-T, Chimeric antigen receptor T; *, other hematologic
malignancies; **, solid tumors.
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treated either through splenectomy, chemotherapy with

chlorambucil, rubidazone or methotrexate (among other drugs

with more limited efficacy, reviewed in (46) and (47)), or with

immune response modifiers such as interferons (47, 48). In 1984,

Quesada et al. (49) suggested the use of the cytokine alpha-

interferon (IFN-a) by intramuscular route and in 2002, Baker

and colleagues deepened into its mechanisms of action (50). They

showed that IFN-a exerts its cell death effect on HC by triggering

autocrine production of TNF-a and mediating a suppression of

inhibitor of apoptosis protein-1 (IAP-1) expression (Figure 1A).

Importantly, engagement of the receptors for fibronectin (FN) or

vitronectin (VN) in HC prevented this IFN-a-induced
downregulation of IAPs, reducing its cytotoxicity. The high

abundance of FN and VN in the extracellular matrix of HCL

patient’s spleen and BM (51), together with the constitutive

expression of integrins at the surface of HC binding these ligands

(52), evidence a microenvironment-mediated protection towards

IFN-a treatment.

The introduction of purine analogs implied a major change in

the disease outcome of HCL. Indeed, first line treatment with CDA

is still the initial option in the majority of cases to date (1), more

than 30 years after its initial use. Alternatively, DCF was widely used

with excellent results as well, but preference towards CDA became

more frequent probably due to a shorter administration scheme

(53). The in vitro effect of CDA on PB mononuclear cells of healthy

donors shows a reduced proliferative capacity of T and B cells, but

not NK cells (54). CDA also impairs the activation and increases the

apoptosis of T, B and NK cells in a dose-dependent manner,

negatively affects dendritic cells (55), and modulates the cytokine

response towards an anti-inflammatory profile (56). Thus, despite

being highly effective against HC, CDA also causes severe harm to

HCL microenvironment cells such as CD56+ NK cells, CD8+ and

CD4+ T cell subsets, and induces profound changes in the

composition of soluble factors including an increase in interleukin

(IL)-10 production, overall reducing immune surveillance and

function (Figure 1B). This is clinically reflected by the high risk of

infections in the first weeks and months after treatment of HCL.

Interestingly, a recent report making use of BM trephine samples

from HCL patients before and after CDA therapy showed a

reduction in tumor infiltrating NK and T cells, while proportions

of monocytes and dendritic cells increase (57). Since monocytes and

macrophages have the capacity to induce HC proliferation by direct

interaction in vitro (58), these over represented myeloid cells could

play a key role in sustaining the survival of remnant leukemic cells

after CDA therapy.
2.2 Immunotherapy with anti-CD20
antibodies

HCL cases that relapse before 2 years after initial therapy, as

well as HCLv patients, are treated with CDA plus rituximab (1). As

first line therapy, this combination has so far showed promising

results, which further improve when administered in a sequential

scheme (59). Rituximab is an anti-CD20 monoclonal antibody

successfully used in CLL and different B lymphomas (60) that
Frontiers in Oncology 04
exerts its cell death effect in normal and neoplastic B cells by

initiating the complement cascade and, mainly, through antibody

dependent cellular cytotoxicity (ADCC) mediated by NK and

monocyte/macrophages (61). Another anti-CD20 tested in HCL is

obinutuzumab (62, 63), a second generation monoclonal antibody

currently undergoing two different clinical trials (NCT04578600

and NCT03410875, Table 1). Obinutuzumab was used in

combination with chlorambucil for treatment-naive CLL patients,

showing superiority as compared to chlorambucil plus rituximab

(64), and was also tested in vitro, where an improved ADCC

towards CLL cells was detected when it was compared with

rituximab (65). Another second generation anti-CD20 antibody

used for refractory or intolerant CLL cases is ofatumumab, which

binds a CD20 epitope different from the CD20 binding site of

rituximab and obinutuzumab, that partially overlap (66). To the

best of our knowledge, ofatumumab has not been tested in HCL yet.

In CLL, microenvironment-mediated stimulation of leukemia

cells through CD40 leads to an increase in their sensitivity to

rituximab (67). On the other side, CD20+ small extracellular

vesicles (sEV) released in the tumor microenvironment by both

CLL and normal B cell have the capacity to quench this antibody

and decrease its availability for neoplastic cells (68). These or other

possible effects linking anti-CD20 antibodies to the TME in HCL

have not been studied so far. It is reported, however, that expression

of CD20 is higher in normal B cells than in HC (69). Therefore, it is

expected that normal B cells will be negatively affected by anti-

CD20 based therapies, and that the CD20+/hi sEV secreted by these

cells will actively reduce their availability (Figure 1C). Additional

effects that could be mediated by other leukocytes binding anti-

CD20 antibodies through the Fc gamma Receptors (FcgR),
involving mechanisms such as phagocytosis and cytokine release,

remain to be elucidated in HCL.
2.3 Additional therapeutic options in HCL:
BRAF and MEK inhibitors, immunotoxins,
and BTK inhibitors

HCL patients from the classic group carry the BRAFV600E

mutation, while it is virtually absent in other B-cell leukemias and

lymphomas (9, 70). Inhibiting BRAF-related signaling pathways

represents a very interesting therapeutic approach that has been

tested in the last decade in HCL, showing promising results (71).

Pettirossi and colleagues showed that vemurafenib and trametinib,

BRAF and MEK inhibitors respectively, cause strong MEK/ERK

dephosphorylation and silence the transcriptional output of the

activated BRAF-MEK-ERK pathway leading to the loss of the hairy

morphology and to apoptosis (29). Treatment of relapsed or

refractory HCL with vemurafenib as monotherapy leads to high

overall response rates and 1-year PFS above 70% (72); while the

combination of vemurafenib with trametinib has reported 89%

overall response rates with 2-year PFS of 94% (73). Interestingly,

stromal cells can partially protect HC from the cell death effect

induced by BRAF inh ib i t i on (F i gu r e 1D) . Indeed ,

dephosphorylation of the BRAF-MEK-ERK pathway by the BRAF

inhibitors vemurafenib and dabrafenib is reduced when HC are co-
frontiersin.org

https://doi.org/10.3389/fonc.2023.1122699
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gargiulo et al. 10.3389/fonc.2023.1122699
cultured with the stroma cell line HS-5, decreasing the drug’s pro-

apoptotic effect (29). Thus, cells present in the HCL tumor

microenvironment have the capacity to thwart dephosphorylation

changes induced by certain drugs used in therapy, having a concrete

impact on leukemic cells survival.

Recombinant immunotoxins are engineered chimeric proteins

formed by a monoclonal antibody fragment fused to toxin, such as

Pseudomonas exotoxin A (PE) (74). Once bound to its target by the

antibody part, immunotoxins are internalized inducing cell death

by arrest of protein synthesis (75). In HCL, the first immunotoxin

tested, LMB-2, is directed against CD25 and showed a marked

cytotoxicity against HC in vitro (76). In patients, LMB-2 showed

positive results and achieved, in some cases, complete remission

(77, 78). Importantly, regulatory T cells (Tregs), expressing CD25,

have a key role in tumor immunosuppression in different lymphoid

malignancies such as CLL, and represent a target for novel

therapeutic approaches (79). LMB-2 eliminates human PB-

derived Tregs in vitro (80), and selectively reduces circulating and
Frontiers in Oncology 05
tumor infiltrating Tregs in melanoma patients (81). Little is known

about Tregs in HCL and there is no information about the effect of

LMB-2 towards this cell subset in HCL. Still, these works open the

question if LMB-2 could have also an impact on the Tregs present in

the HCL-TME, which may indirectly contribute to the efficacy of

treatment (Figure 1E). On the other hand, stimulation of CLL cells

with phosphorothioate CpG-oligodeoxynucleotide (CpG-ODN)

increases their sensitivity to LMB-2 in vitro due to upregulation

of CD25, an effect also seen to a lesser extent in normal B cells of

healthy donors (82). It has not yet been tested in HCL whether

TLR9 engagement of HC, or of normal B cells, affects LMB-

2 treatment.

Another approach using immunotoxins in HCL is the case of

CAT-8015, or Moxetumomab Pasudotox (Moxe), a fusion of the

toxin PE to CD22 that showed improved efficacy compared to

previous CD22-targeting immunotoxins (83). Clinical benefit was

observed in relapsed/refractory HCL patients treated with Moxe in

different studies (84, 85). The US Food and Drug Administration
FIGURE 1

The protective role of the tumor microenvironment against treatments in HCL. Approved and experimental therapeutic options for HCL are
presented, and details of microenvironment-mediated protection are provided. (A) Cytokines. IFN-a treatment efficacy is reduced due to
engagement of HC to FN or VN receptors, present in the extracellular matrix of the spleen and bone marrow, inhibiting the IFN-a-mediated
downregulation of IAPs, ultimately leading to reduced cell death. (B) Purine analogs. Cladribine off-targets effects could reduce the immune
response against HC, mediated by cytotoxic T- and NK cells, and increase the levels of IL-10, promoting an anti-inflammatory profile. Indirect
expansion of monocytes and dendritic cells can further favor HC survival. (C) Anti-CD20 antibodies. Monoclonal antibody Rituximab efficacy
could be highly reduced in HCL due to the secretion of leukemia- and normal B cell-derived CD20+ sEV, as well as the higher expression of
CD20 on normal B cells. On the other hand, CD40-CD40L interaction leads to increased sensitivity towards Rituximab in CLL and this could also
be the case in HCL. (D) BRAF and MECK inhibitors. The pro-apoptotic effect of vemurafenib and trametinib is reduced by the presence of
stromal cells in the microenvironment, which impair the dephosphorylation changes induced by these drugs. (E) Recombinant immunotoxins.
The effect of these molecules could be affected by microenvironment modulation of the surface targets, e.g. CD22 availability during CAT-8015
treatment; or increased, e.g. CD25 upregulation during LMB-2 treatment in presence of CpG-ODN. Apoptosis of off-target cells, as regulatory T
cells in the case of LMB-2, could indirectly influence the efficacy of the treatment. (F) BTK inhibitors. Ibrutinib treatment is highly efficient in
affecting HC, but reduces the secretion of CCL3 and CCL4, and impairs CXCR4 signaling. This could possibly lead to redistribution of HC and
other supporting cells in the microenvironment, possibly influencing other treatment regiments. (G) CAR-T cells. Anti-CD22 CAR-T therapy can
be impaired by TGF-b1, directly affecting engineered T cells, as well as inducing Treg expansion. High levels of IL-1 in HCL microenvironment
enhance the risk of CRS. (H) BCL-2 inhibitors. Venetoclax treatment efficacy is strongly reduced against HC stimulated with TLR2 and TLR9
ligands, as well as by the presence of activated T and stromal cells. Created with BioRender.com.
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(FDA), approved Moxe under the name of Lumoxiti in 2017 for

HCL patients after 2 or more prior systemic therapies with at least

one being a purine analog. In acute lymphoblastic leukemia (ALL)

and in CLL, Moxe showed a limited response rate, probably due to a

lower CD22 expression (86–88). Protein kinase C (PKC) activation

leads to upregulation of CD22 in CLL (89). In HCL, PKC is

constitutively activated, in part due to the interaction of cell

adhesion molecules of HC to VN (90), abundantly present in the

extracellular matrix of the spleen (Figure 1E). This may explain the

higher sensitivity to Moxe in HCL, and could imply a different

response in key anatomical sites within this disease. Resistance to

Moxe in ALL was also linked to alternative splicing of CD22 mRNA

and to genome methylation (91, 92), while CD22 antigen

downregulation in leukemic cells by monocyte trogocytosis via

FcgR was described in the context of other anti-CD22 targeted

therapies (93). Whether these mechanisms are also ongoing in

HCL, remains to be experimentally tested.

The rationale of targeting the BCR signaling represents one of the

most successful novel introductions for B-cell neoplasia therapy in

the last decade. One example is the Bruton Tyrosine Kinase (BTK)

inhibitor ibrutinib, approved for CLL and mantle cell lymphoma

(94). In HCL, Sivina and colleagues showed that stimulation of the

BCR signaling triggers BTK, ERK and AKT phosphorylation, and

that ibrutinib decreases these effects, reducing HC survival (95).

Interestingly, ibrutinib also impairs the secretion of CCL3 and

CCL4, as well as CXCR4 signaling. These data suggest a possible

impact of ibrutinib on the HCL microenvironment interaction at

least on three levels: 1) by affecting BCR signaling induced by

microenvironment (auto-)antigens; 2) by impairing tumor-

supporting cell migration mediated by CCL3 and CCL4; and 3) by

redistribution of leukemic cells as consequence of a thwarted CXCR4

cascade (Figure 1F). For the moment, ibrutinib monotherapy has

been used in single cases of multiple relapse HCLv and in a

multicenter trial (NCT01841723), showing clinical benefits (96, 97).

Beyond ibrutinib, a second generation BTK inhibitor, acalabrutinib, is

currently in one clinical trial for different hematological malignancies

including HCL (NCT02362035). The final data of this trial is

estimated to be available in two years.
2.4 Recent therapeutic options tested in
HCL: CAR-T cells and BCL-2 inhibitors

A phase I study of anti-CD22 Chimeric Antigen Receptor-T

(CAR-T) cells in patients with relapsed/refractory HCLc and in

HCLv is currently being developed (NCT04815356), along with

other CAR-T cell approaches (see Table 1). The T cell compartment

in HCL has been associated to different dysfunctions and linked to a

non-responsive state (98). Successful CAR-T therapies highly

depend on the extent of immunosuppression within the tumor

milieu (99, 100). In HCL, TGF-b1 is present at high levels in BM

and PB (101), and this cytokine activates signals that severely hinder

T-cell based therapies (102–104). On the other hand, IL-1 actively

contributes to the cytokine release syndrome (CRS), which

represents one of the main cytotoxic side-effects associated with

CAR-T cell therapy (105). Serum levels of IL-1 increase during HCL
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progression and are elevated as compared to healthy donors and

other leukemia and lymphoma patients (106), representing a risky

“steady state” scenario that may favor the initiation of CRS

(Figure 1G). Whether the CAR-T cell approaches will overcome

these pitfalls and show patient benefit in HCL is currently an open

question of the highest interest.

Venetoclax is a small drug that specifically binds the BH3-

binding groove of BCL-2, competing with additional anti-apoptotic

members. It is the first BCL-2 antagonist approved for cancer

therapy, successfully used in CLL and in acute myeloid leukemia

(AML) (107–109). In a recent study, we showed that venetoclax is

able to induce cell death in primary HCL samples (25). Importantly,

stimulation of T cells through CD3 engagement and co-cultures

with HS-5 stromal cells activated primary HC and decreased the

pro-apoptotic effect of venetoclax, clearly showing a protective effect

of the tumor microenvironment towards BCL-2 inhibition. In

addition, stimulation of TLR2 and TLR9, using PAM3 and CpG

respectively, also partially rescued the cell death induced by

venetoclax (Figure 1H). It is currently not known through which

mechanisms the activation of HCL cells leads to protection towards

BCL-2 inhibition. Venetoclax has been tested, in combination with

ibrutinib, in one patient with biclonal IGHV4-34+ HCL and CLL,

showing promising results (21), but is not currently under any

clinical trial for HCL. To our knowledge, no other BH3 mimetics

available for hematological malignancies (110) has been tested in

HCL until the present.
3 Conclusions and perspectives

The TME exerts a protective effect towards some of the most

relevant treatment options in HCL, both approved and ongoing

experimental molecules, as summarized in Figure 1. This opens the

path to consider combined therapies to simultaneously attack

different TME components and HC.

As examples, interactions between HC and stromal cells could

be tackled by different strategies (111), including TGF-b (112) or

PKC-b inhibition (113); the latter being already tested in leukemia

models using BM stromal cells and showing promising results.

Since HC express high levels of CXCR4, interrupting its interaction

with CXCL12 by blocking antibody (114), or a drug-mediated

inhibition of this axis (115), represent interesting strategies to

inhibit the homing of HC to BM. These approaches could be

applied in combination with standard treatments directly

inducing HC apoptosis. On the other hand, ibrutinib enhances

CAR-T cell activity in CLL and in an in vivomodel of resistant acute

lymphocytic leukemia (116), and these therapies are included in

different ongoing HCL clinical trials separately (Table 1), thus a

combined regimen of these two treatments could be considered.

Hitherto, the combination of CD20 targeting with cladribine, the

targeting of the BRAF-MEK-ERK pathway, CD22 targeting by

immunotoxins or CAR-T and BTK inhibition has been developed

the furthest towards clinical targeting of the microenvironment

in HCL.

In summary, given the vast potential of targetable pathways in

the TME landscape of HCL, a new array of therapeutic possibilities
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remains to be tested in HCL. Due to the rarity of HCL, in addition

to testing in clinical trials, any clinical use of such drugs outside

trials should also be reported to speed up development of clinical

options for patients with HCL. This perspective positions the

interactions between HC and their milieu as a key aspect to target

in order to increase therapeutic benefit for HCL patients.
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ADCC antibody dependent cellular cytotoxicity

AKT RAC(Rho family)-alpha serine/threonine-protein kinase

ALL acute lymphoblastic leukemia

AML acute myeloid leukemia

BCL-2 B-cell lymphoma 2

BCR B cell receptor

BH3 BCL-2 homology domain 3

BM bone marrow

BMSCs bone marrow stromal cells

BRAF B-Raf proto-oncogene

BTK Bruton Tyrosine Kinase

CAR-T Chimeric Antigen Receptor-T

CDA cladribine

CCL3 Chemokine (C-C motif) ligand 3

CCL4 Chemokine (C-C motif) ligand 4

CCR7 C-C chemokine receptor type 7

CLL Chronic Lymphocytic Leukemia

CpG-ODN phosphorothioate CpG-oligodeoxynucleotide

CRS cytokine release syndrome

CXCL12 C-X-C Motif Chemokine Ligand 12

CXCR4 C-X-C Motif Chemokine Receptor 4

CXCR5 C-X-C chemokine receptor type 5

DCF pentostatin

ERK extracellular signal-regulated kinases

FcgR Fc gamma Receptor

FN fibronectin

HC hairy cell leukemia cells

HCL hairy cell leukemia

HCLc classic hairy cell leukemia

HCLv hairy cell leukemia variant

HSCs hematopoietic stem cells

HSCT hematopoietic stem cell transplantation

IAP-1 inhibitor of apoptosis protein-1

IFN-a alpha-interferon

IGHV4-34 immunoglobulin heavy chain gene 34 of family 4

IL interleukin

M-IGHV mutated immunoglobulin heavy chain variable region

MAPK mitogen activated protein kinase

(Continued)
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MEK mitogen-activated protein kinase kinase

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells

NK natural killer (cells)

PAM3 synthetic triacylated lipopeptide

PB peripheral blood

PE Pseudomonas exotoxin A

PECAM-1 platelet/endothelial cell adhesion molecule 1

PFS progression-free survival

PI3Kd phosphoinositide 3-kinase delta isoform

PKC Protein kinase C

sEV small extracellular vesicles

SYK spleen tyrosine kinase

TGF-b1 Transforming growth factor beta 1

TME tumor microenvironment

TNF-a tumor necrosis factor alpha

TLR Toll-like receptor

UM-IGHV unmutated immunoglobulin heavy chain variable region

US United States

VCAM-1 vascular cell adhesion molecule 1

VLA-4 very late antigen-4

VN vitronectin
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